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Abstract

In several real-world applications involving decision making under uncertainty, the traditional ex-

pected value objective may not be suitable, as it may be necessary to control losses in the case of a

rare but extreme event. Conditional Value-at-Risk (CVaR) is a popular risk measure for modelling the

aforementioned objective. We consider the problem of estimating CVaR from i.i.d. samples of an un-

bounded random variable, which is either sub-Gaussian or sub-exponential. We derive a novel one-sided

concentration bound for a natural sample-based CVaR estimator in this setting. Our bound relies on a

concentration result for a quantile-based estimator for Value-at-Risk (VaR), which may be of independent

interest.

1 Introduction

In several practical decision problems, the presence of uncertainty complicates the decision making process

as decisions typically are required to be taken before the uncertainty is resolved. Traditionally, this difficulty

is overcome by averaging the costs (or rewards) over all possible realizations of the uncertainty, and then

optimizing the averaged cost thus obtained. However, it has been argued that considering averaged out-

comes is not appropriate in situations where low-probability events such as financial crashes and category 4

hurricanes can cause huge costs. The possibility of occurrence of such tail events has led to the introduction

of risk measures such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) for quantification of

risk. In financial risk management, the VaR of a risky portfolio at a confidence level α is a loss threshold

such that the probability of the loss exceeding the threshold is no greater than 1−α. The CVaR of a portfolio

at a confidence level α is the expected loss on the portfolio conditioned on the event that the loss exceeds

the VaR. Loosely speaking, VaR quantifies the maximum loss that can occur in the absence of a catastrophic

tail event, while the CVaR gives the expected loss given the occurrence of such a tail event. CVaR has

several desirable properties as a risk measure. In particular, it is a convex, coherent risk measure (see the

survey paper [4] and references therein). As a result, CVaR continues to receive increasing attention in

operations research, mathematical finance, and decision science for problems involving risk quantification

or risk minimization.
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In most applications involving uncertainty, the distributions characterizing the underlying uncertain fac-

tors are not known, and risk measures such as CVaR have to be estimated from sampled values of the random

variable of interest. This is true, for instance, in a multi-armed bandit problem [5, 3] in which pulling an

arm leads to a random loss, and one seeks to identify the arm whose loss random variable has the lowest

CVaR by observing a sample of outcomes that result from multiple arm pulls. An obvious estimator for

the CVaR of a distribution is the sample CVaR of an i.i.d. sample drawn from the distribution. Naturally,

one seeks error bounds for the estimator that help to understand the trade-off between accuracy and sample

size. Previous results on CVaR estimation either provide asymptotic error bounds for a general r.v. [7], or

provide non-asymptotic error bounds that hold with high probability, but under the stringent assumption that

the underlying r.v. is bounded [2, 8].

In this paper, we consider the problem of estimating the CVaR of an unbounded, albeit sub-Gaussian or

sub-exponential random variable. Sub-Gaussian r.v.s include bounded, Gaussian and any other r.v. whose

tail decays as fast as a Gaussian. On the other hand, sub-exponential r.v.s include exponential, Poisson and

squared-Gaussian r.v. and are characterized by a tail heavier than Gaussian, resembling that of an expo-

nential distribution. To the best of our knowledge, there are no concentration bounds for CVaR estimator

for these two popular classes of unbounded distributions. We believe, imposing a tail decay assumption

(sub-Gaussian or sub-exponential) is not restrictive, as such an imposition is common in concentration re-

sults for sample mean. Also, the task of CVaR estimation is more challenging in comparison, as it relates

to a tail event. We derive a one-sided concentration bound for the empirical CVaR of an i.i.d. sample. Our

bound relies on one of the two concentration results (of possibly independent interest) that we provide for a

quantile-based estimator for VaR.

The rest of the paper is organized as follows: Section 2 introduces VaR, CVaR and their estimators from

i.i.d. samples, Section 3 presents the concentration bounds for VaR and CVaR estimators. Section 4 provides

detailed proofs of the concentration results, and Section 5 concludes the paper.

2 Background

Given a r.v. X with cumulative distribution function (CDF) F (·), the VaR vα(X) and CVaR cα(X) 1 at

level α ∈ (0, 1) are defined as follows:

vα(X) = inf{ξ : P [X ≤ ξ] ≥ α} and (1)

cα(X) = vα(X) +
1

1− α
E [X − vα(X)]+ , (2)

where we have used the notation that [x]+ = max(0, x) for a real number x. Typical values of α chosen in

practice are 0.95 and 0.99. Note that, if X has a continuous and strictly increasing CDF, then vα(X) is a

solution to the following P [X ≤ ξ] = α i.e., vα(X) = F−1(α). CVaR also admits another form under the

following assumption:

(A1) The r.v. X is continuous and has strictly increasing CDF.

If (A1) holds and X has a positive density at vα, then cα(X) admits the following equivalent form (cf.

[7]):

cα(X) = E [X|X ≥ vα(X)] .

Let {Xi}ni=1 denote n i.i.d. samples from the distribution of X. Then, the estimates of VaR and CVaR

at level α, denoted by v̂n,α and ĉn,α, are formed as follows [6]:

v̂n,α = F̂−1
n (α) := inf{x : F̂n(x) ≥ α} (3)

1For notational brevity, we omit X from vα(X) and cα(X) whenever the r.v. can be understood from the context.
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ĉn,α = v̂n,α +
1

n(1− α)

n
∑

i=1

(Xi − v̂n,α)
+ , (4)

where F̂n(x) =
1
n

∑n
i=1 I{Xi ≤ x} is the empirical distribution function of X. Note that, from the order

statistics X[1], . . . ,X[n], the empirical VaR can be computed as follows: v̂n,α = X[⌈nα⌉].

3 Concentration bounds

In this section, we present four concentration bounds. The first two bounds are for the VaR estimator

given in (3) and these bounds do not impose any restrictions on the underlying distribution. The next two

concentration results are for the CVaR estimator given in (4), and for these results, we assume that the

underlying distribution is either sub-Gaussian or sub-exponential (see Definitions 1–2 below).

In each of the result presented below, the estimates are calculated using n i.i.d. samples {Xi}ni=1 drawn

from the r.v. X with CDF F (·), and for a given α ∈ (0, 1).

Proposition 1. (VaR concentration bound) Let α ∈ (0, 1), n ∈ N and s ∈
(

0, 12
)

. Define α− = α − 1
2ns

and α+ = α+ 1
2ns . Further, let an = F̂−1

n (α−) and bn = F̂−1
n (α+), where F̂−1

n (·) is defined by (3). Then,

P [vα(X) ∈ [an, bn]] ≥
(

1− 2 exp

(

−n1−2s

8

))

.

Note that, the above concentration bound is free of any distribution dependent parameters.

Proof. See Section 4.1.

The following result presents another concentration bound for the VaR estimator which will have dis-

tribution parameters in the bound. However, unlike Proposition 1, the result presented below is symmetric,

and more importantly, bounds the estimation error |v̂n,α − vα| directly.

Proposition 2 (VaR concentration bound). Suppose that (A1) holds. For any ǫ > 0, we have

P [|v̂n,α − vα| ≥ ǫ] ≤ 2 exp
(

−2ncǫ2
)

,

where c is a constant that depends on the value of the density f of the r.v. X in a neighbourhood of VaR.

Proof. See Section 4.2.

The bound above implies that to estimate the VaR to an accuracy of ǫ, one would require an order

O
(

1/ǫ2
)

number of samples. Notice that no restrictive assumptions on the tail of the underlying distribution

are made in arriving at the concentration bounds for VaR in Propositions 1 and 2. However, for establishing

concentration bounds for the CVaR, which involves conditioning on a tail event, it is necessary to assume

that the distribution is not heavy-tailed. In fact, even for the case of estimating the expected value of a r.v.,

exponential concentration bounds are available under an assumption that restricts the tail to be light (cf.

Chapter 2 of [1]).

In this paper, we present concentration bounds under two popular assumptions on the tail of a r.v. The

first restricts the r.v. to be sub-Gaussian, while the second requires the same to be sub-exponential. These

two classes of r.v.s include bounded r.v.s and more importantly, several unbounded r.v.s as well. Sub-

Gaussian r.v.s include the Gaussian r.v.s as well as several other r.v.s whose moment generating functions

do not exceed that of a Gaussian, while sub-exponential r.v.s include heavier tailed r.v.s. These two notions

are made precise in the following definitions.
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Definition 1. A r.v. X with E [X] = µ < ∞ is said to be σ-sub-Gaussian if

E [exp (λX)] ≤ exp

(

λµ+
λ2σ2

2

)

, ∀λ ∈ R.

Definition 2. A r.v. X with mean µ < ∞ is said to be (σ, b)-sub-exponential if

E [exp (λX)] ≤ exp

(

λµ+
λ2σ2

2

)

, ∀ |λ| < 1

b
.

It is worth noting that all sub-Gaussian r.v.s are sub-exponential, but the converse is not true. The

following result presents a one-sided concentration bound for the CVaR estimator in (4), for the case when

the underlying r.v. is sub-Gaussian.

Proposition 3 (CVaR concentration bound: sub-Gaussian case). Suppose that (A1) holds. Let α ∈ (0, 1),
and X be a σ-sub-Gaussian r.v. with mean µ. Suppose that α is large enough to ensure (vα − µ) > 0 and

the sub-Gaussian parameter σ satisfies σ <
√

(vα−µ)2

2 ln(1/(1−α)) . Then, for any ǫ > 0, we have

P [ĉn,α − cα > ǫ] ≤ exp

(

−nǫ(1− α)(vα − µ)

2σ2

)

+ 2exp
(

−2nc1ǫ
2
)

+ 2exp (−2nc2ǫ)

+ exp
(

−2nǫ(1− α)2
)

, (5)

where c1 and c2 are constants that depend on the value of the density f of the r.v. X in a neighbourhood of

VaR.

Proof. See Section 4.3.

Suppose that the accuracy ǫ is greater than 1. Then, it is apparent that the dominant terms on the RHS of

(5) are those involving an exponential with ǫ. Further, ĉn,α ≤ cα + ǫ with probability (w.p.) at least (1− δ),
when the number of samples n is of the order O

(

1
ǫ ln

(

1
δ

))

. On other hand, an order O
(

1
ǫ2
ln
(

1
δ

))

number

of samples are enough to ensure that v̂n,α ≤ vα + ǫ w.p. at least (1− δ). Hence, CVaR estimation requires

more samples in comparison to VaR, when ǫ > 1. In the complementary case, i.e., when ǫ < 1, both VaR

and CVaR estimate can be ǫ-accurate w.p. (1− δ), if the number of samples is of the order O( 1
ǫ2
ln
(

1
δ

)

).
Next, we analyse the concentration of the CVaR estimator in (4) for the case when the underlying r.v. is

sub-exponential.

Proposition 4 (CVaR concentration bound: sub-exponential case). Suppose that (A1) holds. Let X be

a (σ, b)-sub-exponential r.v. with mean µ. Suppose that α is large enough to ensure vα − µ > 0 and the

parameter σ satisfies σ <

√

2 ln(1−α)+2(vα−µ)mb

m2

b

where mb = min{vα−µ
σ2 , b′} where b′ < 1/b. Then for any

ǫ > 0, we have

P [ĉn,α − cα > ǫ] ≤ exp

(

−nǫ(1− α)mb

2

)

+ 2exp
(

−2nc1ǫ
2
)

+ 2exp (−2nc2ǫ) + exp
(

−2nǫ(1− α)2
)

,

(6)

where c1 and c2 are as in Proposition 3.

From the result above, it is apparent that the rate of CVaR concentration for sub-exponential r.v.s matches

that of sub-Gaussian ones.

Proof. See Section 4.4.
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4 Proofs

In this section, we present the proofs of the results presented in Section 3.

4.1 Proof of Proposition 1

Proof. Recall the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality, which provides a finite-sample bound on

the distance between the empirical distribution and the true distribution: For any ǫ > 0,

P

[

sup
x∈R

|F̂n(x)− F (x)| > ǫ

]

≤ 2e−2nǫ2 .

Consider the following event

A =
{

sup
x∈[an,bn]

∣

∣

∣
F̂n(x)− F (x)

∣

∣

∣
≤ 1

4ns

}

,

with an = F̂−1
n (α−) and bn = F̂−1

n (α+) as defined in the theorem statement. By the DKW inequality, we

have

P [A] ≥ 1− 2 exp

( −2n

16n2s

)

= 1− 2 exp

(−n1−2s

8

)

. (7)

On the event A, we have

F (an)
(a)
= lim

a↑an
F (a)

(b)

≤ lim
a↑an

(

F̂n(a) +
1

4ns

)

(c)

≤ α− +
1

4ns
= α− 1

4ns
< α, and

F (bn) ≥ α+ − 1

4ns
= α+

1

4ns
> α,

where (a) follows from continuity of F , (b) follows from the definition of the event A, and (c) follows from

the definition of an. Thus, vα ∈ [an, bn] and the main claim follows from the lower bound on P [A] in

(7).

4.2 Proof of Proposition 2

Proof.

P [|v̂n,α − vα| ≥ ǫ] = P [v̂n,α ≥ vα + ǫ] + P [v̂n,α ≤ vα − ǫ]

≤ P

[

F̂n(vα + ǫ) ≤ α
]

+ P

[

F̂n(vα − ǫ) ≥ α
]

= P

[

F (vα + ǫ)− F̂n(vα + ǫ) ≥ F (vα + ǫ)− α
]

+ P

[

F̂n(vα − ǫ)− F (vα − ǫ) ≥ α− F (vα − ǫ)
]

(a)

≤ exp
(

−2n (F (vα + ǫ)− F (vα))
2
)

+ exp
(

−2n (F (vα)− F (vα − ǫ))2
)

≤ 2 exp
(

−2nδ2ǫ
)

,

where (a) is due to the DKW inequality, and δǫ = min{F (vα + ǫ)− F (vα), F (vα)− F (vα − ǫ)}.
Given that the density exists, we have

F (vα + η1)− F (vα − η2) = f(v̄)(η1 + η2),

for some v̄ ∈ [vα − η2, vα + η1]. Using the identity above for the two expressions inside δǫ, we obtain

δǫ = min (f(v̄1), f(v̄2))× ǫ.

for some v̄1 ∈ [vα, vα + ǫ] and v̄2 ∈ [vα − ǫ, vα] . The claim follows.
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4.3 Proof of Proposition 3

We first prove a more general result without restricting the sub-Gaussian parameter σ and the main claim in

Proposition 3 follows in a straightforward fashion.

Proposition 5 (General CVaR concentration bound: sub-Gaussian case). Assume (A1). Let X be a σ-

sub-Gaussian with mean µ. Suppose that (vα − µ) > 0. Then, for any ǫ > 0, we have

P [ĉn,α − cα > ǫ] ≤ exp

(

−nǫ(1− α)(vα − µ)

2σ2

)[

α+ exp

(

−(vα − µ)2

2σ2

)]n

+ 2exp
(

−2nδ2ǫ1
)

+ 2exp
(

−2nδ2ǫ2
)

+ exp
(

−2nǫ(1− α)2
)

, (8)

where δǫ1 = min{F (vα + n(1−α)ǫ
8 )−F (vα), F (vα)−F (vα − n(1−α)ǫ

8 )} and δǫ2 = min{F (vα +
√
ǫ/4)−

F (vα), F (vα)− F (vα −√
ǫ/4)}.

Proof. First, we bound the estimate ĉn,α. Notice that

ĉn,α = v̂n,α +
1

n(1− α)

n
∑

i=1

(Xi − v̂n,α)
+

= vα +
1

n(1− α)

n
∑

i=1

(Xi − vα)
+ + (v̂n,α − vα) +

1

n(1− α)

n
∑

i=1

[

(Xi − v̂n,α)
+ − (Xi − vα)

+]

(9)

The last term on the RHS of (9) can be re-written as follows:

1

n(1− α)

n
∑

i=1

[

(Xi − v̂n,α)
+ − (Xi − vα)

+] =
1

n(1− α)

n
∑

i=1

[(vα − v̂n,α)I {Xi ≥ v̂n,α}]

+
1

n(1− α)

n
∑

i=1

(Xi − vα) [I {Xi ≥ v̂n,α} − I {Xi ≥ vα}] , (10)

and

1

n(1− α)

n
∑

i=1

[(vα − v̂n,α)I {Xi ≥ v̂n,α}] =
v̂n,α − vα
1− α

[

[

F̂n(v̂n,α)− 1
]

− 1

n

n
∑

i=1

I {Xi = v̂n,α}
]

=
v̂n,α − vα
1− α

[

F̂n(v̂n,α)− 1
]

w.p. 1. (11)

The last equality above uses the fact that 1
n

∑n
i=1 I {Xi = v̂n,α} takes values zero w.p. 1, since Xi is

continuous, for each i.
Combining (9), (10) and (11), we obtain

ĉn,α = vα +
1

n

n
∑

i=1

(Xi − vα)
+

1− α
+ (v̂n,α − vα) +

v̂n,α − v

1− α

[

F̂n(v̂n,α)− 1
]

+
1

n

n
∑

i=1

Xi − vα
1− α

[I {Xi ≥ v̂n,α} − I {Xi ≥ vα}]

= vα +
1

n(1− α)

n
∑

i=1

(Xi − vα)
+ +Bn, (12)

6



where

Bn
∆
=

v̂n,α − vα
1− α

[

F̂n(v̂n,α)− α
]

+
1

n

n
∑

i=1

Xi − vα
1− α

[I {Xi ≥ v̂n,α} − I {Xi ≥ vα}] .

From (12), we have

ĉn,α − cα =

[

vα +
1

n

n
∑

i=1

(Xi − vα)
+

1− α
− cα

]

+Bn

=
1

1− α

[ 1

n

n
∑

i=1

(Xi − vα) I {Xi ≥ vα} − E [(X − vα)I {X ≥ vα}]
]

+Bn. (13)

For notational convenience, let

Yi = (Xi − vα) I {Xi ≥ vα} ,
Y = (X − vα)I {X ≥ vα} and

An =
1

1− α

(

1

n

n
∑

i=1

Yi − E [Y ]

)

.

It is easy to see that Yi’s are i.i.d., non-negative, and E [Yi] = (1 − α)(cα − vα), ∀i. We now proceed to

bound P [ĉn,α − cα > ǫ], using (13), as follows:

P [ĉn,α − cα > ǫ] = P [An +Bn > ǫ] ≤ P [An > ǫ/2] + P [Bn > ǫ/2] . (14)

For handling P [An > ǫ/2], we bound the moment generating function of r.v. Yi as follows:

E

[

eλYi/n
]

= E

[

e
λ

n
(Xi−vα)I{Xi≥vα}

]

=

∫ vα

−∞
fX(x)dx+

∫ ∞

vα

e
λ

n
(x−vα)fX(x)dx

≤ FX(vα) + e−
λ

n
vα

∫ ∞

−∞
e

λ

n
xfX(x)dx

(a)

≤ α+ e−
λ

n
vα+

λ

n
µ+λ

2
σ
2

2n2 , (15)

where (a) is due to the sub-Gaussianity of Xi. Thus,

P

[

An >
ǫ

2

]

= P

[

1

n

n
∑

i=1

Yi >
(1− α)ǫ

2
+ E [Y ]

]

(b)

≤ Πn
i=1E

[

eλYi/n
]

eλ((1−α)ǫ/2+E[Y ])

(c)

≤

[

α+ e−
λ

n
vα+

λ

n
µ+λ

2
σ
2

2n2

]n

eλ((1−α)ǫ/2+E[Y ])
,

(16)

where (b) uses Markov’s inequality and (c) follows from (15). Notice that (16) holds for any λ > 0.

However, for the bound on the RHS above to be meaningful, we require that α + e−
λ

n
vα+

λ

n
µ+λ

2
σ
2

2n2 < 1.

Now, maximizing λ2σ2

2n2 − λ(vα−µ)
n . over λ, we obtain λ∗ =

n(vα−µ)
σ2 . Substituting the value of λ∗ in (16), we

obtain

P [An > ǫ/2] ≤ exp

(

−n(vα − µ)

σ2

[

(1− α)ǫ

2
+ E [Y ]

])[

α+ exp

(

−(vα − µ)2

2σ2

)]n

. (17)

7



For handling the P
[

Bn > ǫ
2

]

term in (14), we bound |Bn| as follows. Using the inequality above, we

bound |Bn| as follows:

|Bn| ≤
|vα − v̂n,α|

1− α
|α− F̂n(v̂n,α)|+

|vα − v̂n,α|
1− α

|F̂n(vα)− F̂n(v̂n,α)|

=
|vα − v̂n,α|

1− α

[

|F (vα)− F̂n(v̂n,α)|+ |F̂n(vα)− F (vα)− F̂n(v̂n,α) + F (vα)|
]

≤ |vα − v̂n,α|
1− α

[

2|F̂n(v̂n,α)− F (vα)|+ |F̂n(vα)− F (vα)|
]

. (18)

The first inequality above uses the following fact:

∣

∣

∣

1

n

n
∑

i=1

Xi − vα
1− α

[I {Xi ≥ v̂n,α} − I {Xi ≥ vα}]
∣

∣

∣
≤ 1

1− α
|vα − v̂n,α||F̂n(vα)− F̂n(v̂n,α)|.

Using (18), we have

P

[

Bn >
ǫ

2

]

≤ P

[

|Bn| >
ǫ

2

]

≤ P

[ |v̂n,α − vα|
1− α

(

2|F̂n,α(v̂n,α)− F (vα)|+ |F̂n(vα)− F (vα)|
)

>
ǫ

2

]

It is easy to see that |F̂n,α(v̂n,α)− F (vα)| ≤ 1
n . Hence,

P

[

Bn >
ǫ

2

]

≤ P

[

|Bn| >
ǫ

2

]

≤ P

[ |v̂n,α − vα|
1− α

( 2

n
+ |F̂n(vα)− F (vα)|

)

>
ǫ

2

]

≤ P

[

2

n

1

(1− α)
|v̂n,α − vα| >

ǫ

4

]

+ P

[

1

1− α
|v̂n,α − vα||F̂n(vα)− F (vα)| >

ǫ

4

]

.

Let Dn = {|v̂n,α − vα| ≤
√
ǫ
4 }. Then, we have

P

[

|v̂n,α − vα||F̂n(vα)− F (vα)|
1− α

>
ǫ

4

]

≤ P

[

|v̂n,α − vα||F̂n(vα)− F (vα)|
1− α

>
ǫ

4
,Dn

]

+ P [Dc
n]

≤ P

[

|F̂n(vα)− F (vα)| >
√
ǫ(1− α)

]

+ P [Dc
n]

(d)

≤ exp
(

−2nǫ(1− α)2
)

+ P [Dc
n] ,

where (d) is due to the DKW inequality. Therefore,

P [Bn > ǫ/2] ≤ P [|v̂n,α − vα| > n(1− α)ǫ/8] + P
[

|v̂n,α − vα| >
√
ǫ/4
]

+ exp
(

−2nǫ(1− α)2
)

. (19)

Using (14), (17) and (19), we obtain

P [ĉn,α − cα > ǫ] ≤ exp

(

−n(vα − µ)

σ2

[

(1− α)ǫ

2
+ E [Y ]

])[

α+ exp

(

−(vα − µ)2

2σ2

)]n

+ P

[

|v̂n,α − vα| >
n(1− α)ǫ

8

]

+ P

[

|v̂n,α − vα| ≥
√
ǫ

4

]

+ exp
(

−2nǫ(1− α)2
)

(a)

≤ exp

(

−nǫ(1− α)(vα − µ)

2σ2

)[

α+ exp

(

−(vα − µ)2

2σ2

)]n

+ 2exp
(

−2nδ2ǫ1)
)

+ 2exp
(

−2nδ2ǫ2)
)

+ exp
(

−2nǫ(1− α)2
)

,

where δǫ1 , δǫ2 are as defined in the statement of the proposition, and (a) is due to Proposition 2 and the fact

that E [Y ] ≥ 0.
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Proof of Proposition 3

Proof. For σ <
√

(vα−µ)2

2 ln(1/(1−α)) , we note that α + exp
(

− (vα−µ)2

2σ2

)

< 1. Given that the density exists, we

have

F (vα + η1)− F (vα − η2) = f(v̄)(η1 + η2),

for some v̄ ∈ [vα − η2, vα + η1]. Using the identity above for the two expressions inside δǫ1 , we obtain

δǫ1 = min (f(v̄1), f(v̄2))×
n(1− α)ǫ

8
.

for some v̄1 ∈
[

vα, vα + n(1−α)ǫ
8

]

and v̄2 ∈
[

vα − n(1−α)ǫ
8 , vα

]

. Along similar lines, it is easy to infer that

δǫ2 = min (f(v̄3), f(v̄4))×
√
ǫ

4
,

for some v̄1 ∈
[

vα, vα +
√
ǫ
4

]

and v̄2 ∈
[

vα −
√
ǫ
4 , vα

]

. The claim follows.

4.4 Proof of Proposition 4

Proof. Observe that, in the proof of Proposition 5, sub-Gaussianity is used is bounding P [An ≥ ǫ/2] fol-

lowing (14) there. Here, we bound the same using sub-exponential assumption.

Recall that An = 1
1−α

(

1
n

∑n
i=1 Yi − E [Y ]

)

, where Yi = (Xi − vα) I {Xi ≥ vα} and Y = (X −
vα)I {X ≥ vα} . Starting as in the derivation of (15),

E

[

eλYi

]

= E

[

eλ(Xi−vα)I{Xi≥vα}
]

≤ FX(vα) + e−λvα

∫ ∞

−∞
eλxfX(x)dx

≤ α+ e−λvα+λµ+λ
2
σ
2

2 , ∀|λ| < 1

b
, (20)

where the last inequality uses the fact that Xi is sub-exponential, for each i. Thus,

P

[

An >
ǫ

2

]

= P

[

n
∑

i=1

Yi > n

(

(1− α)ǫ

2
+ E [Y ]

)

]

(b)

≤ Πn
i=1E

[

eλYi

]

eλ(n(1−α)ǫ/2+E[Y ])
∀λ > 0

(c)

≤

[

α+ e−λvα+λµ+λ
2
σ
2

2

]n

enλ((1−α)ǫ/2+E[Y ])
, ∀ 0 < λ <

1

b
, (21)

where (b) follows from Markov’s inequality and (c) uses (20). As argued in the proof of Proposition 5,

choosing λ = vα−µ
σ2 maximizes the term in the numerator on the RHS above, while ensuring the same is

less than 1. However, sub-exponential assumption requires that 0 < λ < 1/b. Hence, we choose λ =
{

mb = min
( vα−µ

σ2 , b′
)}

, where b′ < 1/b. Using the above and the fact that E [Y ] ≥ 0, we obtain that

P [An > ǫ/2] ≤ exp

(

−nǫ(1− α)mb

2

)[

α+ exp

(

mb(µ− vα) +
m2

bσ
2

2

)]n

. (22)

For σ <

√

2 ln(1−α)+2(vα−µ)mb

m2

b

, we obtain

P [An > ǫ/2] ≤ exp

(

−nǫ(1− α)mb

2

)

The rest of the proof follows in a similar manner as that of Proposition 3.
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Remark 1. The proof technique used to establish Proposition 3 cannot be employed to establish a lower de-

viations bound for the CVaR estimator in (4). In particular, using the notation from the proof of Proposition

3, we have

P [ĉn,α − cα ≤ −ǫ] = P [An +Bn ≤ −ǫ] ≤ P [An ≤ −ǫ/2] + P [Bn ≤ −ǫ/2]

≤ P [An ≤ −ǫ/2] + P [|Bn| ≥ ǫ/2]

While P [|Bn| ≤ −ǫ/2] can be bounded as before (see (19)), handling P [An ≤ −ǫ/2] is challenging. For

instance, mimicking the steps leading to (14), we have

P [An ≤ −ǫ/2] = P

[

1

n(1− α)

n
∑

i=1

(Yi − E [Y ]) ≤ −ǫ/2

]

= P

[

1

n

n
∑

i=1

Yi ≤ E [Y ]− (1− α)ǫ/2

]

(a)
= P

[

exp

(

−λ

n

n
∑

i=1

Yi

)

≥ exp

(

−λ

(

E [Y ]− (1− α)ǫ

2

))]

(b)

≤
Πn

i=1E

[

e
−λYi

n

]

e−λ(E[Y ]−(1−α)ǫ/2)

(c)

≤

[

α+ e
λ

n
vα− λ

n
µ+λ

2
σ
2

2n2

]n

exp (−λ (−(1− α)ǫ/2 + E [Y ]))
, (23)

where (a) holds for any λ > 0, (b) uses Markov’s inequality and (c) is due to (15). Deriving a meaningful

upper bound on P [An ≤ −ǫ/2] using (23) is difficult, since the numerator there cannot be controlled. This

is because (vα − µ) > 0 and λ is constrained to be positive.

5 Conclusions

We derived a one-sided concentration bound for a natural sample-based CVaR estimator, when the under-

lying distribution is unbounded, albeit sub-Gaussian or sub-exponential. We also derived concentration

bounds for a quantile-based estimator for VaR, and this may be of independent interest. We believe our con-

centration bounds for natural estimates VaR and CVaR are interesting not only from a statistical viewpoint,

but also for solving sequential decision making problems under uncertainty, for e.g., in the multi-armed

bandit framework [3].

As future work, it would be interesting to derive a concentration result that bounds the lower deviations

of the CVaR estimator. An orthogonal direction is to derive concentration result for CVaR estimators that

incorporate importance sampling.
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