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1 Introduction

There has been a lot of progress in understanding quarter BPS black hole entropy in

four-dimensional N = 4 supersymmetric string theories[1–3]. This understanding has been

greatly aided by the possibility of having an exact counting of the quarter BPS dyons

in these string theories [4, 5]. In recent times this has been applied to a large class of

four-dimensional N = 4 supersymmetric theories to obtain similar degeneracy formulae for

the quarter BPS dyons in these theories. In all these cases it can be written in terms of

a three-dimensional contour integral of a genus-two Siegel modular form [1, 4–14]. The

weight of these modular forms depend on the model at hand. In particular, the weight

depends on the number of vector multiplets in the four-dimensional N = 4 theory. This

dyon degeneracy formula, in fact, counts an index and therefore is weakly dependent on

compactification moduli.

The weak moduli dependence of the degeneracy formula manifests itself in the form of

walls of marginal stability across which certain dyons cease to be stable and hence do not

contribute to the index[15–19]. The structure of walls of marginal stability was understood

in the axion-dilaton plane for a variety of these models, which include toroidally compact-
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ified heterotic string theory, ZN CHL models and ZN -orbifolds of toroidally compactified

type II string theory.

Recently, it was shown that in the toroidally compactified heterotic string theory as

well as in Z2, Z3, Z4 and Z5 CHL models, the dyon degeneracy formula can be written as

the square of the denominator formula for some generalized Borcherds-Kač-Moody algebra.

For each of the above models two families of algebras, denoted GN and G̃N , were found.

The structure of walls of marginal stability was identified with the walls of Weyl chambers

of the corresponding Weyl groups of these Borcherds-Kač-Moody algebras[20–24].

In this paper we would like to focus our attention on the four dimensional models with

N = 4 supersymmetry that are obtained as asymmetric orbifolds of type II string theory

on T 6. We shall refer to these models as ‘type II orbifolds’. This reflects the fact that

the chain of dualities that take one from the type IIB string to the heterotic string in the

CHL model takes one to the type IIA string in these examples. The type II ZN -orbifolds

(for N = 2, 3, 4) have several features in common with the CHL models. In particular, the

structure of walls of marginal stability is identical to the corresponding ZN CHL models.

However, the weights of the modular form are different. It is therefore natural to ask which

generalized Borcherds-Kač-Moody algebra encodes the dyon degeneracy formula of type II

models.

The paper is organized as follows. In section two, we provide the background for

the type II orbifolds of interest as well as the relevant details of dyons in these models.

In section three, we explore the modular forms that generate the degeneracies of 1
2 and

1
4 BPS states. We extend our considerations to include the Z4-orbifold and show that

in all cases, we are able to express the modular forms in terms of modular forms that

have already appeared in the CHL/heterotic string. The generating function of 1
2 -BPS

states are η-quotients associated with the Conway group Co1. In section 4, we explore

the possibility of an algebraic structure with these Siegel modular forms. While we have

a clear understanding of the structure for twisted dyons (i.e. dyons invariant under some

symmetry) in the type II string, we have only a primitive and incomplete understanding for

the one counting dyons in type II orbifolds. We conclude in section 5 with some remarks.

2 Dyons in type II orbifolds

2.1 The model

Type II string theory compactified on a six-torus has N = 8 supersymmetry in four di-

mensions. We will consider fixed-point free ZN -orbifolds (N = 2, 3, 4) of the six-torus that

preserveN = 4 supersymmetry. The orbifold procedure involves splitting T 6 = T 4×S1×S̃1
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and choosing the action of ZN such that it has fixed points on T 4, but this action is accom-

panied by a simultaneous 1/N shift along the circle S1. The total action of the orbifold is

free, i.e., it has no fixed points. It thus suffices to specify the action on T 4.

As we will be moving between several descriptions of the orbifold related by duality,

we will need to specify the duality frame. Description one corresponds to type IIA string

theory on a six-torus with the following ZN action. Let ω = exp(2πi/N) and (z1, z2) be

complex coordinates on T 4. The ZN action is generated by (z1, z2) → (ωz1, ω
−1z2). Our

considerations generalize the N = 2, 3 orbifolds considered in[11].

2.2 ZN action from the NS5-brane

The type II orbifolds of interest were studied originally by Sen and Vafa who constructed

dual pairs of type II orbifolds related by U-duality[25]. In six-dimensional string-string

duality, the dual string is a soliton obtained by wrapping the NS5-brane on T 4. We use

this observation to obtain the Sen and Vafa result by translating the ZN action on the

fields in the worldvolume of an NS5-brane wrapping T 4. Recall the fields consist of five

scalars, a second-rank antisymmetric tensor (with self-dual field strength) in the bosonic

sector and four chiral fermions. These are the components of a single (2, 0) tensor multiplet

in 5 + 1 dimensions. We will dimensionally reduce the fields on T 4 to obtain the fields on

an effective 1 + 1-dimensional theory. Using string-string duality, this theory will be that

of a type IIA Green-Schwarz string in the light-cone gauge[26, 27].

Let us organise the fields in terms of SO(4)×SO(4)R where the first SO(4) = SU(2)L×

SU(2)R is from the T 4 and the R-symmetry can be taken to be rotations about the four

transverse directions to the NS5-brane.

1. Four scalars, xm, are in the representation (1, 4v). These become four non-chiral

scalars upon dimensional reduction on the four-torus.

2. The fifth scalar and the two-form antisymmetric gauge field can be combined and

written as Yαβ and Yα̇β̇ where α, β are SU(2)L spin-half indices and α̇, β̇ are SU(2)R

spin-half indices. On dimensional reduction on the four-torus, the Yαβ become the

four left-moving chiral bosons and the Yα̇β̇ become four right-moving chiral bosons.

When combined with the four non-chiral bosons, they become the Green-Schwarz

bosons in the light-cone gauge of the type IIA string.

3. The fermions are ψAβ and ψAβ̇ where A is a spinor index of SO(4)R. These become

the left- and right-moving fermions in the effective 1+ 1-dimensional theory — these

are the Green-Schwarz fermions in the light-cone gauge of the type IIA string.
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In the above set up, it is easy to work out transformations of fields under ZN subgroup of

SU(2)L. The group element belonging to the ZN subgroup of SU(2)L is given by

gα
β ≡

(
ω 0

0 ω−1

)
, (2.1)

where ω = exp(2πi/N) for N = 2, 3, 4.

One can see that the only fields that transform under this action are those that carry

the index α. Thus, we see that the chiral fermions all transform as

ψAα → gα
β ψAβ . (2.2)

Thus, we see that four of the fermions pick up the phase ω and the other four pick up the

phase ω−1. The field Yαβ transforms as

Yαβ → gα
γ gα

δ Yγδ . (2.3)

Thus, two fields are invariant under the ZN and the other two transform with phases ω2

and ω−2. All other fields are invariant under the ZN action.

In the dimensional reduction of the the (2, 0) theory on T 4, the SU(2)L fields get

mapped to (say) left-movers and the SU(2)R fields get mapped to right-movers. Thus, we

see that the orbifold has a chiral action. In particular, the four bosons that arise from Yαβ

give rise to four left-moving chiral bosons and the ψAα give rise to four left-moving chiral

fermions.

2.3 ZN action from the Poincaré polynomial

Consider the Poincaré polynomial for T 4. Recall that two of the one-forms pick up a phase

ω while the other two pick up a phase ω−1 under the ZN action. We incorporate this into

the Poincaré polynomial and obtain the action on all harmonic forms on T 4.

(1− ωx)2(1− ω−1x)2 = x4 − 2x3ω −
2x3

ω
+ x2ω2 +

x2

ω2
+ 4x2 − 2xω −

2x

ω
+ 1 . (2.4)

In the above expansion, we identify even powers of x with bosons in the 1+ 1 dimensional

theory and odd powers with fermions. The coefficient of a term in the polynomial gives

the orbifold action on the corresponding field. Thus six of the bosons are always periodic

and the other two have fractional moding determined by the phase.

We now present the details of the orbifold action for the Green-Schwarz superstring

that we just derived.

[N=2] ω = −1 implies that ω2 = 1. Thus, one has eight periodic bosons and eight anti-

periodic fermions.
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[N=3] ω = exp(2πi/3). One has six periodic bosons and two bosons with periodicity three.

Four fermions go to ω times themselves and the other four go to ω−1 times themselves.

[N=4] ω = i. One has six periodic bosons and two anti-periodic bosons. Four fermions go

to ω times themselves and the other four go to ω−1 times themselves.

Thus, the second description gives rise to an asymmetric orbifold of the type IIA string

on T 6 and thus is analogous to CHL compactifications of the heterotic string. In the CHL

examples, recall that the heterotic string arises from the type IIA NS5-brane wrapping K3

in the place of T 4 that we considered.

2.4 Tracking dyons through dualities

Recall, the quarter BPS dyons possess charges which are mutually non-local and therefore

they do not appear in the perturbative spectrum of the theory. The electric charge vector

Qe and the magnetic charge vector Qm of a state are defined in the second description. One

of the reasons for this choice is the similarity of this description to the CHL description.

To see this more explicitly, we will describe a dyonic state in terms of a system containing

Q5 D5 branes wrapping T 4 × S1, Q1 D1 branes wrapping S1, J units of momentum along

S̃1, −n units of momentum along S1 and a Kaluza-Klein monopole charged with respect

to the gauge field along S̃1.

This description is related to the second description by a chain of duality transfor-

mations. This chain involves first an S-duality tranformation, which takes D-branes to

NS-branes leaving all other quantum numbers unaffected. This is followed by a T-duality

along the circle S̃1. This transformation takes us from type IIB theory to type IIA theory

and replaces the Kaluza-Klein monopole by a single NS5 brane wrapped on T 4 × S1, Q5

NS5 branes by Q5 Kaluza-Klein monopoles along Ŝ1 and J units of momentum along S̃1

is replaced by J fundamental strings wrapping Ŝ1, where Ŝ1 is a circle T-dual to S̃1. The

ZN -orbifold action involves ZN -orbifold of T 4 and simultaneous 1/N unit of shift along S1.

Since the orbifolded circle is not participating in the T-duality transformation, the orbifold

action commutes with the T-duality transformation. Finally, one carries out string-string

duality to arrive at the second description. The action of this string-string duality trans-

formation is identical to the string-string duality transformation which relates type IIA

theory compactified on K3 to heterotic string theory compactified on T 4, namely, all fun-

damental strings are replaced by NS5 branes and vice versa. Thus, in the end we have Q1

Kaluza-Klein monopoles along Ŝ1, −n units of momentum along S1, J NS5 branes wrap-

ping T̂ 4× Ŝ1, Q1 NS5 branes wrapping T̂ 4×S1, and a single fundamental string wrapping

S1.
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The second description exclusively contains description in terms of fundamental strings,

NS5 branes, Kaluza-Klein monopoles and momenta. If we denote momenta along S1 × Ŝ1

by n, fundamental string winding charges along them by w and NS5 brane, and Kaluza-

Klein monopole charges byN andW respectively then the T-duality invariants constructed

from these electric and magnetic charges are

Q2
e = 2n ·w , Q2

m = 2N ·W , Qe ·Qm = n ·N+w ·W . (2.5)

It is easy to check that these T-duality invariants take the following values before the

orbifold action,
1

2
Q2

e = n ,
1

2
Q2

m = Q1Q5 , Qe ·Qm = J . (2.6)

The ZN -orbifold action commutes with the entire duality chain and is therefore well defined

in any duality frame. It is convenient for us to discuss it in the second description so that we

can easily read out its effect on dyonic charges. The ZN -orbifold acts by 1/N shift along S1,

which results in reducing the radius of the circle by a factor of N . Thus, the fundamental

unit of momentum along S1 is N and hence momentum along S1 in the orbifolded theory

becomes n/N . To maintain J NS5 branes transverse to S1 after the orbifold we need to

start with N copies of J NS5 branes symmetrically arranged on S1 before orbifold. The

resulting configuration has

1

2
Q2

e = n/N ,
1

2
Q2

m = Q1Q5 , Qe ·Qm = J , (2.7)

in the orbifolded theory.

The S-duality symmetry of this theory in the second description is related to the T-

duality symmetry in the original type IIB description. The 1/N shift along S1 breaks the

S-duality symmetry of the second description to Γ1(N).

3 Dyon degeneracy from modular forms

As mentioned in the previous section, computing the dyon spectrum is non-trivial because

dyons do not appear in the perturbative spectrum of string theory. In fact, dyon counting

necessarily requires computing the degrees of freedom coming from the solitonic sector of

the theory. The dyon degeneracy formula can be obtained in two different ways, giving

rise to either the additive formula or the multiplicative one.

As shown in [5], there are two modular forms that one constructs – one is the generating

function of the dyon degeneracies denoted by Φ̃k(Z) and another, denoted by Φk(Z), is the

generating function of twisted dyons in the CHL string.1 Let us call the corresponding

1One has Z = ( τ z
z σ ) ∈ H2 where H2 is the Siegel upper-half space.
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modular forms in the type II orbifolds to be Ψ̃k(Z) and Ψk(Z). The weight k of the Siegel

modular form is given by

k + 2 =
12

N + 1
,

when (N + 1)|12 i.e., N = 2, 3. For N = 4, one has k = 1.

3.1 Counting electrically charged 1
2-BPS states

As mentioned earlier, we will define our charges in the second description. In this case,

electrically charged states appear as excitations of the type IIA string. In particular,

the degeneracy is dominated by the contribution from the twisted sector states. We will

compute the electrically charged states in a twisted sector. 1
2 -BPS states arise when the

right-movers are in the ground state and we allow all excitations that are consistent with

level matching as was done for the heterotic string in ref. [28].

N = 1

As a warm-up, consider the left-movers of the type IIA string on T 6. In the Ramond

sector and in the light-cone gauge, one has eight periodic bosons and periodic fermions.

All oscillators, bosonic and fermionic, have integer moding and the Witten index is given

by the product of the bosonic and fermionic contributions:

WB ×WF =

(
1∏

n(1− qn)

)8

×

(
∏

n

(1− qn)

)8

= 1 . (3.1)

This is expected as there is a perfect cancellation of bosonic and fermionic contributions

in the Witten index. Of course, the oscillator partition function is not unity and equals

ZB ×ZF =

(
1∏

n(1− qn)

)8

×

(
∏

n

(1 + qn)

)8

=
η(2τ)8

η(τ)16
. (3.2)

N = 2

The eight periodic bosons have integer moding and each contribute a factor of η(τ)−1 to

the Witten index while the eight anti-periodic fermions each have half-integer moding and

contribute η(τ/2)/η(τ). One has

WB ×WF =

(
1∏

n(1− qn)

)8

×

(
∏

n

(1− qn+1/2)

)8

=
η(τ/2)8

η(τ)16
=

1

gρ̃(τ/2)
, (3.3)
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where the Frame-shape ρ̃ = 1−8216.2 We can also compute the twisted index for BPS states

in the type II string that are invariant under the Z2 = (−1)FL action without accompanied

by shift along any circle. These states contribute to the twisted helicity supertrace B ĝ
4 [30],

where ĝ = (−1)FL is the generator under which these states are invariant. In type II theory

on T 6 this corresponds to setting all R-R fields and R-NS fields to zero. This means we

are left with NS-NS and NS-R sector fields in the subspace of moduli space where (−1)FL

symmetry is manifest. States contributing to the twisted helicity supertrace B ĝ
4 belong to

the elementary string states with arbitrary excitation in the left moving sector but ground

state in the right moving sector. These states break all 16 left moving supersymmetries

and 8 right moving supersymmetries. However, only 8 right moving supersymmetries are

invariant under (−1)FL , as a result these states contribute to B ĝ
4 . With some abuse of

language, henceforth, we will refer to these states as twisted dyons, which are in fact 1/8-

BPS states and are counted by the twisted helicity supertrace B ĝ
6 [30]. The η-quotient for

these states is given by the S-transform i.e., τ → −1/τ of the η-quotient that we got from

the Witten index. This leads to a second η-quotient (ignoring numerical factors)

1

gρ(τ)
=
η(2τ)8

η(τ)16
, (3.4)

with Frame-shape ρ = 1162−8. Unlike the CHL examples, where the S-transform did not

change the cycle shape, we obtain a pair of Frame-shapes in all the examples – one that

counts an index for 1
2 -BPS states in the orbifold of the type II string while the other counts

a twisted index for 1
4 -BPS states in the type II string.

N = 3

The six periodic bosons have integer moding and each contribute a factor of η(τ)−1 to the

Witten index. While the two other bosons have fractional moding of ±1/3. The fermions

each have fractional moding of ±1/3 and contribute η(τ/3)/η(τ). One has

WB ×WF =
1∏

n(1− qn)6(1− qn+1/3)(1− qn−1/3)
×
∏

n

(1− qn+1/3)4(1− qn−1/3)4

=
η(τ/3)3

η(τ)9
=

1

gρ̃(τ/3)
, (3.5)

where the Frame-shape ρ̃ = 1−339. Counting twisted dyons leads to a second η-quotient

1

gρ(τ)
=
η(3τ)3

η(τ)9
, (3.6)

with Frame-shape ρ = 193−3.

2Frame-shapes are natural generalizations of cycles shapes that appear in the CHL examples. (see ref.

[29]). The map gρ(τ ) that maps a Frame-shape ρ = 1a12a2 · · · to the η-quotient gρ(τ ) = η(τ )a1η(2τ )a2 · · ·

is identical to the one that appeared in the CHL strings[23].
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N = 4

The six periodic bosons have integer moding and each contribute a factor of η(τ)−1 to the

Witten index. While the two other bosons are anti-periodic and have half-integral moding.

The fermions each have fractional moding of ±1/4 and contribute η(τ/4)/η(τ). One has

WB ×WF =
1∏

n(1− qn)6(1− qn+1/2)2
×
∏

n

(1− qn+1/4)4(1− qn−1/4)4

=
η(τ/4)4

η(τ)4η(τ/2)6
=

1

gρ̃(τ/4)
, (3.7)

where the Frame-shape ρ̃ = 1−42644. Counting twisted dyons leads to a second η-quotient

1

gρ(τ)
=

η(4τ)4

η(τ)4η(2τ)6
, (3.8)

with Frame-shape ρ = 14264−4.

3.2 η-quotients, Frame-shapes and the Conway group

The counting of 1
2 -BPS states in the type II orbifold is given by η-quotients that are associ-

ated with the Frame-shapes ρ̃ while twisted 1
4 -BPS states in the type II string are associated

with Frame-shapes ρ as given in Table 1. This nicely generalizes the corresponding result

for CHL strings where the generating functions were given by η-products corresponding to

cycle shapes.

The appearance of the η-quotients and Frame-shapes may be understood as follows. It

is known that the Conway group Co1 arises as the group of automorphisms of the algebra

of chiral vertex operators in the NS sector of the superstring[31]. Any symmetry of finite

order of the chiral superstring must thus be an element of Co1. It is known that the

conjugacy classes of Co1 are given by Frame-shapes. It thus appears that the Conway

group plays a role analogous to the one played by the Mathieu group M24 with η-quotients

replacing η-products[23]. Is there a moonshine for the Conway group? The η-quotients for

N = 2, 3 have also appeared in the work of Scheithauer who constructed the Fake monster

superalgebra as well as noted the connection with the Conway group[32–34].

Multiplicative η-quotients have been systematically studied by Martin and he has

provided a list of 71 such quotients – almost all appear to be associated to conjugacy

classes of Co1[35]. Table 1 is a subset of the list except for the ones for N = 2. The

η-quotients for N = 2 violate the multiplicative condition of Martin – he requires them to

be eigenforms of all Hecke operators. The ones for N = 2 are not eigenforms for T2 as can

be easily checked3. It appears that the condition imposed by Martin might be too strong

3We thank Martin for useful correspondence which clarified this point.
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as it excludes the N = 2 quotient that we obtain. It might be sufficient to require that

the η-quotient be a Hecke eigenform for all Hecke operators Tm with (m,N) = 1. The

η-quotients for N = 2, 3 have already been derived in [11] and our results agree with the

expressions given there.

k ρ̃ ρ χ
(
a b
c d

)
N G

2 1−8216 1162−8 2 Z2

1 1−339 193−3
(
−3
d

)
3 Z3

1 1−42644 14264−4
(
−1
d

)
4 Z4

Table 1. η-quotients with N ≤ 4: ρ̃ and ρ are the pair of Frame-shapes, k + 2 is the weight of the

η-quotient.

3.3 The Siegel modular forms

We will look for genus-two Siegel modular forms, Ψk(Z) and Ψ̃k(Z), that have the following

behavior

lim
z→0

Ψk(Z) ∼ z2 gρ̃(τ) gρ̃(σ) ,

lim
z→0

Ψ̃k(Z) ∼ z2 gρ(τ/N) gρ̃(σ) . (3.9)

Remark: The fractional charges here appear with the Frame-shape ρ rather than the

Frame-shape ρ̃ that we saw in the half-BPS counting in the orbifold theory. This is related

to the fact that the type II dyon formula can be brought into the form identical to the

CHL dyon formula by doing the substitution Q2
m → 2Q2

e and Q2
e → Q2

m/2[11].

We rewrite the η-quotients, gρ̃(τ), in a suggestive manner as

g1−8216(τ) =
η16(2τ)

η8(τ)
=
η16(2τ)η16(τ)

η24(τ)
,

g1−339(τ) =
η9(3τ)

η3(τ)
=
η9(3τ)η9(τ)

η12(τ)
, (3.10)

g1−42644(τ) =
η(4τ)4η(2τ)6

η(τ)4
=

[η(4τ)4η(2τ)2η(τ)4]× [η(τ)4η(2τ)4]

η(τ)12
.

In this form, it is easy to see that the η-quotients can be written as quotients of the η-

products (or their square-roots) that appear in the 1
2 -BPS counting of the heterotic string

and the CHL orbifolds. This naturally suggests that the Siegel modular forms Ψk(Z) can

be written as quotients of the Siegel modular forms that appear in the heterotic string and
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its CHL orbifolds[5, 21]. Concretely, we conjecture that

ΨN=2
2 (Z) =

Φ6(Z)
2

Φ10(Z)
, (3.11)

ΨN=3
1 (Z) =

∆2(Z)
3

∆5(Z)
, (3.12)

ΨN=4
1 (Z) =

Φ3(Z)∆3(Z)

∆5(Z)
, (3.13)

where ∆k/2(Z)
2 = Φk(Z), and Φk(Z) are Siegel modular forms appearing in CHL models.

It is easy to see that the first condition in Eq.(3.9) is easily satisfied. Further, the Ψ̃k(Z)

can be defined by the S-transform[5, 12, 23, 36] (volρ ≡
∏N

j=1(j)
aj )

Ψ̃k(Z) := (volρ)
1/2 τ−k Ψk(Z̃) , (3.14)

with

τ̃ = −1/τ , z̃ = z/τ , σ̃ = σ − z2/τ .

We have arrived at the relation (3.11),(3.12), and (3.13) by comparing the additive seeds

for Siegel modular forms for heterotic, CHL and type II models. We need to be careful

about the relation between the corresponding Siegel modular forms because it could involve

some phases(multiplier system); particularly so, if the relation involves taking square roots

of the Siegel modular forms or if embedding of the genus one congruent subgroup Γ0(N)

in the subgroup of Sp(2,Z) gives rise to a multiplier system for the Siegel modular form.

In the case of Z2-orbifold, the type II dyon partition function is a ratio of the square of the

Z2 CHL Siegel modular form and the Siegel modular form for the heterotic string theory.

We are in a fortunate situation here because neither of them have any multiplier system

with respect to the subgroup of Sp(2,Z) which includes the genus one congruent subgroup

Γ0(2). It is therefore obvious that Ψ2(Z) does not have a multiplier system. In case of Z3

also the CHL Siegel modular form does not have a multiplier system but the type II Siegel

modular form is not directly related to the Siegel modular form of the Z3 CHL model or

for that matter to that of the heterotic theory. It is a ratio of cube of ∆2(Z) and ∆5(Z),

where ∆2(Z) is square root of the Siegel modular form for the Z3 CHL model and ∆5(Z) is

the square root of the heterotic string theory Siegel modular form. Therefore ΨN=3
1 (Z), in

general, can have multiplier system under the subgroup of Sp(2,Z) which includes Γ0(3).

It is therefore important to check that the Siegel modular form ΨN=3
1 as well as ΨN=4

1 ,

for which genus one congruent subgroup is Γ0(4), do not possess a multiplier system. In

addition to this, it is important to ensure that the Taylor expansion of the inverse powers

of these Siegel modular forms, in terms of ρ, σ and v have integer coefficients. While it is

11



desirable to do these checks we will derive these results using the product formula and this

derivation will automatically ensure that both these conditions are satisfied.

3.4 Product Representation

The product formula is written in terms of twisted elliptic genus of T 4. For N = 4 type II

orbifolds, the ZN acts simultaneously on a circle of T 2 by a 1/N shift and on T 4 by 2π/N

rotation. For N = 2, it reverses all T 4 coordinates whereas for N = 3, the orbifold action

is easily seen if we choose lattice vectors which subtend 2π/3 angle with each other.

The product formula is given in terms of Jacobi forms of weight zero and index one,

F
(r,s)
N II(τ, z), which are defined by

F
(r,s)
N II(τ, z) ≡

1

N
TrRR;g̃r

(
g̃s(−1)F+F̄ e2πiτL0e2πiJ z

)
, r, s = 0, 1, · · · , N − 1 , (3.15)

where g̃ is a transformation which implements the ZN orbifold transformation on the

coordinates of T 4. While in case of the Z2 orbifold it changes signs of all four coordinates,

for Z3 orbifold it generates a 2π/3 rotation in a two-dimensional plane and −2π/3 rotation

in the orthogonal two-dimensional plane. F and F̄ are left and right chiral fermions in

the (4, 4) superconformal field theory with T 4/ZN target space. This superconformal field

theory has SU(2)L × SU(2)R R-symmetry and J /2 represents the generator of the U(1)L

subgroup of this R-symmetry.

The twisted elliptic genera F
(r,s)
N II(τ, z) are Jacobi forms and have the following Fourier-

Jacobi expansion

F
(r,s)
N II(τ, z) =

1∑

b=0

∑

j∈2Zb,n∈Z/N
4n−j2≥−b2

c
(r,s)
b (4n − j2)e2πinτ+2πijz . (3.16)

Explicit product formulae in terms of the Fourier-Jacobi coefficients c
(r,s)
b (4n−j2) for Ψ(Z)

and Ψ̃(Z) as well as the CHL modular forms have been given, for instance, in ref. [12]. We

do not reproduce them here as we do not need the detailed expressions for our analysis.

For N = 2 and 3, the F (r,s)(τ, z) can be written as[11]

F
(0,0)
N II(τ, z) = 0

F
(0,s)
N II(τ, z) =

16

N
sin4

(πs
N

) ϑ1
(
τ, z + s

N

)
ϑ1
(
τ,−z + s

N

)

ϑ1
(

s
N

)2 , (3.17)

for 1 ≤ s ≤ N − 1 ,

F
(r,s)
N II(τ, z) =

4N

(N − 1)2
ϑ1
(
τ, z + s

N + r
N τ
)
ϑ1
(
τ,−z + s

N + r
N τ
)

ϑ1
(

s
N + r

N τ
)2 ,

for 1 ≤ r ≤ N − 1, 0 ≤ s ≤ N − 1 .

12



However, it is more instructive to write them in terms of twisted elliptic genera of the CHL

models and that of the heterotic string theory. Let us first note that the twisted elliptic

genera of the CHL ZN -orbifold, F
(r,s)
N CHL(τ, z), can be written as[5] (for N = 2, 3, 5, 7)

F
(0,0)
N CHL(τ, z) =

8

N
A(τ, z) (3.18)

F
(0,s)
N CHL(τ, z) =

8

N(N + 1)
A(τ, z) −

2

N + 1
B(τ, z)EN (τ)

for 1 ≤ s ≤ (N − 1) (3.19)

F
(r,rk)
N CHL(τ, z) =

8

N(N + 1)
A(τ, z) +

2

N(N + 1)
B(τ, z)EN (

τ + k

N
)

for 1 ≤ r ≤ (N − 1), 0 ≤ k ≤ (N − 1), (3.20)

where,

A(τ, z) =

[
ϑ2(τ, z)

2

ϑ2(τ, 0)2
+
ϑ3(τ, z)

2

ϑ3(τ, 0)2
+
ϑ4(τ, z)

2

ϑ4(τ, 0)2

]
,

B(τ, z) = η(τ)−6ϑ1(τ, z)
2 ,

and the Eisenstein series for the congruent subgroup Γ1(N) is given by

EN (τ) =
12i

π(N − 1)
∂τ [ln η(τ) − ln η(Nτ)] = 1 +

24

N − 1

∑

n1,n2≥1
n1 6=0modN

n1e
2πin1n2τ .

For the Z2-orbifold of the type II model, F (r,s)(τ, z) can be written as4

F
(r,s)
N=2 II(τ, z) =




2F

(r,s)
N=2 CHL(τ, z)− F

(r,s)
N=1 Het.(τ, z) , (r, s) = (0, 0)

2F
(r,s)
N=2 CHL(τ, z) , (r, s) 6= (0, 0) .

(3.21)

Similarly, for the Z3-orbifold of the type II model, one has

F
(r,s)
N=3 II(τ, z) =





3
2F

(r,s)
N=3 CHL(τ, z) −

1
2F

(r,s)
N=1 Het.(τ, z) , (r, s) = (0, 0)

3
2F

(r,s)
N=3 CHL(τ, z) , (r, s) 6= (0, 0) .

(3.22)

Thus, we see that the seed for the product representation also confirms the fact that

ΨN=2
2 (Z) and ΨN=3

1 (Z) can be written in terms of the Siegel modular forms that appear

in the CHL models and the heterotic string theory, as stated in (3.11) and (3.12). Since,

the elliptic genera for the type II Z4-orbifold have not been worked out, our expression for

ΨN=4
1 (Z) implies that twisted elliptic genera can be written in terms of the CHL ones as

follows:

F
(0,0)
N=4 II(τ, z) = F

(0,0)
N=4 CHL(τ, z) +

1
2F

(0,0)
N=2 CHL(τ, z) −

1
2F

(0,0)
N=1 Het.(τ, z) = 0 , (3.23)

4This observation was already made in a footnote appearing in [11] though the implication that the type

II Siegel modular form can be written in terms of the CHL Siegel modular forms was not made.
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and for (r, s) 6= (0, 0), one has

F
(r,s)
N=4 II(τ, z) =

{
F

(r,s)
N=4 CHL(τ, z) +

1
2F

(r,s)
N=2 CHL(τ, z) , (r, s) = (0, 0) mod 2

F
(r,s)
N=4 CHL(τ, z) , (r, s) 6= (0, 0) mod 2 .

(3.24)

While we have not proved the above formulae for the N = 4 twisted elliptic genera, it

is easy to see that it passes simple checks. For instance, F
(0,0)
II (τ, z) = 0 as expected. A

second check is that ΨN=4
1 (Z) is a modular form (with character) of a level 4 subgroup of

Sp(2,Z) and is invariant under the S-duality group Γ1(4) – this follows from the known

behavior of the CHL modular forms[23].

4 BKM superalgebras in Type II Orbifolds

In their original construction, the automorphic forms constructed by Borcherds[37] via the

singular theta lift also happened to be related to infinite dimensional Lie superalgebras.

The automorphic form appears as the denominator identity of the BKM Lie algebra. The

infinite product representation generated by the theta lift formed the product side of the

denominator identity giving the set of roots of the algebra and the multiplicity of these

roots, while the Fourier expansion of the automorphic form formed the sum side of the

identity which gives the Weyl group and its action on the roots. This idea was also used by

Scheithauer[32], who constructed the singular theta lifts for the elements of the Mathieu

group M23 and Co1 and showed the existence of BKM Lie algebras for the constructed

automorphic forms. The same idea was also applied to the modular forms constructed

in the CHL theory, and the existence of BKM Lie superalgebras corresponding to these

genus-two Siegel modular forms was shown[20, 21, 23, 24, 36].

Given that the Siegel modular forms generating the dyonic degeneracies in the type

II models can be expressed in terms of ratio of the Siegel modular forms that appear in

the description of the quarter BPS dyons in the heterotic and ZN -orbifolded CHL strings,

the possibility arises that one can construct BKM Lie superalgebras corresponding to the

type II modular forms also. We explore this possibility in this section. Before we do so,

however, we remark on an important point from the corresponding constructions in the

CHL theory as well as Borcherds’s work.

In the case of ZN -orbifolded CHL theories withN > 1, there exists more than one cusp,

and the modular form has more than one product expansion corresponding to each of the

cusps. Thus, interpreted as the denominator identity of an infinite dimensional Lie algebra,

each of the different expansions corresponds to different BKM Lie superalgebras. The

modular forms at the different cusps correspond (in some sense) to twisted and untwisted

counting of dyonic degeneracies. This phenomenon is not particular to the CHL models.
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An example in a context different from the CHL theory is that of the denominator identity

of the fake monster superalgebra which has two completely different algebras corresponding

to the cusps at level 1 and 2 (see[37] Example 13.7). Again, the algebras at the two cusps

correspond to twisted and untwisted counting of states. The level 1 cusp gives a BKM

Lie superalgebra for superstrings on a T 10, while the level 2 cusp corresponds to a twisted

denominator formula corresponding to an automorphism that is 1 on the Bosonic elements

and −1 on the Fermionic ones. Remarkably, the two algebras are completely different from

each other, with different Weyl vectors, Weyl groups (the level 2 algebra has a trivial Weyl

group), and different real simple roots (the level 1 algebra has an infinite number of real

simple roots, while the level 2 algebra has no real simple roots at all). Thus we see that

the BKM Lie superalgebras corresponding to the expansions about the different cusps are

quite different from each other.

Coming back to the type II models, we now try to find the algebraic structures, if any,

occurring in the type II models. The method we will use is the general prescription outlined

in[21, see Appendix D.1] for understanding the algebra structure from the expansion of the

modular form. The modular forms occurring in the type II models seem less amenable to an

algebraic interpretation than their CHL counterparts. Where the modular forms occurring

in the CHL theory seemed to be related to two families of BKM Lie superalgebras, the

modular forms in the type II theories have no such obvious forms. Nevertheless, we have

guidance from the fact that the modular forms of the type II theory are related to the ones

occurring in the CHL theory and this can help us derive some algebraic structure from the

corresponding structures in the CHL theory. However, the extent of this insight gets limited

by the fact that the modular forms of the type II theory are given as quotients of the CHL

modular forms, and this does not always translate into a straightforward interpretation of

the characters of representations.

For the N = 2 orbifold, the modular forms at the two cusps, given in terms of the

CHL modular forms are

Ψ2(Z) =
Φ6(Z)

2

Φ10(Z)
, and Ψ̃2(Z) =

Φ̃6(Z)
2

Φ10(Z)
. (4.1)

Using the CHL examples as a guide, the modular forms relevant for the BKM Lie super-

algebras are the square roots of the above modular forms and are given as

Ξ1(Z) =
∆3(Z)

2

∆5(Z)
, and Ξ̃1(Z) =

∆̃3(Z)
2

∆5(Z)
. (4.2)

Let us start with the modular form Ξ1 to look for a BKM Lie superalgebra, if any,

associated to it. Since Ξ1 is given as the ratio of ∆3 and ∆5, both of which have the BKM
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Lie superalgebras, G2 and G1 respectively, associated to them, we look at the corresponding

algebras, G2 and G1.

The algebras G1 and G2 have the same set of real simple roots as G1 – α1, α2 and α3

with Cartan matrix[21, 38]

A1,II ≡




2 −2 −2

−2 2 −2

−2 −2 2


 . (4.3)

The difference between the two algebras is in their imaginary roots. For instance, the

multiplicity of light-like roots, tη0, is given by the formula (η0 is a primitive light-like root

and t ∈ Z>0)

1−
∑

t∈N

m(tη0) q
n =

∏

n∈N

(1− qn)
k−4
2 (1− qNn)

k+2
2 , (4.4)

where k for G1 and G2 is 10 and 6 respectively. Now a quotient of the modular forms

suggests the real simple roots of the resulting algebra will remain same, since two copies

of the roots exist in the numerator ∆2
3, while one copy of the roots is cancelled by the

presence of ∆5. This seems to suggest the algebra corresponding to Ξ1 will be one with the

same real simple roots as G1. The multiplicity of the light-like roots can be guessed from

the eq. (4.4) and using the quotient form of Ξ1 in terms of ∆3 and ∆5. The multiplicity

of the light-like roots, tη0, for GII,2 is given by

1−
∑

t∈N

m(tη0) q
n =

∏

n∈N

(1− qn)−8(1− q2n)8 . (4.5)

Thus, we see that one can associate a BKM Lie superalgebra, GII,2, to the modular form

Ξ1.

Turning to the modular form at the other cusp, we see it can be written as the quotient

of the modular forms ∆̃3 and ∆5. We might hope to repeat the above success in obtaining

GII,2 to find a BKM Lie superalgebra associated to the modular form Ξ̃1, but it is not so

simple at the other cusp. The algebra G̃2 (associated with ∆̃3) has four real simple roots,

of which two are different from that occurring in G1. In particular, one of the real simple

roots of G1 will appear as a pole in the denominator identity. It is potentially a fermionic

simple root. Thus, considering only the real simple roots of BKM Lie superalgebra that

might be associated with the modular form Ξ̃1, we expect to see four bosonic (even)

real simple roots (those appearing in G̃2) and a fermionic (odd) real simple root (the

one contributing to the pole). Even in the finite case, the structure of Lie superalgebras is

technically more complicated than the one for classical Lie algebras. Gritsenko and Nikulin,

in their analysis of BKM Lie superalgebras consider only those superalgebras without odd

real simple roots i.e., these superalgebras only contain odd imaginary simple roots[38, see
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Appendix]. The BKM Lie superalgebras that appear in the CHL dyon counting as well

as those in Scheithauer’s Fake Monster Lie superalgebra belong to this category[33]. We

defer a detailed discussion for the future.

It is instructive to write eq.(4.1) in the following form

Φ6(Z)× Φ6(Z) = Ψ2(Z)× Φ10(Z) , (4.6)

and similarly for Ψ̃2(Z). Written in this form we can interpret it as decomposition of

product of two characters belonging to trivial representations of the BKM algebra corre-

sponding to two copies of N = 2 CHL in terms of a character of trivial representation of

the BKM algebra corresponding to the heterotic theory and N = 2 type II model. This is

quite analogous to the way coset models were constructed using affine Kač-Moody symme-

try, and in particular to the way characters of the coset models were derived. It is worth

pointing out that the following sequence of Cartan matrices shows relation of the BKM

algebra associated with τ = i∞ cusp of the Heterotic string and its CHL analogs to simple

and affine SU(2) Lie algebra,

A1 =
(
2
)
→֒ A

(1)
1 =

(
2 −2

−2 2

)
→֒ A1,II ≡




2 −2 −2

−2 2 −2

−2 −2 2


 . (4.7)

With this close analogy it is tempting to speculate that the type II models possess a

BKM generalization of the affine Goddard-Kent-Olive type coset symmetry[39]. It would

be interesting to explore this relation further. It will also enable us to give an unified

description of type II orbifold models as BKM cosets.

We next come to the case of the Z3-orbifold. The modular forms generating the

degeneracy of the 1
4 -BPS states for the Z3-orbifold can be written, in terms of the CHL

modular forms as

ΨN=3
1 (Z) =

∆2(Z)
3

∆5(Z)
, Ψ̃N=3

1 (Z) =
∆̃2(Z)

3

∆5(Z)
. (4.8)

We cannot take a square-root as we did for the N = 2 case as it leads to modular forms with

non-integral coefficients. Nevertheless, we observe that the real bosonic simple roots that

appear in the denominator of Ψ1(Z) are cancelled by one ∆2(Z). It leaves behind two sets

of three real simple roots with Cartan matrix A1,II – this is the Cartan matrix of a rank

three Lorentzian Lie algebra[38]. Thus, the modular form appears to be the product of at

least two BKM Lie superalgebras both of which are inequivalent automorphic extensions

of the Lorentzian Lie algebra with Cartan matrix A1,II [38]. Physically, it means that the

walls of marginal stability of twisted dyons is identical to that of the N = 2 orbifold. The

same conclusion is obtained for the N = 4 modular form ΨN=4
1 (Z). However, we do not
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have a complete understanding of the algebraic structure for modular forms that generate

degeneracies of 1
4 -BPS in the type II orbifolds, i.e., for the Ψ̃N=3

1 (Z) and Ψ̃N=4
1 (Z) as in

the N = 2 example.

Thus, we see that for the type II models one can associate a BKM Lie superalgebra

structure to the expansion of the modular forms generating the degeneracy of twisted 1
4 -

BPS states along the same lines as for the algebras in the CHL models. However, only the

expansion about one of the cusps admits an algebra structure, while it is not very clear if

an algebra exists about the other cusp.

5 Conclusion

In this work we have attempted to understand the degeneracy of the quarter BPS dyons

in ZN -orbifolds of N = 4 type II compactification of string theory by studying the genus-

two Siegel modular forms generating the degeneracies of these states. We see that the

Siegel modular forms for the ZN -orbifolds in the type II compactifications are expressible

in terms of the CHL Siegel modular forms. This relation exists for both the generating

functions of the half as well as the quarter BPS states of the type II theory. Using this we

construct the algebraic structures underlying these degeneracies. The algebras underlying

twisted dyons in the type II string are all inequivalent automorphic corrections to the rank

three Lorentzian Kac-Moody algebra with Cartan matrix A1,II consistent with the physical

requirement that they have identical walls of marginal stability.
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