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Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through
external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal
sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-
mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance.
The fluid flow produced by the active beads and the forces they mediate are explicitly taken into
account in the overdamped equations of motion describing the colloid-filament assembly. The speed
and efficiency of transport depend on the dynamical conformational states of the filament. We char-
acterize these states using filament writhe as an order parameter and identify ones yielding maxima
in speed and efficiency of transport. The transport mechanism reported here has a remarkable
resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic
systems.

I. INTRODUCTION

Diffusion is a universal but slow mechanism for particle
transport at finite temperatures. Solutions to the prob-
lem of enhancing the rate of transport beyond the dif-
fusion limit are found at several scales in living systems.
At the sub-cellular scale, special proteins called molecular
motors transport macromolecules super-diffusively along
microtubule tracks [1–3]. At the cellular scale, molecu-
lar motors induce collective motion of the intra-cellular
fluid, a phenomenon known as cytoplasmic streaming [4–
6]. At the extra-cellular scale collective motion of cilia,
known as metachronal waves, transports visco-elastic flu-
ids along channels and provides, alongside flagella, motil-
ity to whole organisms [7–9]. These active transport pro-
cesses, by consuming internal sources of energy, are able
to sustain gradients in entropy, and therefore, of par-
ticle concentration. Their ability to transport particles
against concentration gradients and over free-energy bar-
riers has numerous uses in biology [10–13].

It has been notoriously difficult to synthetically repli-
cate the active transport solutions arrived at through
many millions of years of natural selection. Instead, en-
hanced particle transport in physical and chemical con-
texts has largely been achieved by the input of external
sources of energy through applied fields [14, 15]. With
the coming together of physical, chemical and biological
phenomena in the domain broadly termed as biomimetics
there is a fresh interest in searching for transport mecha-
nisms that are both active and synthetic. Their potential
applications are numerous, including the removal of dam-
aged cells [16] and the targeted delivery of drugs [17] and
microscopic devices [18].

There are several challenges in designing active trans-
port solutions at the microscale. First, energy has to
be supplied locally to the transport engine. In contrast
to the macroscale, extracting work out of a heat en-
gine is unfeasible due to impossibility of maintaing heat
baths at distinct temperatures [19]. The controlled re-
lease of chemical energy appears to be the most conve-

Figure 1. An active filament, consisting of N − 1 active
beads (small spheres), attached to a passive colloid (large
sphere). The various hydrodynamic interactions between
the N spheres, comprising the colloid-filament assembly, are
shown alongside. See text for explanation of symbols.

nient method of energy supply and recent successful de-
signs borrowed from biology in using adenosine triphos-
phate (ATP) as the source of energy [20, 21]. Second,
the mechanical motion that results in transport has to
be non-reciprocal, a result Purcell named as the “scallop
theorem” [22]. This is a consequence of the dominance
of viscous forces at the microscale, where forces, to an
excellent approximation, are proportional to velocities,
rather than to accelerations. Reciprocal motion of a sin-
gle degree of freedom, then, produces zero net motion.
Therefore, to produce net directed motion the mechani-
cal forcing of the fluid has to be done using at least two
degrees of freedom. Third, the magnitude of directed mo-
tion has to be sufficient to overcome diffusion. Fourth,
in the absence of organizational structures like the cy-
toskeleton, mechanisms must be available in the trans-
port engine itself to navigate in three dimensional space.
Finally, for biomimetic applications the design has to be
biocompatible, avoiding hazardous chemicals or strong
external fields.
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Due to the paucity of local power injection mecha-
nisms, enhanced transport at the micron scale is mainly
achieved by applying external gradients of electrical [15],
thermal [14] or concentration [23] fields. In one class
of mechanisms, interactions between such externally ap-
plied fields and the particle boundary produces interfa-
cial stresses that leads to particle transport, collectively
referred to as phoretic motion [24]. Sen, Mallouk and
co-workers realised that the phoretic mechanism could
be utilised by internally generated field gradients, lead-
ing to their design of autophoretic colloidal particles that
drew on the energy released by a catalytic reaction at the
particle surface [25]. This has produced an explosion of
research in autophoresis, and more generally, in utilising
chemical energy in the solvent to transcend the diffu-
sion limit. New autophoretic mechanisms include bubble
propulsion [26] and redox reactions at the particle sur-
face [27]. In another class of mechanisms, the externally
applied fields act directly on the particles. Acoustic ra-
diation pressure from ultrasonic standing waves has re-
cently been used to transport micrometer size metallic
rods [28]. Structural chirality has been exploited in nano-
propellers that are driven by external magnetic fields [29].
Moving from rigid to flexible objects, the beating motion
of a chain of paramagnetic beads driven by an oscillating
magnetic field has been used to create propulsion engines
reminiscent of cilia and flagella [30]. This, by no means,
is a complete survey and the reader is referred to [31–34]
for the state of the art.

Recently, a remarkable new class of material has been
created in which internal sources of energy, provided by
ATP in solution, is utilised to generate motion [21, 35].
The material is a mixture of microtubules, polymers that
induce depletion interactions between them, and molecu-
lar motors. The microtubules self-assemble into filaments
that beat spontaneously in the presence of ATP, driven
by the motion of the molecular motors. Such active fila-
ments have great potential for use in enhanced transport,
as they utilize local sources of energy, are not bound by
the scallop theorem, produce forces that are many times
larger than their diffusive counterparts, and are biocom-
patible. Navigability is yet to be achieved using such
active filaments.

Here we show that an active filament attached to a col-
loidal sphere provides an active transport solution that
meets all the five desiderata listed above. We use a gen-
eral model, that includes hydrodynamic interactions, to
describe the active filament [36–38]. Sustained motion is
produced by a balance of forces arising from the spon-
taneous activity, modeled as a distribution of stresslets
along the filament length, and the elasticity of the fil-
ament. The exchange of momentum between fluid and
filament and its local conservation in the fluid are taken
into account through an integral representation of the
fluid flow. Waveforms and beat periods obtained from
this model [37] are in excellent agreement with experi-
ment [21]. Our main results are that enhanced colloidal
transport can be achieved through the active filament en-

gine, that speed and efficiency of the transport depend
on the dynamical steady states of the filament, that these
steady states can be accurately classified using the fil-
ament writhe as an order parameter, and finally, that
states yielding the greatest speed or efficiency can thus
be identified. We discuss how navigation can be achieved
by including a paramagnetic component in the colloid.
We conclude by suggesting several biomimetic systems
where our design can be put to use.

II. MODEL

Our model for the assembly of the active filament and
the colloid consists of n = 1, . . . , N − 1 spherical ac-
tive beads of radius b and center-of-mass coordinates Rn

chained together by potentials and a single passive sphere
of radius bc � b and center-of-mass coordinate RN . The
filament is clamped to the surface of the colloid through
constraint forces. A schematic is shown in Fig.(1). At
low Reynolds number, Newton’s equation of motion for
the N spheres reduce to instantaneous balance of forces
and torques,

Fn + Fbn + ξTn = 0, Tn + Tb
n + ξRn = 0, (1)

where Fbn and Tb
n are the net body force and torque and

ξTn and ξRn are the Brownian force and torque on the n-th
sphere. Fn =

∫
f dSn and Tn =

∫
ρn×f dSn are the total

hydrodynamic force and torque in terms of the integral
of the traction f = n · σ, where ρn is the vector from the
center of the n-th sphere to a point on its surface and σ
is the Cauchy stress in the fluid.

The Cauchy stress is determined by solving the Stokes
equation ∇ · σ = 0 for the fluid velocity v together with
the incompressibility condition ∇ · v = 0 and the slip
boundary conditions

v(Rn + ρn) = Vn + Ωn × ρn + vAn (ρn) (2)

on the surface of the N − 1 active spheres and the usual
no-slip boundary condition on the surface of the colloid.
The active slip vAn (ρn) is conveniently expanded in the
complete orthogonal basis of irreducible tensorial spher-
ical harmonics, Yl(ρ̂) = (−1)lρl+1∇(l)ρ−1, as

vAn (Rn + ρn) =

∞∑
l=1

AlV
(l)
n ·Y(l−1)(ρ̂n) (3)

where Al = 1/(l−1)!(2l−3)!! is a normalization. The ex-
pansion coefficients Vl

n are tensors of rank l, irreducible
in their last l − 1 indices, and can thus be expressed
as the sum of three irreducible tensors V

(ls)
n , V

(la)
n and

V
(lt)
n , of rank l, l − 1 and l − 2 respectively. They

represent the symmetric traceless, antisymmetric and
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pure trace parts of V
(l)
n , V(ls) = V(l)

n , V(la) = ε ·V(l)
n

and V
(lt)
n = δ : V(l)

n . We use the notation V
(lσ)
n , with

σ = s, a, t to denote these irreducible parts, each of which
are of the dimension of velocity. It is assumed that the
form of the slip and, therefore, the values of the coeffi-
cients are specified. The velocity, Vn, and angular veloc-
ity, Ωn, are to be determined, given the slip coefficients
and the external and Brownian forces and torques.

From linearity of Stokes flow and the boundary condi-
tions, it follows that the hydrodynamic forces and torques
must be of the form

Fn =− γTTnm ·Vm − γTRnm ·Ωm − γ(T,lσ)
nm ·V(lσ)

m ,

Tn =− γRTnm ·Vm − γRRnm ·Ωm − γ(R,lσ)
nm ·V(lσ)

m ,

where the summation convention is implied for all re-
peated indices and the slip coefficients V

(lσ)
N of the colloid

are all identically zero. The γαβnm,, with α, β = T,R, are
the usual Stokes friction tensors, yielding drag forces pro-
portional to Vm and Ωm. The terms proportional to Vlσ

m

are active contributions to the forces and torques due to
the slip vAm. The γ

(T,lσ)
nm and γ

(R,lσ)
nm are slip friction ten-

sors associated with the lσ mode of the slip velocity. A
method for calculating these slip friction tensors in terms
of Green’s functions of Stokes flow has been provided re-
cently [39, 40] and the reader is referred there for further
details.

Combining the above with Newton’s equations, ignor-
ing the Brownian contributions and solving the resulting
balances yields the following explicit equations for the
velocity and angular velocity

Vn = µTTnm · Fbm + µTRnm ·Tb
m +

∞∑
lσ=1s

π(T,lσ)
nm ·V(lσ)

m

Ωn = µRTnm · Fbm + µRRnm ·Tb
m +

∞∑
lσ=1s

π(R,lσ)
nm ·V(lσ)

m .

Here, VAn = V
(1s)
n is the active translational velocity,

ΩAn = b−1V2a
n is the active angular velocity, µαβnm are

the usual mobility tensors and π
(α,lσ)
nm are the propulsion

tensors introduced in [41]. The relation between the mo-
bility, slip friction and propulsion tensors is easily verified
to be

−π(T,lσ)
nm = µTTnq · γ(T,lσ)

qm + µTRnq · γ(R,lσ)
qm

−π(R,lσ)
nm = µRTnq · γ(T,lσ)

qm + µRRnq · γ(R,lσ)
qm

We evaluate all the above tensors in the pair-
approximation, as is commonly done in bead-spring mod-
els of polymers. The translational mobility has the famil-
iar Rotne-Prager form. Explicit forms of the remaining
tensors are provided in the Appendix.

Figure 2. Dynamical states of the filament-colloid assembly
with varying activity A showing the the linear state at A=10
in panel (a), the helical state with A=40 in panel (b) and
the planar state at A=80 in panel (c). Fluid streamlines are
shown in a plane passing through the equator of the colloid,
coloured by the logarithm of the magnitude of fluid velocity
normalised by its maximum. The red cones show the trajec-
tory of the filament terminus.
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The above represents the equations of motion that
allow for the most general forms of surface activity.
Here, we restrict ourselves to the simplest apolar, achiral
model for slip flow, in which the only non-zero tenso-
rial harmonic mode corresponds to lσ = 2s, which we
parametrize as

V(2s)
m = V

(2s)
0 (̂tmt̂m −

1

3
δ) (4)

We chose the principal value V (2s)
0 of this second-rank

tensor to be positive and its principal axis to be along
the local tangent t̂m to the filament. The rich dynami-
cal behaviour of this minimally active filament has qual-
itative and quantitative similarities with active filament
systems realized experimentally [37].

The body force Fbn between the, now minimally ac-
tive, beads is obtained from the gradient of the poten-
tial U = UC + UE + US which, in sequence, are po-
tentials enforcing connectivity, semi-flexibility and self-
avoidance. The connectivity potential is the two body
harmonic spring potential UC(Rm,Rm+1) = 1

2k(r−b0)2,
where b0 is the equilibrium bond and r = |Rm −Rm+1|.
The three-body elastic potential UE = κ̄(1−cosφ) penal-
izes departures of the angle φ between consecutive bond
vectors from its equilibrium value of zero. The rigidity
parameter κ̄ is related to the bending rigidity as κ = b0κ̄.
Steric effects are included through the Weeks-Chandler-
Anderson potential which vanishes if the distance be-
tween beads rmn = |Rm−Rn| exceeds rmin. We assume
constraint torques that result in the vanishing rotation
of the beads. Their values are obtained from the torque
balance equation with bead angular velocities set to zero.
The body force FbN and torque Tb

N on the colloid arise
from the constraint forces that clamp the filament to its
surface. These are discussed more fully in the Appendix.

With these specifications, the equation of motion of
the active filament is

Ṙn =µTTnN · FbN + µTRnN ·Tb
N︸ ︷︷ ︸

colloid

+µTTnm · Fbm︸ ︷︷ ︸
elasticity

+π(T,2s)
nm ·V(2s)

m︸ ︷︷ ︸
activity

(5)

In the absence of the colloid and as the activity goes
to zero, the filament equation of motion approaches the
Zimm model, where L = (N − 2)b0 is the length of the
filament [36]. The rigid body motion of the active colloid
is obtained from the pair of equations

VN = µTTNN · FbN + µTTNn · Fbn + π
(T,2s)
Nn ·V(2s)

n (6a)

ΩN = µRRNN ·Tb
N︸ ︷︷ ︸

colloid

+µRTNn · Fbn︸ ︷︷ ︸
elasticity

+π
(R,2s)
Nn ·V(2s)

n︸ ︷︷ ︸
activity

(6b)

The relative importance of activity is quantified by its
ratio with elasticity,

A =
|γ(T,2s)
nn ·V(2s)

n |
|Fbn|

≈ ηb2LV
(2s)
0

κ
(7)

Activity introduces a new relaxation rate Γs = V 2S
0 /ηL3

in addition to rate of elastic relaxation Γκ = κ/ηL4. The
position and orientation of the colloid changes according
to the kinematic equations ṘN = VN , ṗN = ΩN×pN .
These overdamped equations take into account the forces
and torques mediated by flow generated by the motion
and activity of the beads and the motion of the colloid.
We integrate the above set of equations numerically to
obtain the dynamics of the colloid-filament assembly.

III. RESULTS

We now present the results of our numerical study of
the dynamics of the colloid-filament assembly, as the “ac-
tivity number” A, the relative size of the colloid bc/b and
the length L of the filament are varied.

Fig. (2) shows three typical states of motion of the
assembly, with activity number increasing from top to

Figure 3. The time series of writhe, panel (a), and mean of
its absolute value as a function of activity A for L = 70b in
panel (b). The background colors are to mark the region of
linear (green), helical (yellow) and planar (blue) state. The
empty symbols in helical and planar region are for HBWPSS
and sculling state respectively.

.



5

Figure 4. Phase diagram of the non-equilibrium stationary states of the filament as a function of relative size of colloid bc/b
and dimension less quantity A for three different filament lengths L = 46b (a), L = 70b (b), L = 94b (c). Symbols represent
the following: linear state (circle), helical state (triangle up), helical beating with periodic switching of sign (triangle down),
planar (square) and sculling like beating (triangle right). The colours are guides to the eye.

bottom, together with a planar section of the fluid flow
around the assembly. Panel (a) shows the simplest dy-
namical state, where transport of the colloid occurs with-
out any deformation of the filament. Panel (b) shows
a state where the filament moves rigidly in an aplanar
corkscrew-like motion, its tip tracing out a helix as it
transports the colloid. The trace of the tip is shown by
the red cones. Panel (c) shows a state in which the fil-
ament moves flexibly in a plane, its tip tracing out an
“s” shape while it transports the colloid (see Movie 1 of
the Supplemental Material [42]). These sequence of dis-
tinct states of motion of the filament is what is observed
when the filament is clamped at a point in an otherwise
unbounded fluid [37]. The principal difference is in the
values of the activity number A at which the transitions
take place, a difference we attribute to the modified hy-
drodynamic interactions between parts of the filament
arising from the reflection of the flow field by the surface
of the colloid.

These sequence of states arise from the balance of the
three kinds of forces (and torques) acting on each bead of
our filament: the conservative force from the potentials
and the two dissipative forces, one from the drag and an-
other from the activity. The nature of the active force,
for positive V (2s)

0 , is such that it produces motion oppo-
site to the direction of the signed curvature. Therefore,
as activity is increased, states with increasing amounts of
curvature appear in sequence. Thus, in Fig. (2), we first
see a linear propulsive state, then a state in which the
curvature is a fixed function of time, and finally, states
in which the curvature is a period function of time.

A quantitative demarcation of these distinct non-
equilibrium steady states requires the introduction of an
order parameter. We use the filament writhe [43]

Wr =
1

4π

∫
C

∫
C

dr1 × dr2 ·
r1 − r2
|r1 − r2|3

(8)

as an order parameter which can effectively distinguish
these non-equilibrium steady states. The integrations

over points r1 and r2 on the filament contour are re-
placed by summations over the number of beads. In
Fig. (3), top panel, we show the time series of writhe for
the states shown in Fig. (2) together with two additional
states that are identified through the order parameter.
In the linear and planar states, the writhe is identically
zero. The helical state has a non-zero mean value of
writhe, with superimposed small amplitude oscillations.
The two remaining states have periodic oscillations in
which the writhe averages to zero over the cycle, but
otherwise oscillates in sign. In the first of these states,
the filament rotates as in the helical state but in opposite
directions during each half of the cycle, which consists of
several periods of helical motion. For lack of a better de-
scription, we call this state helical beating with periodic
switching of sign (HBWPSS). The second of these states
shows a motion reminiscent of sculling, in which the fil-
ament beats in a plane that changes orientation over the
cycle (see Movie 2 of the Supplemental Material [42]). In
Fig. (3), bottom panel, we show the variation of mean of
the absolute value of writhe as a function of activity num-
ber, for different ratios of the colloid radius and filament
length. This clarifies the sequence in which the states
appear. The linear states are stable at small values of ac-
tivity, being then replaced by the helical, HBWPSS and
sculling states of non-zero mean writhe as the activity is
increased. At yet larger values of activity, these states are
unstable and the planar state is generally favoured. The
non-equilibrium state diagram, thus obtained, is shown
in Fig. (4) for three different lengths of the filament. The
majority of the state diagram is occupied by the three
states shown in Fig. (2) and careful parameters choices
are required to locate the HBWPSS and sculling states.

How does the speed and efficiency of colloidal transport
vary across these states? To answer this quantitatively
we define, first, a measure of efficiency, which is the ratio
of the power expended in transporting a passive colloid
with velocity V to that expended in the filament-colloid
assembly at the same velocity,
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ε =
VN · γTTNN ·VN

Ẇ
(9)

Definitions of this kind were first used by Lighthill [44]
in his study of the squirming motion of a sphere. In
Fig. (5) we show the variation of the speed (top panel)
and efficiency (bottom pane) of transport as a function
of activity number for varying size of the colloid. Trans-
port speed is enhanced, more or less monotonically, by
decreasing the size of the colloid, but transport speed
varies non-monotonically with activity. States with zero
mean writhe yield greater speeds than those without, as
the chemo-mechanical work done is partially stored in the
form of elastic energy in the latter class of states, making
less of it available for transport. This picture is borne out
in the variation of the efficiency ε, where shorter filaments
in states with smaller conformational deformations have
greater efficiencies of transport. This understanding of
speed and efficiency is necessary for optimizing the de-
sign parameters of such assemblies in possible biomimetic
applications.

The non-equilibrium stationary states are fixed points
or limit cycles of the overdamped equations of motion,
Eq. (5) and Eq. (6a). It is straightforward to analyze the
linear stability of the filament as a function of activity.
It is by now well-understood that the apolar active fil-
aments are linearly unstable above a certain threshold
value of activity [36–38]. This linear instability arises
from the convective effect of the dipolar flow produced
by the filament. Here, we revisit the stability analysis of
[37], taking into account the presence of the colloid and
the no-slip boundary conditions imposed on it. We nu-
merically compute the Jacobian in the linear state of the
filament and from it, obtain its largest eigenvalues, dis-
carding the six eigenvalues that correspond to rigid body
motion. The result of this analysis is shown in Fig. (6).
In the top panel, we show the evolution of the eigenvalues
as a function of activity for filament length L = 70b as we
move from left to right of the middle panel in Fig. (4) at
bc = 42b. We see the familiar coalescence of eigenvalues
to produce a complex conjugate pair, which then acquires
a positive real part with increasing activity. This is sim-
ilar to the Hopf bifurcation seen in the case of filaments
clamped to a point in three dimensions [37]. The bottom
panel in Fig. (6) shows the eigenvalues as we move from
the bottom to top of the phase diagram shown in the
middle panel of Fig. (4) at A = 20. Here the eigenvalues
remain real but change sign from negative to positive.
This corresponds to a standard instability, rather than a
Hopf bifurcation.

The presence of the colloid alters the value of the activ-
ity numbers at which the bifurcations occur, but leaves
unaltered their sequence. This is because the flow re-
flected by the colloid contributes only a correction to the
hydrodynamic interaction mediated by the flow produced
by the beads, as an inspection of the explicit form of this
correction, provided in the Appendix, will confirm.

Figure 5. The average translational speed a) and Efficiency
of transport b) of the colloid as a function of A for different
colloid radius, bc for filament length L = 70b. The background
colors are to mark the region of linear (green), helical (yellow)
and planar (blue) state. The empty symbols in helical and
planar region are for HBWPSS and sculling state respectively.

IV. DISCUSSIONS

In earlier theoretical and simulation investigations on
the cargo transport by active filament, the effect of ac-
tivity was introduced by applying a local force on each
bead, thus ignoring all hydrodynamic interactions [45].
On the other hand, the work presented here describes
motion induced by non-local hydrodynamic flow, result-
ing from active forcing, that explicitly take into account
force balance and torque balance in a three dimensional
model of colloid-filament assembly.

We show that active filament consisting of chemo-
mechanically active apolar beads can transport a col-
loid to which it is clamped, in a viscous fluid. With
the over damped hydrodynamic equation of motions, we
investigate the influence of the length of the filament,
the strength of activity and the colloid radius on its mo-
tion. We identify five different conformational states of
the filament, as opposed to three in the case of a fila-
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Figure 6. Linear stability analysis: The largest eigenvalues of
stability matrix as function of activity number, A for bc = 42b
(a), and relative colloid radius bc/b for A = 20 (b). Here the
length of the filament is L = 70b.

ment clamped to a stationary point [37]. It is shown
that the transport speed and efficiency depend on these
dynamical states of the filament. For a given stiffness
of the filament, the speed of transport is maximum for
the planar beating conformation whereas the efficiency of
transport is greatest in the case of linear conformation.
The efficiency of the transport of the colloid is found to
be in the order of 10−9, similar to that observed in the
transport of Au-Pt nano-rods in H202 solution [33, 46].
The power to be delivered locally (∼ 10−15 W) and the
speed that can be achieved (several µm/s) are reason-
able and are more important parameters for application.
For a given stiffness and activity strength V 2s

0 the effi-
ciency and speed are higher for lower filament lengths (
data not shown). However, directional stability increases
with the filament length since rotational diffusivity of an
object decreases as the cube of its size. Thus we ex-
pect all regimes of the colloid filament system to be of
relevance applications. The propulsion efficiency is sig-
nificantly lower than in bacteria, where it varies in the
range ∼ 10−2 − 10−4. This is due to the very high ef-

ficiency of ATPase as an engine, almost 50% of whose
energy is available for work. Thus, though propulsion
is a small component of the overall energy budget of an
organism (Purcell has memorably likened it to “driving
a Datsun in Saudi Arabia” [22]), we believe that there is
room to improve the efficiency of current active transport
mechanisms.

Though we have limited our discussion here to a sys-
tem consisting of one colloid and one filament, the equa-
tions of motion presented here are general and can anal-
yse more complex configurations of filaments in an in-
dividual swimmer and a collection of swimmers. Im-
mediate extensions could be two filament systems like
the flagella geometry of algae Chlamydomonas, multiple
filaments working synchronously in a viscous fluid and
collection of such swimmers. Though the collective dy-
namics of a suspension of spheres which produce con-
stant dipolar flows are by now well-understood, here,
the far field produced by the colloid-filament assembly
is time-dependent. The collective dynamics of such “os-
cillatory dipoles” will show new features, such as hydro-
dynamic synchronization, that are absent in their time-
independent counterparts [47, 48]. It should be noted
that the effects of wall can significantly change the dy-
namics of the swimmer in the micron scale [49] and the
states of the swimmer obtained here could be altered by
such boundary conditions. We will present a systematic
study of these aspects in future.

Our focus in this work has been to propose a mecha-
nism for transport using an active filament. Mechanisms
for navigation are crucial for applications in areas such
as biomedicine. One possible navigation mechanism is
through a paramagnetic component in the colloid which
can then be controlled by an external magnetic field [50].
This and other mechanisms for navigation will be pre-
sented in a future study.

SUPPLEMENTARY MATERIAL

Movie-1[42]: This movie displays the temporal behav-
ior of the dynamical states of the colloid-filament assem-
bly with fluid streamlines.

Movie-2[42]: This movie displays the dynamics of
colloid-filament assembly with filament writhe.
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APPENDIX

Mobility and propulsion tensors

The mobility tensors, are defined as

8πηµTTnm(Rn,Rm) =

{
F0
nF0

mG(Rn,Rm) n 6= m
4
3b
−1
n δ n = m

8πηµTRnm(Rn,Rm) =

{
1
2∇m ×G(Rn,Rm) n 6= m

0 n = m

8πηµRTnm(Rn,Rm) =

{
1
2∇n ×G(Rn,Rm) n 6= m

0 n = m

8πηµRRnm(Rn,Rm) =

{
1
4∇n ×∇m ×G(Rn,Rm) n 6= m

b−3n δ n = m

,

where G is the Green’s function for Stokes flow in un
unbounded medium,

Gij(Rn,Rm) =
δij
r

+
rirj
r3

,

with r = Rn −Rm. The propulsion tensors which relate
V

(lσ)
m , the coefficient of the traction fields on the bound-

ary of the m-th particle to the rigid body motion are
defined as

8πηπ(T,2s)
nm =

{
cF0

nF1
m∇mG(Rn,Rm) n 6= m

0 n = m

8πηπ(R,2s)
nm =

{
c
2∇n ×∇mG(Rn,Rm) n 6= m

0 n = m

and F ln = (1 +
b2n

4l+6∇
2
n) is the operator.

The finite size correction to the mobility and propul-
sion tensors due to the colloid are

8πηµTTnm(Rn,Rm) = F0
nF0

mG(Rn,Rm)

+ F0
nF1

N∇NG(Rn,RN ) · (−c0F1
NF0

m∇N G(RN ,Rm))

8πηπ(T,2s)
nm (Rn,Rm) = cF0

nF1
m∇mG(Rn,Rm)

+ F0
nF1

N∇NG(Rn,RN ) · (−c0F1
NF1

m∇N∇mG(RN ,Rm))

Constraint forces

The filament is clamped to the surface of the colloid
particle. The clamping boundary conditions are imple-
mented by fixing the last bead of the filament to the
surface of the colloid and allowing the second last bead
to move only along the radial direction,

ṘN−1 = VN + ΩN×(RN−1 −RN )

(1− d̂d̂) ·
(
V + Ω× d

)
= (1− d̂d̂) · ṘN−2

here d = RN−2 − RN and d̂ = d/|d|. To enforce the
clamped boundary conditions on colloid, two constraint
forces FcN−1 and FcN−2 are applied on the last and second
last bead of the filament. These two constraint forces
are obtained by solving the above constraint equations
self-consistently. The force on the colloid particle is the
negative sum of these constraint forces. Therefore the
force and torque on the colloid particle are

FN = −(FcN−1 + FcN−2)

TN = (RN−1 −RN )× FcN−1 + (RN−2 −RN )× FcN−2

Power dissipation

The power dissipated into the fluid by the colloid-
filament assembly is

Ẇ =
∑
n

−
∫

fn(Rn + ρn) · v(Rn + ρn) dSn

=
∑
n

(−Vn · F(1s)
n −Ωn · F(2a)

n + V(lσ)
n · F(lσ)

n )

=
∑
n

(Vn · Fbn + Ωn ·Tb
n) +

∑
n,m

V(lσ)
n · γ(lσ,l′σ′)

nm ·V(l′σ′)
m

The equations of motion of the filament beads and col-
loid particle are integrated by numerically. We use spring
constant k = 5.0, equilibrium bond length b0 = 2b, rigid-
ity parameter κ̄ = 1.6. We chose the number of beads N
in the range 24 to 48 and V (2s)

0 in the range 0 to 2.72.
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