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We show that the generating function of electrically charged 1
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with the generating function of 1
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1 Introduction

More than a decade ago, Dijkgraaf, Verlinde and Verlinde (DVV) proposed a
microscopic index formula for the degeneracy of 1

4
-BPS dyons in heterotic string

theory compactified on a six-torus [1]. Since then, and especially in the past few
years, there has been a lot of progress in the microscopic counting of 1

4
-BPS states

and the ideas of DVV have been extended to a larger family of models in four-
dimensional N = 4 compactifications in string theory. There has also emerged
a promising new direction by studying the algebra of the 1

4
-BPS states. The de-

generacy of the 1
4
-BPS states, in all the models, is given by a generating function

which is a genus-two Siegel modular form whose weight and level depends on
the model in consideration [2]. The ‘square roots’ of these genus-two modular
forms have been found to be related to a general class of infinite dimensional
Lie algebras known as Borcherds-Kac-Moody (BKM) Lie superalgebras and this
endows the degeneracy of the 1

4
-BPS states with an underlying BKM Lie super-

algebra structure [3–5]. Following this insight, physical ideas of the theory such
as the structure of the walls of marginal stability [6] have been understood from
an algebraic point of view as the walls of the fundamental Weyl chamber [3, 5].

In this work, we focus on the CHL orbifolds with N = 4 supersymmetry.
These arise as a family of asymmetric ZN -orbifolds of the heterotic string com-
pactified on T 4× S̃1×S1 [7]. Sen and Jatkar, extending the work of DVV to the

CHL orbifolds, constructed a family of genus-two Siegel modular forms Φ̃k(Z)
that generate the degeneracy of the 1

4
-BPS states analogous to the construction

of DVV [2]. The weight, k, of the modular form is related to the orbifolding group
ZN as (k+2) = 24/(N+1) (when N is prime and (N+1)|24). From these modu-
lar forms, the dyon degeneracy is given by a three-dimensional contour integral(C
is a suitably chosen contour [2]):

d(n, ℓ,m) = 64

∮

C

d3z
e−2πi(nz1+mz3+ℓz2)

Φ̃k(Z)
, (1.1)

where Z ∈ H2, the Siegel upper-half space and (n, ℓ,m) = (1
2
qe

2,qe · qm,
1
2
qm

2)
are the T-duality invariant combinations of electric and magnetic charges.

An important application and non-trivial check for the veracity of the above
degeneracy formula is to compute and compare the Bekenstein-Hawking-Wald
entropy of blackholes (with torsion one) with the macroscopic derivation of the
same, which it agrees with in the limit of large charges [2,6]. The degeneracy for-
mula also captures the change in degeneracy when one crosses a wall of marginal
stability, through a subtle dependence of the contour integral on moduli, which is
in keeping with the physical idea that certain dyonic configurations are not stable
when one crosses over to a different region in the moduli space across a wall of
marginal stability and this should reflect in the index [6]. Thus, the degeneracy
formula captures important physical aspects of dyon counting at a microscopic
level.
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Originally, Sen and Jatkar considered the family of theories obtained by ZN

orbifolding for the case of prime N and obtained the modular forms that generate
the degeneracy of 1

4
-BPS states in these theories [2]. For the case of composite

N , however, only the general behavior has been subsequently studied [8].
The first example of composite N , occurs for N = 4, is an interesting as well

as an important theory to understand. It has been predicted that the BKM Lie
superalgebra structure underlying the degeneracy of the 1

4
-BPS states in theories

with N > 3 do not exist [5]. If this claim is true(we show that it is false), then the
algebra of the 1

4
-BPS states undergoes a transition between N = 3 and N = 4,

and it would be educative to compare the N = 4 theory with the N = 1, 2, 3
theories to understand just what sort of structure it is that generates this algebra
for the dyonic degeneracies that is absent for the case of N = 4. Before that,
however, one needs to verify the claim explicitly by looking at the structure of
the Siegel modular form that generates the degeneracy of 1

4
-BPS states.

Parallel to the construction of Φ̃k(Z), encoding the degeneracy of the 1
4
-BPS

states, a related family of modular forms, denoted Φk(Z), that encode information
on the R2-corrections to the string effective action, were also constructed and
studied [9].These modular forms have also appeared recently in the work of Sen
as twisted helicity trace indices in the N = 1 theory [10]. For the case of N = 1

it turns out that Φ̃k(Z) = Φk(Z). For N > 1, however, the two modular forms
are different and one can also construct another family of BKM Lie superalgebras
associated with the family Φk(Z). Unlike in the case of Φ̃k(Z), the BKM structure
for this family of modular forms does not undergo a radical change in structure as
N is changed and has been shown to exist for all prime N , even when N > 4 [4].
In constructing the theory for N = 4, we also need to see if the BKM structure
associated with the family Φk(Z), that existed for the case of prime N , continues
to exist for the case of composite N . We will show that this is indeed the case.
A summary of the main results of this paper is as follows:

1. We show that the generating function of 1
2
-BPS states is given by multi-

plicative η-products. We obtain the η-products for all groups that arise as
symplectic involutions of K3.

2. The modular forms Φk(Z) and Φ̃k(Z) have been constructed for N = 4, 6, 8
via the additive lift. Further, we have also worked out the systematics of
the product formulae and given explicit expressions for N = 4. It has also
been shown that the N = 4 modular forms can be written as a product of
even genus-two theta constants.

3. The BKM Lie superalgebra for ∆3/2(Z) (which we denote by G4( is shown
to be similar to the ones appearing in [4]. The Cartan matrix, Weyl vector
and Weyl group remain unchanged by the orbifolding. However, the mul-
tiplicities of the imaginary simple roots do depend on the orbifolding. We
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provide evidence that the BKM Lie superalgebras GN for N=2,3,4,5 are re-
lated to the dyons counted by the twisted helicity trace indices in heterotic
string theory on T 6 [10].

4. The BKM Lie superalgebra for ∆̃3/2(Z) is of parabolic type with infinite
real simple roots (labelled by an integer) with Cartan matrix

A(4) = (anm) where anm = 2− 4(n−m)2 , (5.16)

and a light-like Weyl vector. The walls of marginal stability for the N = 4
model get mapped to the walls of the fundamental Weyl chamber of the
BKM Lie superalgebra G̃4

5. We also provide a proposal for modular forms for product groups as well as
type II models.

The organization of the paper is as follows. In section 2, we discuss the
relevant details of the model as well as provide some of the relevant details of the
microscropic counting of dyon degeneracies as carried out in [11]. In section 3,
we provide the construction of the modular forms Φk(Z) for N = 4, 6, 8 via the
additive lift. In section 3.1, we show that the generating function of degeneracy
of 1

2
-BPS states is given by a product of η-functions that satisfy a multiplicative

property – these are called η-products. This identification helps us to construct
the weak Jacobi form that is the seed for the additive lift. In section 4, we
construct product formulae for the modular forms for the N = 4 orbifold Φ̃3(Z)
and Φ3(Z) – the important details of the computation of twisted elliptic genera
for N = 4, 6, 8 are, however, relegated to appendix B. In section 5, we show
that the ‘square root’ of the two modular forms (constructed in the previous
section) do appear to be the denominator formulae for two distinct BKM Lie
superalgebras. In section 5.2, we construct the BKM Lie superalgebra for the
modular form ∆̃3/2(Z) and show that it has infinite real simple roots (reflecting
the parabolic nature of the algebra) and the walls of the Weyl chamber do get
mapped to walls of marginal stability of dyons. This is similar to what happened
for N = 1, 2, 3 [3, 5] and is consistent with the general expectations for N = 4
in [6]. In section 5.3, we construct the BKM Lie superalgebra for the modular
form ∆3/2(Z) and show that it is consistent with the expectations in [4]. In section
6, we discuss two natural generalizations of the models in this paper. First, we
consider the case of product orbifolds of the form Zn ×Zm and next we consider
the case of N = 4 supersymmetric type II models that are orbifolds of type II
string theory on a six-torus. We conclude in section 7 with a brief summary of
our results. The appendices are used to provide technical results relevant for the
paper. In particular, appendix B determines the twisted elliptic genera using
consistency conditions and reduces the computation to a few unknown constants
that can be determined by the methods given in Sec. 4 for the N = 4 orbifold.
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Note: The modular form ∆3/2(Z) has also been constructed by Gritsenko and
Clery [12]. Our results are in agreement with theirs even though our approaches
differ.

2 The model

The model that we consider is a four-dimensional compactification of string the-
ory with N = 4 supersymmetry. It has three perturbative formulations in terms
of toroidally compactified heterotic string and type IIA/B string theory compact-
ified on K3 × T 2. We study the orbifolding of this theory by a ZN group such
that the N = 4 supersymmetry of the unorbifolded theory is preserved. (See the
review by Sen [13] and references therein for details.)

Consider the four-dimensional heterotic string compactified on T 4× S̃1 × S1.
The generator of the ZN -orbifolding acts by a 1/N shift along the circle S1 and
a simultaneous ZN involution of the Narain lattice, Γ20,4, of signature (20, 4)
associated with the T 4. In the dual type IIA theory, the lattice Γ20,4 is identified
with H∗(K3,Z) and the orbifolding group, ZN , is a symplectic Nikulin involution
combined with the 1/N shift of S1.

The massless spectrum of the four-dimensionalN = 4 supersymmetric toroidally
compactified heterotic string consists of one graviton multiplet together with 22
vector multiplets. The massless spectrum depends on the orbifolding group. The
orbifolding group acts trivially on the right-moving fermions, and all the 16 su-
percharges are preserved even after the orbifolding. However, it acts non-trivially
on the left-moving gauge degrees of freedom and hence the number of vector mul-
tiplets will be fewer. Also, the 1/N shift along the circle forces all the twisted
sector states to be massive. Thus, the orbifolded theory has fewer massless vector
multiplets down from the 22 in the unorbifolded theory to m = rk(Γ⊥)−2, where
Γ⊥ is the sub-lattice of Γ20,4 that is invariant under the orbifold action.

The bosonic part of the low-energy effective action (up to two derivatives), in
the variables of the heterotic description is

S =

∫
d4x
√−g

[
R− ∂µλ ∂

µλ̄

2 Im(λ)2
+

1

8
Tr(∂µML ∂µML)

−1
4
Im(λ) FµνLML F µν +

1

4
Re(λ) FµνL F̃ µν

]
, (2.1)

where L is a Lorentzian metric with signature (6, m), M is a (6 +m)× (6 +m)
matrix valued scalar field satisfying MT = M and MTLM = L and Fµν is a
(6 +m) dimensional vector representing the field strengths of the (6 +m) gauge
fields.

The moduli space of the scalars is

(
Γ1(N)× SO(6, m;Z)

)∖(
SL(2)

U(1)
× SO(6, m)

SO(6)× SO(m)

)
. (2.2)
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SO(6, m;Z) is the T-duality symmetry group and Γ1(N) ⊂ PSL(2,Z) given by

Γ1(N) =

{(
a b
c d

) ∣∣∣∣ ad− bc = 1, c = 0 mod N, a = d = 1 mod N

}
(2.3)

is the S-duality symmetry group that is manifest in the equations of motion and
is compatible with the charge quantization. The fields that appear at low-energy
can be organized into multiplets of these various symmetries.

1. The heterotic dilaton combines with the axion (obtained by dualizing the
antisymmetric tensor) to form the complex scalar λ in the complex upper-
half plane.

2. The (6 + m) vector fields transform as an SO(6, m;Z) vector under the
T-duality group. Thus, the electric charges qe (resp. magnetic charges
qm) associated with these vector fields are also vectors (resp. co-vectors)
of SO(6, m,Z). Further, the electric and magnetic charges transform as a
doublet under the S-duality group, Γ1(N).

Under the action of the S-duality group, the charges of dyons and the complex
scalar transform as follows

λ→ aλ+ b

cλ+ d
,

(
qe

qm

)
→

(
a b
c d

)(
qe

qm

)
. (2.4)

One can form three T-duality invariant scalars, q2
e, q

2
m and qe ·qm from the charge

vectors. These transform as a triplet of the S-duality group. Equivalently, we
can write the triplet as a symmetric matrix:

Q ≡
(

q2
e qe · qm

qe · qm q2
m

)
. (2.5)

The S-duality transformation now is Q → γ · Q · γT with γ ∈ Γ1(N). The
charges are quantized such that Nq2

e, q2
m ∈ 2Z and qe · qm ∈ Z. There exist

many more invariants due to the discrete nature of the T-duality group [14, 15]
for N = 1 and more appear when N > 1. One such discrete invariant is the
torsion r = gcd(qe ∧ qm) [16]. In this paper, we will restrict our attention to
1
4
-BPS dyons with torsion r = 1.
There is also a parity transformation that enlarges the modular group from

PSL(2,Z) to PGL(2,Z) and acts on the complex scalar and the dyons as [3]

R :

(
qe

qm

)
→

(
qe

−qm

)
, λ→ λ̄ . (2.6)

On adding the parity symmetry to the S-duality group, Γ1(N), one obtains the

‘extended S-duality symmetry group’, Γ̂1(N) [5].
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2.1 Microscopic counting of dyonic degeneracies

In this subsection, we will discuss the microscopic counting of dyon degeneracies
carried out by David and Sen [11, 13]. Consider type IIB string theory on K3 ×
S̃1 × S1 modded by the ZN symmetry that acts a symplectic involution of K3
and a 1/N -shift of the S1. The configuration considered in [11] consists of one
D5-brane wrapping K3 × S1, Q1 D1-branes wrapped on S1, a single Kaluza-
Klein(KK) monopole associated with the circle S̃1 with negative magnetic charge,

−k units of momentum along S1 and momentum J along S̃1. This configuration
corresponds to the BMPV black hole at the center of Taub-NUT space [17].The
main idea used by David-Sen is to use the 4D-5D correspondence combined with
known dualities to map the counting of states in this configuration to the counting
of dyonic degeneracies in the CHL string [18].

Let d(qe,qm) denote the number of bosonic minus fermionic quarter BPS
supermultiplets carrying a given set of charges (qe,qm) in the configuration de-
scribed above. The dyonic charges of the configuration above are given by

q2
e = 2k/N , q2

m = 2(Q1 − 1) , qe · qm = J . (2.7)

The quantum numbers k and J can arise from three different sources:

1. The excitations of the Kaluza-Klein monopole carrying momentum −l′0/N
along S1.

2. The overall motion of the D1-D5 system in the background of the Kaluza-
Klein monopole carrying momentum −l0/N along S1 and j0 along S̃1.

3. The motion of the Q1 D1-branes in the worldvolume of the D5-brane car-
rying momentum −L/N along S1 and J ′ along S̃1.

Thus, we have
l′0 + l0 + L = k , j0 + J ′ = J . (2.8)

In the weak coupling limit, one assumes that one can ignore the interaction
between the three different sets of degrees of freedom and obtain the generating
function of dyonic degeneracies of the whole system as a product of the generating
functions of each of the three separate pieces. Let f(ρ, σ, v) denote the generating
function of the whole system:

f(ρ, σ, v) =
∑

k,Q1,J

d(qe,qm) e
2πi

[
σ(Q1−1)/N+ρk+vJ

]
. (2.9)

Then, from the above argument it can be written as

f (ρ, σ, v) =
1

64
e−2πiσ/N

( ∑

Q1,L,J ′

(−1)J ′

dD1(Q1, L, J
′

) e2πi(σQ1/N+ρL+vJ ′)
)

(∑

l0,j0

(−1)j0dCM(l0, j0) e
2πil0ρ+2πij0v

)(∑

l′0

dKK(l
′
0) e

2πil′0ρ
)
, (2.10)
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where dD1(Q1, L, J
′

) is the degeneracy of the Q1 D1-branes moving in the plane
of the D5-brane, dCM(l0, j0) is the degeneracy associated with the overall mo-
tion of the D1-D5 system in the background of the Kaluza-Klein monopole(i.e.,
its motion in Taub-NUT space), and dKK(l

′
0) is the degeneracy associated with

the excitations of the Kaluza-Klein monopole. The factor of 1/64 removes the
degeneracy of a single 1

4
-BPS supermultiplet.

Let us write f(ρ, σ, v) as

f(ρ, σ, v) =
[
ÊS∗(K3/ZN )(ρ, σ, v)× ETN(ρ, v)× g(ρ)

]−1
, (2.11)

where

[
ES∗(K3/ZN )(ρ, σ, v)

]−1 ≡
∑

Q1,L,J ′

(−1)J ′

dD1(Q1, L, J
′

) e2πi(σQ1/N+ρL+vJ ′) ,

[
ETN(ρ, v)

]−1 ≡ 1

4

∑

l0,j0

(−1)j0dCM(l0, j0) e
2πil0ρ+2πij0v ,

[
g(ρ)

]−1 ≡ 1

16

∑

l′0

dKK(l
′
0) e

2πil′0ρ .

The computations in the appendices of David and Sen in [11] provide a mi-
croscopic understanding of the three different sources. We now summarize their
results choosing a notation that is more or less identical to theirs.

1. The Taub-NUT space breaks eight of the sixteen supersymmetries in type
IIB on K3 and quantization of its fermionic zero modes gives rise to a
multiplicative factor of 16 = 28/2. Following the chain of dualities, one sees
that the Taub-NUT space gets mapped to the heterotic string wrapped on
a ZN -orbifold of the heterotic string. The degeneracy dKK(l

′
0) corresponds

to the degeneracy of the heterotic string in a twisted sector. Thus, g(ρ/N)
is the partition function of the heterotic string (in a twisted sector) with
the supersymmetric right-movers in their ground state. Thus, it can also
be identified with the generating function of degeneracies of electrically
charged 1

2
-BPS states. We will provide an explicit expression for g(ρ) for

arbitrary N in the next section as explicit formulae are known only when
N is prime and divides 24.

2. The D1-D5 system moving in K3× TN breaks four of the eight supersym-
metries of type IIB string theory on K3 × TN . The quantization of its
zero modes gives rise to a multiplicative factor of 4 = 24/2. An explicit
computation shows that

ETN(ρ, v) =

[
ϑ1(Nρ, v)

η(Nρ)3

]2
. (2.12)
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3. ES∗(K3/ZN )(ρ, σ, v) is the second-quantized elliptic genus of K3/ZN [19].

David and Sen further show that

f(ρ, σ, v) =
1

Φ̃k(ρ, σ, v)
=

1

Φ̃k(σ/N,Nρ, v)
, (2.13)

in the process obtaining a product representation for the generating function of
1
4
-BPS states, Φ̃k(Z). Further, we note that the product

φ(σ, v) = ETN(σ/N, v)× g(σ) ,
is the Jacobi form that is the additive seed for the modular form Φk(Z) [2]. This
enables us to determine this modular form once we explicitly determine g(ρ) in
the next section.

3 The additive lift

In the section, we first obtain the generating function, g(ρ), of the degeneracy of
electrically charged 1

2
-BPS states. This is used to obtain the Jacobi form that

generates the additive lift and finally we construct the corresponding modular
form.

3.1 Counting 1
2-BPS states

The counting of the degeneracy of 1
2
-BPS states of a given electric charge is

mapped to the counting of states of the heterotic string with the right-movers1

in the ground state [20–22]. While this is conceptually easy to compute, for
orbifolds, the contributions from the different sectors to the degeneracy need to
be added up. This computation has been carried out by Sen who showed that,
up to exponentially suppressed terms (for large charges), the leading contribution
arises from the twisted sectors and the asymptotic expansion takes a simple form
(given in Eq. (3.4) below) [20]. In this subsection, we show that this asymptotic
expansion is consistent with a product of η-functions that we shall call η-products.
This result, in a sense, is a simplification and extension of the analysis of Sen [20].

3.1.1 Heterotic string on T 6

(Electric) 1
2
-BPS excitations of the heterotic string carrying charge N ≡ 1

2
q2
e

are obtained by choosing the supersymmetric (right-moving) sector to be in the
ground state. The level matching condition becomes

− 1

2
q2
e +NL = 1 , (3.1)

1In our convention, right movers are taken to be supersymmetric and left movers are bosonic
in the heterotic string.
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where qe ∈ Γ22,6 and NL is the oscillator contribution to L0 in the bosonic (left-
moving) sector. Thus, we see that

n = 1
2
q2
e = NL − 1 .

Let d(n) represent the number of configurations of the heterotic string with elec-
tric charge such that 1

2
q2
e = n. The level matching condition implies that we need

to count the number of states with total oscillator number NL = (n + 1). The
generating function for these states is

16

η(τ)24
=

∞∑

n=−1

d(n) qn , (3.2)

where the factor of 16 accounts for the degeneracy of a 1
2
-BPS multiplet – this is

the degeneracy of the Ramond ground state in the right-moving sector.

3.1.2 The CHL orbifold of the heterotic string on T 6

In the CHL orbifold, the electric charge takes values in a lattice Γ⊥ ⊂ Γ22,6 of
signature (22−2k̂, 6) = (2k+2, 6) that is not self-dual.2 Here Γ⊥ is the sub-lattice
of Γ22,6 that is invariant under the action of the orbifold group. Let vol⊥ be the
volume of the unit cell in Γ⊥. Define the generating function of the degeneracies
d(n) of 1

2
-BPS states as follows:

16

gρ(τ/N)
≡

∞∑

n=−1

d(n) qn/N , (3.3)

for the ZN -CHL orbifold taking into account that the electric charge is quantized
such that Nq2

e ∈ 2Z. Setting τ = iµ/2π, Sen has shown that in the limit µ→ 0,
one has [20]

lim
µ→0

1

gρ(iµ/2πN)
= 16 e4π

2/µ
( µ

2π

)(k+2)/2

(vol⊥)1/2 + · · · (3.4)

where the ellipsis indicate exponentially suppressed terms. We will make an
ansatz for gρ(τ) in the form of an η-product3

gρ(τ) =

N∏

r=1

η(rτ)ar = η(τ)a1η(2τ)a2 · · ·η(Nτ)aN . (3.5)

2An explicit description of the relevant lattices may be obtained by combining the work of
Garbagnati and Sarti [23] (who work out the invariant lattices under all abelian symplectic
involutions of K3) and six-dimensional string-string duality that relates the type II string
compactified on K3 to the heterotic string compactified on T 4.

3The ansatz is based on the observation that this η-product is the modular transform of the
the oscillator contribution to the g-twisted partition function: 1

g

. Not unsurprisingly, the

same function appears in the additive seed for the modular form associated with the twisted
index of Sen [10].
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We identify the above η-product with the ‘cycle shape’ ρ = 1a12a2 · · ·NaN . The
η-product has to satisfy the following conditions:

1. The asymptotic behaviour of gρ(τ) given in Eq. (3.4) requires
(
Na1 +N a2

2
+ · · ·+ aN

)
= 24 ,

a1 + a2 + · · ·+ aN = 2(k + 2) , (3.6)
(
1a12a2 · · ·NaN

)−1
= vol⊥ .

The last condition involving the volume of the unit cell is exactly what one
expects for an orbifold action on the basis vectors of the self-dual lattice
Γ20,4 ⊂ Γ22,4 corresponding to the cycle shape ρ.

2. Considering ZN as a cyclic permutation, one sees that the only permitted
cycles are of length r such that r|N . One therefore imposes ar = 0 unless
r|N . Thus, when N is prime, only a1 and aN are non-zero which agrees
with known results.

3. We will show later that the cycle shapes associated with Nikulin involutions
satisfy an additional property – they are balanced. This implies that a1 = aN
among other things. It also implies that the first equation in Eq. (3.6) can
be rewritten as

a1 + 2a2 + · · ·+NaN = 24 . (3.7)

These conditions uniquely fix the form of gρ(τ). When N is prime, one sees that
a1 = aN = 24

N+1
in agreement with known results [2].

3.1.3 Symplectic automorphisms of K3 and the Mathieu group M24

In this subsection, we will consider the dual description of the CHL orbifold as a
supersymmetric orbifold of type II string theory on K3 × T 2. This will provide
an understanding of the cycle shapes that appear in the 1

2
-BPS state counting.

The orbifold group acts on the K3 as a symplectic (Nikulin) involution – it acts
trivially on the nowhere vanishing (2, 0) holomorphic form. Mukai showed that
any finite group of symplectic automorphisms of a K3 surface is a subgroup of
the Mathieu group, M23 [24].

To better understand Mukai’s result, consider a symplectic automorphism of
K3, σ, of finite order n (it is known that n ≤ 8). He observed that the number
of fixed points, ε(n) (which depends only on the order of σ) is given by

ε(n) =
24

n
∏

p|n(1 +
1
p
)
,

and happens to match the number of fixed points for a similar element of the
Mathieu group, M23. The Mathieu group M24 can be represented as a permuta-
tion group acting on a set with 24 elements. Then, M23 is the subgroup of M24
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that preserves one element of the set. Mukai then showed that if G is a finite
group of symplectic automorphisms of K3, then

(i) G acts as a permutation on the generators of H∗(K3,Z) and can be em-
bedded as a subgroup of M23.

(ii) G necessarily has at least five fixed points, one arising from H0,0(K3),
H2,0(K3), H1,1(K3), H0,2(K3) and H2,2(K3). The only non-trivial part is
that there is at least one fixed point in H1,1(K3).

The embedding of G into M23 ⊂ M24 enables one to use known properties
of M24. In particular, Conway and Norton have shown that any element of M24

has a balanced cycle shape [25]. Recall that any permutation (of order n) may
be represented by its cycle shape:

ρ ≡ 1a12a2 · · ·nan . (3.8)

A cycle shape, ρ, is said to be balanced if there exists a positive integer M such
that

(
M
1

)a1(M
2

)a2 · · ·
(
M
n

)an
is the same as ρ. Since dim(H∗(K3)) = 24, one also

has the condition ∑

i

i ai = 24 . (3.9)

As an example, the cycle shape 142244 is balanced with M = 4 and satisfies the
above condition. Now given a balanced cycle shape, ρ, consider the function gρ(τ)
defined by the following product of η-functions:

ρ 7−→ gρ(τ) ≡ η(τ)a1η(2τ)a2 · · · η(nτ)an . (3.10)

Note that when the condition (3.9) is satisfied, gρ(τ) has no fractional exponents
in its Fourier expansion about the cusp at infinity. One has

gρ(τ) =

∞∑

m=1

am qm , with a1 = 1 , (3.11)

where q = exp(2πiτ). Dummit, Kisilevsky and McKay [26] (see also [27]) consid-
ered such functions after imposing an additional property called multiplicativity.
A function g(τ) =

∑
n anq

n is multiplicative4 if anm = anam when gcd(n,m) = 1.
By means of a computer search among the 1575 partitions of 24 (this is

equivalent to all solutions of Eq.(3.9)), Dummit et. al. found a set of thirty
multiplicative η-products each associated with a cycle that was balanced. In
Table 1, we reproduce their table restricting to shapes with M ≤ 16 after adding

4Martin imposes a more stringent condition [28] – he requires that the function and its image
under the Fricke involution must be Hecke eigenforms. It turns out that all the examples that
we consider satisfy the stronger condition.
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Cycle shape ρ (k + 2) χ( a b
c d ) M N G

124 12 1 1
1828 8 2 2 Z2

1636 6 3 3 Z3

212 6 4 2 Z2 × Z2

142244 5
(
−1
d

)
4 4 Z4

1454 4 5 5 Z5

12223262 4 6 6 Z6

2444 4 8 4 Z2 × Z4

38 4 9 3 Z3 × Z3

1373 3
(
−7
d

)
7 7 Z7

12214182 3
(
−2
d

)
8 8 Z8

2363 3
(
−3
d

)
12 6 Z2 × Z6

46 3
(
−1
d

)
16 4 Z4 × Z4

12112 2 11 11 Z11

Table 1: The function gρ(τ) is a modular form of weight (k+2), generalized level
M (true level N) and character χ. Only non-trivial characters are indicated in
column 3.

a couple of columns that are relevant to this paper. The last column is the discrete
group G that is an automorphism of K3 which corresponds to the cycle shape ρ
– this has been added by us. The groups have been identified by extracting the
cycle shape from the discussion in Chaudhuri and Lowe [7] (see also proposition
5.1 in [23]). It is interesting to note that all cycle shapes that appear in Table
1 arise from the action of Nikulin involutions on K3 – this includes product
groups such as Z2 × Z2. In examples involving product groups, the η-products
are actually of level N < M and we have indicated the true level N in a separate
column.

3.2 The additive lift

Consider the weak Jacobi form of weight k, index 1 and level N

φk,1(z1, z2) =
ϑ1(z1, z2)

2

η(z1)6
gρ(z1) =

∑

n,ℓ

a(n, ℓ) qnrℓ . (3.12)

We conjecture that this Jacobi form is the seed for the additive (Maaß) lift leading
to the genus-two Siegel modular form Φk(Z) when G = ZN . Note that when N is
prime and (N +1) divides 24, then this agrees with the additive seed given in [2]

12



as the cycle shape is 1k+2Nk+2 as given in the Table 1. When N is composite,
the cycle shape is as given in Table 1. The formula for Φk(Z) is given by the
Fourier coefficients, a(n, ℓ), of the additive seed

Φk(Z) ≡
∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

χ(d) dk−1 a
(
nm
d2
, ℓ
d

)
qnrℓsm , (3.13)

where

(n, ℓ,m) > 0 implies n,m ∈ Z+ , ℓ ∈ Z and (4nm− ℓ2) > 0 .

In the above formula, the weight k and the character χ are as given in Table 1.
As discussed by Jatkar and Sen [2], the generating function of dyonic degen-

eracies, Φ̃k(Z), is given by expansion of the modular form, Φk(Z), about another
inequivalent cusp. Let

Φ̃k(Z) ≡ (vol⊥)1/2 z−k
1 Φk(Z̃) , (3.14)

with
z̃1 = −1/z1 , z̃2 = z2/z1 , z̃3 = z3 − z22/z1 .

We have chosen a normalization for Φ̃k(Z) that differs from the one used in [2]
but agrees with the one used in [8]. Consider 1

4
-BPS dyons with charges qe and

qm such that 2n = Nq2
e, 2m = q2

m and ℓ = qe · qm. Then, the degeneracy
d(n, ℓ,m) of dyons with these charges is generated by

64

Φ̃k(Z)
=

∑

n,ℓ,m

d(n, ℓ,m) qn/Nrℓsm . (3.15)

A similar additive lift for Φ̃k(Z) is given by the following seed:

φ̃k,1(z1, z2) =
ϑ1(z1, z2)

2

η(z1)6
gρ(z1/N) . (3.16)

We now provide detailed expressions for the genus-two modular forms Φk(Z)
for the ZN -CHL orbifolds for N = 4, 6, 8.

3.2.1 N = 4

From Table 1, we see that k = 3 for N = 4. The seed for the additive lift is

φ3,1(z1, z2) =
ϑ1(z1, z2)

2

η(z1)2
η(2z1)

2η(4z1)
4 =

∑

n,ℓ

a(n, ℓ) qnrℓ . (3.17)

The additive lift is (a(n, ℓ) is as defined by the above equation)

Φ3(Z) ≡
∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

(
−1
d

)
dk−1 a

(
nm
d2
, ℓ
d

)
qnrℓsm , (3.18)
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where the Jacobi symbol
(
−1
d

)
is +1 when d = 1 mod 4; −1 when d = 3 mod 4

and 0 otherwise. This is a Siegel modular form at level four and character ψ4(γ)
where

ψ4(γ) =

( −1
detD

)
for γ =

(
A B
C D

)
∈ G0(4) , (3.19)

where G0(4) is the level four subgroup of Sp(2,Z) [29].

3.2.2 N = 6

From Table 1, we see that k = 2 for N = 6. The seed for the additive lift is

φ2,1(z1, z2) =
ϑ1(z1, z2)

2

η(z1)4
η(2z1)

2η(3z1)
2η(6z1)

2 =
∑

n,ℓ

a(n, ℓ) qnrℓ . (3.20)

The additive lift is then (a(n, ℓ) is as defined by the above equation)

Φ2(Z) ≡
∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)
d=1,5 mod 6

dk−1 a
(
nm
d2
, ℓ
d

)
qnrℓsm . (3.21)

3.2.3 N = 8

From Table 1, we see that k = 1 for N = 8. The seed for the additive lift is

φ1,1(z1, z2) =
ϑ1(z1, z2)

2

η(z1)4
η(2z1)η(4z1)η(8z1)

2 =
∑

n,ℓ

a(n, ℓ) qnrℓ . (3.22)

The additive lift is then (a(n, ℓ) is as defined by the above equation)

Φ1(Z) ≡
∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

(
−2
d

)
dk−1 a

(
nm
d2
, ℓ
d

)
qnrℓsm , (3.23)

where the Jacobi symbol
(
−2
d

)
is +1 when d = 1, 3 mod 8; −1 when d =

5, 7 mod 8 and 0 otherwise. This is a Siegel modular form at level eight and
character

(
−2

detD

)
.

4 Product formulae

The product formulae for Φk(Z) as well as Φ̃k(Z) are given in terms of the coef-
ficients of the Fourier expansion of the twisted elliptic genera [30]. The twisted
elliptic genus for a ZN -orbifold of K3 is defined as:

F a,b(τ, z) =
1

N
TrRR,ga

(
(−)FL+FRgbqL0 q̄L̄0e2πızFL

)
, 0 ≤ a ≤ (N − 1) , (4.1)
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where g generates ZN and q = exp(2πıτ). The twisted elliptic genera are weak
Jacobi forms of weight zero, index one and level N [30]. The Fourier expansion
of the Jacobi form are

F a,b(τ, z) =

1∑

m=0

∑

ℓ∈2Z+m,n∈Z/N

ca,bm (4n− ℓ2) qnrℓ , (4.2)

where r = exp(2πiz). We will also write ca,b(n, ℓ) for the Fourier coefficient
ca,bm (4n− ℓ2).

In appendix B, we determine the twisted elliptic genera using consistency con-
ditions based on their modular properties. When N is prime, these conditions
uniquely fix the twisted elliptic genera. For composite N , there remain unde-
termined parameters. These parameters are fixed by requiring that the product
formula is compatible with the product form of the additive seed given in Eq.
(3.12). We illustrate the procedure for N = 4.

4.1 Product formula for Φ3(Z)

Define

F̂ a(τ, z) =
3∑

b=0

F a,b(τ, z) , (4.3)

and let ĉa(n, ℓ) be its Fourier coefficients. The product form given by David,
Jatkar and Sen can be rewritten as [30]

Φ3(Z) = qrs
∏

(n,ℓ,m)

(
1− qnrℓsm

)ĉ0−ĉ2

×
(
1−

(
qnrℓsm

)2)ĉ2−ĉ1

×
(
1−

(
qnrℓsm

)4)ĉ1

(4.4)
where we have not written out the argument of ĉa – it is (nm, ℓ) in all occurrences
above to reduce the length of the equation. Other methods of generating product
formulae have been used in [4, 29, 31].
Specializing the general formulae in appendix B to the case of N = 4, we obtain

F̂ 0(τ, z) = 10
3
A(τ, z) + (2b+ 1

3
)E2(τ)B(τ, z) + (5

6
− 2b)E4(τ)B(τ, z)

F̂ 1(τ, z) = 4
3
A(τ, z)− 2bE2(τ)B(τ, z)− ( 5

12
− b)E4(τ)B(τ, z) (4.5)

F̂ 2(τ, z) = 2A(τ, z) + 1
2
E2(τ)B(τ, z)− (5

6
− 2b)E4(τ)B(τ, z) ,

where A(τ, z) and B(τ, z) are as defined in Eq. (B.6). This leads to formulae for
the first two Fourier coefficients:

ĉ0(−1) = 5
6
+ 1

3
+ 5

6
= 2 , ĉ0(0) = 25

3
− 7

3
= 6 ,

ĉ1(−1) = 1
3
− 5

12
− b = −b− 1

12
, ĉ1(0) = 25

6
+ 2b , (4.6)

ĉ2(−1) = 1
2
+ 1

2
− 5

6
+ 2b = 2b+ 1

6
, ĉ2(0) = 17

3
− 4b .
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We need ĉ1(−1) = ĉ2(−1) = 0 else we will have terms of the type (1 − r2) and
(1 − r4) in the product expansion for Φ3(Z). This fixes the unfixed constant
b = −1/12. We can now write out all the terms with m = 0 in the product
formulae as we now have determined that ĉ1(0) = 4 and ĉ2(0) = 6. These give
rise to terms of the form

∞∏

n=1

(1− qn)0(1− q2n)2(1− q4n)4 .

This agrees with the (infinite set of) terms that appear from the product expan-
sion of the additive seed:

φ3,1(τ, z) =
ϑ21(τ, z)

η(τ)6
η(τ)4η(2τ)2η(4τ)4 .

Since we have fixed the constant b, we can now write exact expressions for the
F a,b(τ, z):

F 0,0(τ, z) = 2A(τ, z)

F 0,1(τ, z) = F 0,3(τ, z) = 1
3
A(τ, z) +

[
− 1

12
E2(τ) +

1
2
E4(τ)

]
B(τ, z)

F 0,2(τ, z) = 2
3
A(τ, z) + 1

3
E2(τ)B(τ, z) (4.7)

F 1,k(τ, z) = F 3,3k(τ, z) = 1
3
A(τ, z) +

[
− 1

24
E2

(
τ+k
2

)
+ 1

8
E4

(
τ+k
4

)]
B(τ, z)

F 2,2k(τ, z) = 2
3
A(τ, z)− 1

6
E2

(
τ+k
2

)
B(τ, z)

F 2,2k+1(τ, z) = 1
3
A(τ, z) +

[
5
12
E2(τ)− 1

2
E4(τ)

]
B(τ, z)

and

F̂ 0(τ, z) = 10
3
A(τ, z) + 1

6
E2(τ)B(τ, z) + E4(τ)B(τ, z) ,

F̂ 1(τ, z) = 4
3
A(τ, z) + 1

6
E2(τ)B(τ, z)− 1

2
E4(τ)B(τ, z) , (4.8)

F̂ 2(τ, z) = 2A(τ, z) + 1
2
E2(τ)B(τ, z)− E4(τ)B(τ, z) .

Note that
∑3

r=0 F̂
r(τ, z) = 8A(τ, z) + (E2(τ) − E4(τ))B(τ, z). This appears to

disagree with the observation in David, Jatkar and Sen [32] that the sum should

give the elliptic genus of K3. Their prediction is that
∑3

r=0 F̂
r(τ, z) = 8A(τ, z).

The other terms proportional to B(τ, z) are expected to vanish. However, the
terms are such that the first two Fourier coefficients vanish and do not conflict
with geometrical quantities of K3. So it agrees with their observation in a weaker
sense.

We have been able to show that Φ3(Z) can be written as the square of the
product of three even genus-two theta constants. One has

Φ3(Z) =

(
1

8
θ

[
1
0
0
1

]
(2Z) θ

[
0
1
1
0

]
(2Z) θ

[
1
1
1
1

]
(2Z)

)2

≡
[
∆3/2(Z)

]2
. (4.9)
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This is a known modular form with character of weight three at level four. For
instance, see Aoki-Ibukiyama [29], where this is called f3. Our procedure clearly
provides a Borcherds product formula for it. Further, we will see in a later section
that ∆3/2(Z) as defined above appears as the denominator formula of a Borcherds
Kac-Moody superalgebra, G4, in line with the notation introduced in our earlier
paper [4].

4.2 Product formula for Φ̃3(Z)

The product formula for Φ̃3(Z) is

Φ̃3(Z) = q1/4rs
3∏

a

∏

ℓ,m∈Z,

n∈Z+
a
4

(
1− qnrℓsm

)P3
b=0 ω

−bmc(a,b)(4nm−ℓ2)

(4.10)

where ω = exp(2πı
3
) is a cube root of unity, c(a,b)(4nm − ℓ2) are the Fourier

coefficients of the twisted elliptic genera, F (a,b)(z1, z2).

As in the case of Φ3(Z), Φ̃3(Z) can also be written as the square of the product
of three even genus-two theta constants. By using the modular properties of the
even genus-two theta constants, one obtains

Φ̃3(Z) =

(
1

4
θ

[
0
0
1
1

]
(Z′) θ

[
1
1
0
0

]
(Z′) θ

[
1
1
1
1

]
(Z′)

)2

≡
[
∆̃3/2(Z)

]2
. (4.11)

where Z′ =

(
1
2
z1 z2
z2 2z3

)
. We have defined ∆̃3/2(Z) as the ‘square-root’ of Φ̃3(Z)

– this will turn out to be given by the denominator formula of a Borcherds Kac-
Moody superalgebra as we will discuss next.

4.3 Integrality properties of the modular forms

One can prove that all the exponents that appear in the product formulae for
Φ3(Z) and Φ̃3(Z) are all even integers. One can show that the following expres-
sions

[4A(τ, z)− B(τ, z)] /12 , [E2(τ)− 1]/24 and [E4(τ)− 1]/8

all have integral Fourier coefficients [5, see appendix A]. A straightforward but
tedious computation then shows that all exponents are even integers.

On the sum side, the integrality of coefficients in the Fourier expansion follows
from the integrality properties of the genus-two theta constants.
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5 BKM Lie superalgebras

Having constructed the Siegel modular forms Φ3(Z) and Φ̃3(Z) we use them to
explore the possibility of the existence of an algebraic structure to the 1

4
-BPS

states in the CHL model with a Z4 orbifolding. For prime N of the orbifolding
group ZN , the

1
4
-BPS states have been found to have an underlying BKM Lie

superalgebra sturucture, so it is natural to ask if a similar structure exists for non-
prime N . Cheng and Dabholkar have argued, based on general considerations,
that the Siegel modular forms generating the dyon spectrum for N > 3 will
not have an underlying BKM Lie superalgebra structure [5]. The modular form

Φ̃3(Z), however, has not been constructed before. Hence a direct and explicit
demonstration of the above argument has not been carried out. Having explicitly
constructed the modular form in question, we proceed to show that there is indeed
a BKM Lie superalgebra for both modular forms.

As for the case of prime N , there are two BKM Lie superalgebras associated
to the ‘square roots’ of the two genus-two Siegel modular forms Φ̃3(Z) and Φ3(Z),

denoted by ∆̃3/2(Z) and ∆3/2(Z) respectively. To construct the BKM Lie super-

algebras from the modular forms ∆3/2(Z) and ∆̃3/2(Z) we adopt the procedure
used in [4, 33]. We compare our findings with the observations made by Cheng
and Dabholkar [5] with regards the roots of the BKM Lie superalgebra for N > 3.

5.1 Denominator formulae

The Weyl-Kac-Borcherds (WKB) denominator formula is a special case of the
more general WKB character formula for Lie algebras which gives the characters
of integrable highest weight representations of BKM Lie superalgebras. The
WKB character formula applied to the trivial representation gives the WKB
denominator formula. Let g be a BKM Lie superalgebra and W its Weyl group.
Let L+ denote the set of positive roots of the BKM Lie superalgebra and ρ the
Weyl vector. Then, the WKB denominator identity for the BKM Lie superalgebra
g is ∏

α∈L+

(1− e−α)mult(α) = e−ρ
∑

w∈W

(detw) w(eρ
∑

α∈L+

ǫ(α)eα) , (5.1)

where mult(α) is the multiplicity of a root α ∈ L+. In the above equation, det(w)
is defined to be ±1 depending on whether w is the product of an even or odd
number of reflections and ǫ(α) is defined to be (−1)n if α is the sum of n pairwise
independent, orthogonal imainary simple roots, and 0 otherwise. In the case of
BKM Lie superalgebras the roots appear with graded multiplicity – fermionic
roots appear with negative multiplicity while bosonic roots appear with positive
multiplicity. The reader is referred to [34,35] for a discussion on the denominator
identity for BKM Lie superalgebras in general, and to [4, 33] for a discussion in
relation to the above problem, in particular.
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In the sequel, our strategy will be to use the method of [33] and [4] to construct

the BKM Lie superalgebras whose denominator identities are equal to ∆̃3/2(Z)

and ∆3/2(Z). All the Fourier coefficients of ∆̃3/2(Z) and ∆3/2(Z) are integral as
discussed in Sec. 4.3. Here we briefly recall the steps involved in it. Having
obtained the product representations of ∆̃3/2(Z) and ∆3/2(Z) we interpret these
as the product side (L.H.S.) of the denominator identity (5.1). Comparing with
the above equation, this gives us the set of positive roots α of the BKM Lie
superalgebra together with their multiplicities. All multiplicities in the product
side are integral as the multiplicities in the product formulae are even integers
as discussed in Sec. 4.3. Also, expanding the modular form, we equate the
expansion to the sum side (R.H.S.) of the denominator formula where each term
is thought as coming from the Weyl reflection of a positive root with respect to
an element of the Weyl group of the BKM Lie superalgebra. Thus, interpreting
the modular form as the denominator formula, we can extract the positive roots
and corresponding multiplicities, the set of simple roots, the Weyl group, the
Weyl vector and from the above information, the Cartan matrix of the BKM Lie
superalgebra. This procedure has been discussed in detail in the appendix D of [4]
where the BKM Lie superalgebras that arise from ∆k/2(Z) for CHL orbifolds with

prime N have been derived. We now apply the above procedure to ∆̃3/2(Z) and
∆3/2(Z) below.

5.2 A BKM superalgebra for ∆̃3/2(Z)

Applying the above procedure to the expansion of ∆̃3/2(Z) we identify the fac-
tor q1/8r1/2s1/2 with exp(−πi(ρ(4),Z)). Let (δ1, δ2, δ3) be three root vectors in
hyperbolic space with norm given by the matrix5

A1,II =




2 −2 −2
−2 2 −2
−2 −2 2


 . (5.2)

Using the identification (see appendix D1 in [4])

e−πi(δ1,Z) = qr , e−πi(δ2,Z) = r−1 and e−πi(δ3,Z) = sr .

we see that the Weyl vector ρ(4) = 1
8
δ1+

1
8
δ2+

1
2
δ3. One can verify that ρ is light-

like, i.e., it has zero norm. As discussed in [3, 4, 33], (δ1, δ2, δ3) can be written as
PGL(2,Z) matrices as follows:

δ1 =

(
2 1
1 0

)
, δ2 =

(
0 −1
−1 0

)
, δ3 =

(
0 1
1 2

)
. (5.3)

5Recall that these are the simple real roots associated with the BKM Lie superalgebra whose
denominator formula is ∆5(Z) [33].
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One also has ρ(4) =

(
1/4 1/2
1/2 1

)
in agreement with the general formula given in

ref. [5, see Eq. 5.2].

Expanding ∆̃3/2(Z) to about the first five thousand terms, we find the follow-
ing terms (corresponding to real simple roots) appearing with multiplicity one –
there are infinitely more as we will prove later.

r−1 , qr , rs4 , qr7s12 , q3r17s24 , q3r7s4 , q6r17s12 , q10r31s24 . (5.4)

These eight terms can be represented by the following eight PGL(2,Z) matrices.

α0 ≡
(

0 −1
−1 0

)
, β0 ≡

(
2 1
1 0

)
, β−1 ≡

(
0 1
1 8

)
,

α1 ≡
(
2 7
7 24

)
, β−2 ≡

(
6 17
17 48

)
, α−1 ≡

(
6 7
7 8

)
, (5.5)

β1 ≡
(
12 17
17 24

)
, α−2 ≡

(
20 31
31 48

)
.

Using the definition of the even genus-two theta constants, one can easily prove
the following two identities.

1. Let Z′ =

(
z1 −z2
−z2 z3

)
. Then,

∆̃3/2(Z
′) = −∆̃3/2(Z) . (5.6)

This implies that the modular form is an odd function under r → r−1 as
can be seen easily in the Fourier expansion given in appendix D.

2. ∆̃3/2(Z) is invariant under the exchange z1 ↔ 4z3. This implies that the
modular form is an odd function under the exchange q ↔ s4 as can be seen
easily in the Fourier expansion given in appendix D.

We will now see if these results are compatible with expectations based on
the walls of marginal stability for the Z4-orbifold.

5.2.1 Walls of marginal stability

Sen has analyzed the walls of marginal stability in the axion-dilaton plane (mod-
elled by the upper-half plane with coordinate λ) by studying the decay of torsion
one 1

4
-BPS states into a pair of 1

2
-BPS states [6](see also [36,37]). We quote some

of his results that are relevant for our considerations. Consider the following
decay of a torsion one 1

4
-BPS dyon into two 1

2
-BPS dyons

(
qe

qm

)
−→

(
ad qe − bd qm

ca qe − cb qm

)
⊕

(
−bc qe + bd qm

−ac qe + ad qm

)
, (5.7)

where the kinematics of the decay imply that the integers a, b, c, d are such that [6]
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1. ad− bc = 1.

2. The equivalence relation (a, b, c, d) ∼ (aσ−1, bσ−1, cσ, dσ) with σ 6= 0.

3. Exchanging the two decay products implies the equivalence under:

(a, b, c, d)→ (c, d,−a,−b).

4. Charge quantization requires ad, bd, bc ∈ Z and ac ∈ NZ.

One can show that by suitable use of the equivalences given above, one can always

choose

(
a b
c d

)
∈ Γ1(N) for N = 2, 3, 4.

This decay occurs across real codimension one walls in the upper-half plane –
the 1

4
-BPS state decays into two 1

2
-BPS states as one moves across the wall. In the

upper-half plane, these walls are circular arcs determined by the equation [6, 36]

[
Re(λ)− ad+bc

2ac

]2
+
[
Im(λ) + E

2ac

]2
= 1+E2

4a2c2
, (5.8)

where E is a real function of all other moduliM . It is easy to see the arcs intersect
the real λ axis at the points b

a
and d

c
for any E . When E = 0, the arcs are semi-

circles centred on the real λ-axis with radius 1
2ac

. When E 6= 0, the center of the
circle moves into the interior of the upper half plane with radius also increasing
– all this with the intercepts on the real axis remaining unchanged.When either
a = 0 or c = 0, the circles become straight lines perpendicular to the real axis
for E = 0 and making a suitable angle for E 6= 0. For simplicity, we restrict the
discussion in the sequel to the case when E = 0 – as the sole effect on non-zero E
is to ‘deform’ the semi-circles into circular arcs.

A fundamental domain is constructed by first restricting the value of Re(λ)
to the interval [0, 1]. The straight lines Re(λ) = 0, 1 correspond to two walls of
marginal stability. Next, one looks for the largest semi-circle with one end at
λ = 0 on the real axis that is compatible with the quantization of charges. This
semi-circle intersects the real axis at some point in the interval [0, 1] – this turns
out to be at 1/N . The procedure is then (recursively) repeated by looking for
another semi-circle with one end at 1/N till one hits the mid-way point 1/2. A
similar procedure is done starting with the largest semi-circle with one end on
the point λ = 1 on the real axis. One obtains the following set of points for
N = 1, 2, 3:

(0
1
, 1
1
) , (0

1
, 1
2
, 1
1
) , (0

1
, 1
3
, 1
2
, 2
3
, 1
1
) . (5.9)

A fundamental domain is then given by restricting to the region bounded by these
semi-circles and the two walls connecting λ = 0, 1 to infinity. The two straight
lines may be included by adding the ‘points’ −1

0
and 1

0
. The fundamental domains

are given in Figure 1.
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N=1

0 1/3 1/2 2/3 1

N=2

N=3

Figure 1: Fundamental domains/Weyl chamber for N = 1, 2, 3

For N > 3, this picture does not terminate – one needs an infinite number of
semi-circles to obtain a closed domain. For N = 4, we find the following sequence
on (using Sen’s method)

(0
1
, 1
4
, 1
3
, 3
8
, 2
5
, . . . , −2n+1

−4n
, −n
−2n−1

, . . . , 1
2
, . . . , n+1

2n+1
, 2n+1

4n
. . . , 3

5
, 5
8
, 2
3
, 3
4
, 1
1
) . (5.10)

Let αn denote the semi-circle with intercepts
(
2n−1
4n

, n
2n+1

)
and βn the semi-circle

with intercepts
(

n+1
2n+1

, 2n+1
4n

)
for all n ∈ Z. Note that α0 and β0 represent the two

straight lines at Re(λ) = 0, 1 respectively. The fundamental domain correspond-
ing to the above sequence is depicted in Figure 2. It may be thought of as a
regular polygon with infinite edges with the infinite dimensional dihedral group,
D∞ = Z ⋊ Z2, as its symmetry group. D

(1)
∞ is generated by two generators: a

reflection y and a shift γ given by:

y : αn → α−n , βn → β−n−1 and γ : αn → αn+1 , βn → βn−1 , (5.11)

satisfying the relations y2 = 1 and y · γ · y = γ−1. There is a second Z2 generated
by δ defined as follows:

δ : αn ←→ βn . (5.12)

The transformations (γ, δ) generate another dihedral group that we denote by

D
(2)
∞ .

5.2.2 Walls of a Weyl chamber

We have just seen that the fundamental domain for the Z4-orbifold in the λ-plane
was bounded by an infinite number of edges. (Cheng and Verlinde [3] and Cheng
and Dabholkar [5] have shown the for N = 1, 2, 3, this fundamental domain is
the Weyl chamber of a family of rank-three BKM Lie superalgebras.) Each wall
(edge) of the fundamental domain is identified with a real simple root of the BKM
Lie superalgebra. Recall that each wall corresponds to a pair of rational numbers
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Weyl chamber for

1 β1

β−1 α −1

β0
α 0

0 1/3 1/2 2/3 11/4 3/4
3/8 5/8

N = 4

α

Figure 2: The fundamental domain/Weyl chamber for N = 4 is bounded by an
infinite number of semi-circles as the BKM Lie superalgebra has infinite number
of real simple roots. Each of the semi-circles indicated represent real simple roots
that appear with multiplicity one in the sum side of the denominator formula.
Note that the diameter of the semi-circles are reducing as one gets closer to 1

2
.

The point 1
2
is approached as a limit point of the infinite sequence of semi-circles.

( b
a
, d
c
). This is related to a real simple root α of the BKM Lie superalgebra as

follows:

( b
a
, d
c
)↔

(
a b
c d

)
↔ α =

(
2bd ad+ bc

ad+ bc 2ac

)
, (5.13)

with ac ∈ NZ and ad, bc, bd ∈ Z. The norm of the root is [3]

−2 det(α) = 2(ad− bc)2 = 2 .

The Cartan matrix, A(N), is generated by the matrix of inner products among all
real simple roots. For instance, A(1) = A1,II defined in Eq. (5.3).

The ‘square root’ of the modular form Φ̃k(Z) that generates dyon degenera-

cies, ∆̃k/2(Z), is related to the Weyl-Kac-Borcherds denominator formula via its
additive and multiplicative lifts. Finally, the extended S-duality group is given
by6

W(A(N))⋊DN , (5.14)

where W(A(N)) is the group generated by Weyl reflections of all the real simple
roots7 and DN is the dihedral group that is the symmetry group of the polygon
corresponding to the Weyl chamber.

6The extended S-duality group is defined by including a Z2 parity operation to the S-duality
group Γ1(N). For N = 1, this is the group PGL(2,Z) [3].

7This is equivalent to the Coxeter group generated by the Cartan matrix A(N).
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As we will now show, the correspondence goes through for N = 4 even though
the number of real simple roots is infinite. Ordering the real simple roots into an
infinite-dimensional vector

X = (. . . , x−2, x−1, x0, x1, x2, x3, . . .) = (. . . , α1, β−1, α0, β0, α−1, β1, . . .) .

Equivalently, let

xm =

{
α−m/2 , m ∈ 2Z
β(m−1)/2 , m ∈ 2Z+ 1 .

(5.15)

The Cartan matrix is given by the matrix of inner products amn ≡ 〈xn, xm〉 and
is given by the infinite-dimensional matrix:

A(4) = (anm) where anm = 2− 4(n−m)2 , (5.16)

with m,n ∈ Z. It is easy to show that the following family of vectors are eigen-
vectors of the Cartan matrix with zero eigenvalue.




...
1
−3
3
−1
...




, (5.17)

with the vertical dots (
...) indicating a semi-infinite sequence of zeros. One can

show that A(4) has rank three. The Weyl vector ρ(4) satisfies

〈ρ(4), xm〉 = −1 , ∀m . (5.18)

D
(2)
∞ -invariance of ∆̃3/2(Z)

It remains to be proven that ∆̃3/2(Z) gives rise to the denominator identity for
this BKM Lie superalgebra. The analysis of the sum side of the expansion has
given eight real simple roots (to the order we checked) that we listed in Eq.
(5.5) which all belong to the set X of real simple roots.We will now show that it
contains all the real simple roots that one expects from the study of the walls of
marginal stability. The D

(2)
∞ -generators γ and δ act on the roots xm written as a

2× 2 matrix as follows:

γ : xm −→
(
1 −1
4 −3

)
· xm ·

(
1 −1
4 −3

)T

, (5.19)

δ : xm −→
(
−1 1
0 1

)
· xm ·

(
−1 1
0 1

)T

. (5.20)
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The matrix γ is denoted by γ(4) in [5]. In appendix C.1, we showed the invariance

of the square of ∆̃3/2(Z) under the symmetry generated by the embedding of γ
and δ into G0(4) ∈ Sp(2,Z). This implies that under the action of γ and δ,

∆̃3/2(Z)→ ± ∆̃3/2(Z) .

One can show that the sign must be +1 by observing that any pair of terms
in the Fourier expansion of ∆̃3/2(Z) related by the action of γ (δ resp.) appear
with the same Fourier coefficient. For instance, the terms associated with the
two simple roots α0 and β0 related by the action of δ appear with coefficient +1.
Similarly, the terms associated with the real simple roots β0 and β−1 related by
a γ-translation also appear with coefficient +1. Thus, we see that ∆̃3/2(Z) is

invariant under the full dihedral group D
(2)
∞ . This provides an all-orders proof

that the infinite number of real simple roots given by the vector X all appear in
the Fourier expansion of ∆̃3/2(Z).

The q → s4 symmetry of the modular form is equivalent to the symmetry
generated by the dihedral generator, y, as defined in Eq. (5.11).

Weyl transformation of ∆̃3/2(Z)

The transformation r → r−1 is the Weyl reflection about the root α0 and as dis-
cussed earlier (see Eq. (5.6)), the modular form is odd under the Weyl reflection.
One has

wα0 · Z =

(
1 0
0 −1

)T

· Z ·
(
1 0
0 −1

)
. (5.21)

The reflection due to any other elementary Weyl reflection will also have the same
sign. We repeat an argument from the appendix A of [5] to show this. First, the

reflection due to α0 is represented by the matrix w0 ≡
(
1 0
0 −1

)
. The action on

Z is equivalent to Sp(2,Z) action by the matrix [33]

M =

(
(w−1

0 )T 0
0 w0

)
,

The minus sign due to the Weyl reflection implies that the character, v(M), asso-

ciated with the modular form ∆̃3/2(Z) is such that v(M) = −1. Next, any other
elementary Weyl reflection, w, must be conjugate to w0 – this is a consequence of
the dihedral symmetry, D

(2)
∞ . Hence, one has w = s · w0 · s−1 for some invertible

matrix s. It follows that the character associated with the Weyl reflection w is the
same as that for w0. In others, ∆̃3/2(Z) is odd under all elementary reflections.
Hence one has

∆̃3/2(w · Z) = det(w) ∆̃3/2(Z) . (5.22)

25



We thus see that the extended S-duality group for N = 4 is given by8

W(A(4))⋊D(2)
∞ , (5.23)

whereW(A(4)) is the Coxeter group generated by the reflections by all real simple

roots xm and D
(2)
∞ is the infinite dimensional dihedral group generated by γ and

δ.

5.3 A BKM superalgebra for ∆3/2(Z)

Starting from the product expansion for ∆3/2(Z) we now apply the same proce-
dure to find the BKM Lie superalgebra associated to it. From the expansion, we
identify the common factor q1/2r1/2s1/2 with exp(−πi(ρ, z)) and thus, as before
for the case of prime N , the Weyl vector ρ does not change upon orbifolding
for the BKM Lie superalgebras coming from the ∆k/2(Z). We also observe that
the three real simple roots remain unchanged as before [4]. The imaginary roots
remain unchanged as well, but their multiplicities are changed by the orbifolding.
For ∆k/2(Z) = (Φk(Z))

1/2 for prime N , we recall that the BKM Lie superalge-
bras GN were all given by the same Cartan matrix, A1,II (given in Eq. (5.2)) and
had the same set of real simple roots, Weyl group, Weyl vector, and imaginary
roots. The orbifolding only changed the multiplicities of the imaginary roots for
different values of N . We see that the same pattern continues to hold for the
BKM Lie superalgebra even when N is non-prime for ∆3/2(Z).

5.4 Physical interpretation of the superalgebras ∆k/2(Z)

We have seen that the BKM Lie superalgebas associated with the modular forms
∆k/2(Z) that appear for N = 1, 2, . . . , 5 all have the same walls of marginal
stability but differ in the multiplicities of the imaginary simple roots. Since
the appearance of an earlier version of this paper, Sen has shown that the Siegel
modular forms associated with a twisted helicity trace index are indeed the square
of the modular forms ∆k/2(Z) – these compute the degeneracies of a sub-sector
of dyons in heterotic string theory on T 6 [10]. The S-duality group and the walls
of marginal stability for dyons in this sub-sector remain unchanged. Thus, it
appears that the BKM Lie superalgebras GN play the role of G1 that appears for
the untwisted trace9. It is easy to see that the counting of 1

2
-BPS dyons in this

sub-sector are also captured by the same multiplicative η-products that appear
in the ZN orbifold.

8The generator y is not realized as an element of a level 4 subgroup of PGL(2,Z) and
thus is not an element of the extended S-duality group. This is similar to what happens for
N = 2, 3 [5]. We thank M. Cheng and A. Dabholkar for useful email correspondence.

9We thank Atish Dabholkar for drawing our attention to the possibility of this interpretation.
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5.5 Observations

We have seen that the BKM Lie superalgebra for ∆3/2(Z) exists and exhibits the
pattern in properties observed for the series GN and the BKM Lie superalgebra
interpretation for the modular form ∆̃3/2(Z) does appear to fit the denomina-
tor formula for a BKM Lie superalgebra. This algebra does not make the list
of rank-three Lorentzian Kac-Moody algebras of Gritsenko and Nikulin [38](see
also [39,40]) as it violates a finiteness condition (on the volume of the Weyl cham-

ber) imposed by them. A closely related issue is that ∆̃3/2(Z) is a meromorphic
modular form [2]. Nevertheless, we claim that there is indeed a BKM Lie su-
peralgebra with infinitely many real simple roots (i.e., it is of parabolic type).
Indeed, such an example has been already considered in [40] where a BKM Lie
superalgebra has been associated with a single genus-two theta constant. As we
discuss in the sequel, this example is associated with the one of the two distinct
product orbifolds Z4 × Z4.

6 Generalizations

6.1 Product Groups

The multiplicative η-products listed in Table 1 provide us with the generating
function of 1

2
-BPS states for all type II orbifolds of K3×T 2 that involve product

groups Zn×Zm acting as Nikulin involutions on K3 and shifts of order n and m
on the two circles that form the T 2. For instance, the Z4 × Z4-orbifold has cycle
shape 46 and hence the corresponding η-product is η(4τ)6.

However, we need to obtain the seed for the additive lift. As the shift now
acts on both the circles, it is not straightforward to extend the microscopic com-
putation of David-Sen using the 4d-5d lift [11, 18]. Recall that in this approach,

the spatial R3 and S̃1 was replaced by the Taub-NUT geometry with NUT charge
1. The natural replacement for the situation where the S̃1 has a shift of order
m (in the type IIB picture) is to choose Taub-NUT geometry with NUT charge

m [18, 41]. Then, near r = ∞ the geometry is that of R3 × S̃1/Zm where the
orbifold action acts as a shift of order m. This is the 4d geometry. Near r = 0,
the geometry is of the form R

4/Zm, this is the 5d-geometry. When n 6= m, it
appears that there are two different D1-D5 configurations where the roles of the
Zn and Zm groups are interchanged.

In this setup, the other contribution to the additive seed arises from the center
of mass motion of the D1-D5 branes in Taub-NUT space with NUT charge m.
In the small r limit, the Taub-NUT geometry reduces to C2/Zm. Combining
it with the corresponding Zm action on the K3, we see that the singularity is
locally R8/Zm. For the values of m that occur, the singularity is terminal [42,43]
and there are no massless modes in the twisted sectors [43–46]. Thus, the index

27



gets contributions only from the untwisted sector and hence the center of mass
contribution is independent of the NUT charge. Thus in the type IIB frame, the
additive seed is given by

ϑ1(nτ, z)
2

η(nτ)6
× gρ(τ) . (6.1)

Thus, the additive seed for the Z2×Z2 orbifold is given the following Jacobi form

φ4,1(τ, z) = ϑ1(2τ, z)
2 × η(2τ)6 . (6.2)

We need to follow the chain of dualities to go to the heterotic frame. However,
in the heterotic frame, the shift (of order m) is not a momentum shift but a
winding shift. Thus, there are two distinct orbifolds, one corresponding to a
momentum shift in the type IIB frame (the one we just considered) and the one
corresponding to a momentum shift in the heterotic frame. The corresponding
threshold computation has been carried out by Banerjee, Jatkar and Sen [47] for
the Z2 × Z2-orbifold and the modular form is given by10

Φ4(Z) =
∆3(Z)

3

∆5(Z)
, (6.3)

where ∆5(Z) and ∆3(Z) are the square roots of the modular forms appearing in
the N = 1, 2 models. This modular form can be obtained as the additive lift of
the Jacobi form

φ̂4,1(τ, z) =
ϑ1(τ, z)

2

η(τ)6
× η(2τ)12 . (6.4)

We conjecture that the Jacobi form for additive lift for the Zn × Zm-orbifolds in
the heterotic frame is given by

φ̂k,1(τ, z) =
ϑ1(τ, z)

2

η(τ)6
× gρ(τ) , (6.5)

where the weight k and cycle shape ρ are as given in Table 1.

6.1.1 A classical formula

The additive seed for the Z4 × Z4-orbifold in the type IIB frame is given by

φ1,1(τ, z) = ϑ1(4τ, z)
2 . (6.6)

Note that the η-functions have cancelled out! Let us denote by Φ1(Z) the genus-
two modular form at level 4 given by the additive lift. One can show that it can
be written as the square of a single even genus-two theta constant.

Φ1(Z) =

(
1

2
θ

[
1
1
1
1

]
(Z′)

)2

≡
[
∆1/2(Z)

]2
, (6.7)

10We thank Dileep Jatkar for discussions regarding this work and help in sorting out some
confusing aspects.
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where Z′ =

(
4z1 2z2
2z2 4z3

)
. This lift has been studied by Gritsenko and Nikulin

who also have provided a Borcherds type product formula [40]. Consider the
weak Jacobi form

2
ϑ1(τ, 3z)

ϑ1(τ, z)
=

∑

n,ℓ

b(n, ℓ) qnrℓ . (6.8)

Then,

Φ1(Z) = qrs
∏

(n,ℓ,m)>0

(1− q4nrℓs4m)b(nm,ℓ) . (6.9)

The square root of this modular form is given by a single even genus-two theta
constant11. This is shown to be the denominator formula for a BKM superalgebra
of parabolic type. This superalgebra appears to be the analog of the affine KM
algebra whose denominator formula is given by a single genus-one theta constant.
In fact, we conjecture that the three genus-two modular forms labelled ∆k (k =
2, 1, 1/2) considered in [40] are the ‘square-roots’ of the generating function of
dyonic states in the Zn × Zn models (in the type IIB frame) with N = 2, 3, 4
respectively. Further, it appears that BKM superalgebras associated with these
models have the same Cartan matrix, A(n), as the corresponding Zn model. We
will discuss this further in a future publication [48].

6.2 η-quotients and type II models

There exist other N = 4 supersymmetric four-dimensional theories that can be
obtained as ZN -orbifolds of the type II string compactified on T 6. David, Jatkar
and Sen have constructed genus-two modular forms that play a role similar to
the ones considered for CHL orbifolds [32]. However, there are a few differences.
Electrically charged 1

2
-BPS states in this theory are counted by considering states

of the superstring instead of the heterotic string. Unlike the case of CHL orbifolds,
where the index truly counted all states as there were no ‘fermionic’ excitations
for the bosonic sector of the heterotic string, the index only counts the difference
between the ‘fermionic’ and ‘bosonic’ excitations. Further, there is no string tree
level R2 correction in type II models.12

The modular forms constructed by David, Jatkar and Sen in ref. [32] were
for the Z2 and Z3-orbifolds and were generated by the additive lift of the Jacobi
form

ϑ1(τ, z)
2

η(τ)6
× gρ(τ) , (6.10)

11Gritsenko and Nikulin call this theta constant the most ‘odd’ of the ten even genus-two
theta constants [40].

12It is interesting to note that the modular form that counts 1
8 -BPS dyons in the type II

string compactified on T 6 is given by the additive lift of the Jacobi form given above with
gρ(τ) = 1 [49].
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where gρ(τ) is the quotient of products of η-functions which we call η-quotients.
Like the CHL orbifolds, these quotients are associated with frame shapes [27,28].
A frame shape is a generalization of cycle shape where negative exponents are
permitted. For instance, the frame shape ρ = 1162−8 is associated with the
N = 2 orbifold. Similarly, the N = 3 orbifold is associated with the frame shape
ρ = 193−3.

It can be shown that the genus-two modular forms that appear in the type II
examples can be written in terms of the CHL genus-two modular forms. Further,
the work of Martin [28] on multiplicative η-quotients enables us to extend the
results for N = 2, 3 to include the other possibilities. This will be discussed in a
forthcoming paper [50].

7 Conclusion

In this paper, we have completed the construction of the genus-two modular
forms that count dyons in all ZN -orbifolds as well as given candidates for orb-
ifolds involving product groups. These modular forms satisfy all the required
consistency conditions. Given the additive and product formulae for the modular
forms, we then proceeded to study the associated BKM Lie superalgebras whose
Weyl-Kac-Borcherds denominator identity gives rise to the square-root of the
modular forms. In particular, for the Z4 CHL orbifold, we have seen that there
are two inequivalent BKM Lie superalgebras associated with the two modular
forms ∆3/2(Z) and ∆̃3/2(Z). Both these algebras satisfy the expectations from
the considerations in earlier work [4, 5].

Acknowledgments: We would like to thank H. Aoki, A. Dabholkar, S. Gun,
D. Jatkar, Y. Martin and P.K. Tripathy for useful discussions. We are grateful
to Purusottam Rath for directing us to the paper by Dummit et. al. KGK
would like to thank S. Kalyana Rama and T.R. Govindarajan for their constant
support. SG would like to thank the organizers of the Kanha String Meeting held
in February 2009 for the opportunity to present some of these results.

A Theta functions

A.1 Genus-one theta functions

The genus-one theta functions are defined by

θ
[a
b

]
(z1, z2) =

∑

l∈Z

q
1
2
(l+ a

2
)2 r(l+

a
2
) eiπlb , (A.1)
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where a.b ∈ (0, 1) mod 2 and q = exp(2πiz1) and r = exp(2πiz2). One has
ϑ1 (z1, z2) ≡ θ

[
1
1

]
(z1, z2), ϑ2 (z1, z2) ≡ θ

[
1
0

]
(z1, z2), ϑ3 (z1, z2) ≡ θ

[
0
0

]
(z1, z2)

and ϑ4 (z1, z2) ≡ θ
[
0
1

]
(z1, z2).

The transformations of ϑ1(τ, z) under modular transformations is given by

T : ϑ1(τ + 1, z) = eiπ/4 ϑ1(τ, z) ,

S : ϑ1(−1/τ,−z/τ) = − 1

q1/2r
eπiz

2/τ ϑ1(τ, z) . (A.2)

with q = exp(2πiτ) and r = exp(2πiz).

A.2 Genus-two theta constants

We define the genus-two theta constants as follows [33]:

θ
[a
b

]
(Z) =

∑

(l1,l2)∈Z2

q
1
2
(l1+

a1
2
)2 r(l1+

a1
2
)(l2+

a2
2
) s

1
2
(l2+

a2
2
)2 eiπ(l1b1+l2b2) , (A.3)

where a =

(
a1
a2

)
, b =

(
b1
b2

)
, and Z =

(
z1 z2
z2 z3

)
∈ H2. Further, we have defined

q = exp(2πiz1), r = exp(2πiz2) and s = exp(2πiz3). The constants (a1, a2, b1, b2)
take values (0, 1). Thus there are sixteen genus-two theta constants. The even
theta constants are those for which aTb = 0 mod 2. There are ten such theta
constants for which we list the values of a and b:

m 0 1 2 3 4 5 6 7 8 9(
a

b

) (
0
0
0
0

) (
0
1
0
0

) (
1
0
0
0

) (
1
1
0
0

) (
0
0
0
1

) (
1
0
0
1

) (
0
0
1
0

) (
0
1
1
0

) (
0
0
1
1

) (
1
1
1
1

)

We will refer to the above ten theta constants as θm(Z) with m = 0, 1, . . . , 9
representing the ten values of a and b as defined in the above table. Note that
six of the even theta constants with a 6= 0 have even Fourier coefficients while
the remaining four theta constants with a = 0 have integral Fourier coefficients.

The modular functions ∆5(Z) and ∆3(Z) can be written out in terms of the
even theta constants [33, 51]. One finds

∆5(Z) =
1

64

9∏

m=0

θm(Z) , (A.4)

∆3(Z) =
1

64
θ2(Z)

∏

m=1 mod 2

θm(Z) . (A.5)

Let us define ∆̃3(Z) to be the square-root of Φ̃6(Z).

∆̃3(Z) =
1

16
θ1(Z) θ3(Z) θ6(Z) θ7(Z) θ8(Z) θ9(Z) , (A.6)
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squares to given Φ̃6(Z).
Let us denote the square-root of the modular forms, that appear in the Z4

CHL orbifold, Φ3(Z) and Φ̃3(Z) by ∆3/2(Z) and ∆̃3/2(Z) respectively. They can
be written in terms of genus-two theta constants. One has

∆3/2(Z) =
1

8
θ5(2Z) θ7(2Z) θ9(2Z) , (A.7)

∆̃3/2(Z) =
1

4
θ3(Z

′) θ8(Z
′) θ9(Z

′) , (A.8)

where Z′ =

(
1
2
z1 z2
z2 2z3

)
. Both these modular forms have integral Fourier coeffi-

cients as follows from the Fourier coefficients of the theta constants.

A.3 Notation

Let F (τ, z) be a Jacobi form of weight k and index m. Under a modular trans-
formation, γ ∈ SL(2,Z), we define

F (τ, z)
∣∣
γ
≡ exp(−2πı cmz2

cτ+d
) (cτ + d)−k F (γ · τ, γ · z) , (A.9)

where γ · τ = aτ+b
cτ+d

and γ · z = z
cτ+d

for γ = ( a b
c d ). This definition is valid even

when we are interested in modular forms of congruence subgroups of SL(2,Z).
In such cases, those elements of SL(2,Z) that are not in the subgroup of interest
will lead to modular forms of some other subgroup that is related to the original
subgroup via conjugation.

A.4 Eisenstein series at level N

A.4.1 Prime N

Let E∗
2(τ) denote the weight two non-holomorphic modular form of SL(2,Z). It

is given by

E∗
2(τ) = 1− 24

∞∑

n=1

σ1(n) q
n − 3

π Imτ
, (A.10)

where σℓ(n) =
∑

1≤d|n d
ℓ. The combination13

EN(τ) =
1

N − 1

(
NE∗

2(Nτ)− E∗
2(τ)

)
= 12i

π(N−1)
∂τ
[
ln η(τ)− ln η(Nτ)

]
(A.11)

is a weight two holomorphic modular form of Γ0(N) with constant coefficient
equal to 1 [52, Theorem 5.8]. Note the cancellation of the non-holomorphic pieces.

13We caution the reader that the subscript N denotes the level and not the weight of the
Eisenstein series. All Eisenstein series considered in this paper are of weight two.
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Thus, at level N > 1, the Eisenstein series produces a weight two modular form.
For example14,

E2(τ) = 1 + 24q + 24q2 + 96q3 + 24q4 + 144q5 + 96q6 + · · · (A.12)

is the weight-two Eisenstein series at level 2. At levels 3 and 5, one has

E3(τ) = 1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + 36q6 + · · ·
E5(τ) = 1 + 6q + 18q2 + 24q3 + 42q4 + 6q5 + 72q6 + · · · (A.13)

A.4.2 Composite N

Suppose M |N , then one has Γ0(N) ⊂ Γ0(M). Thus, for composite N , the Eisen-
stein series at level M is also a modular form at level N . For instance at level
four, one has two Eisenstein series: E2(τ) and

E4(τ) = 1 + 8q + 24q2 + 32q3 + 24q4 + 48q5 + · · · (A.14)

At level six, one has three Eisenstein series: E2(τ), E3(τ) and

Ê6(τ) = 5/24 + q + 3q2 + 4q3 + 7q4 + 6q5 + · · · (A.15)

At level eight, one has three Eisenstein series: E2(τ), E4(τ) and

Ê8(τ) = 7/24 + q + 3q2 + 4q3 + 7q4 + 6q5 + · · · (A.16)

ÊN(τ) refer to Eisenstein series normalized such that the coefficient of q is +1. It
is known that all Eisenstein series in this normalization have integral coefficients
except for the constant term [52].

A.5 Fourier transform about the cusp at 0

The modular transformation, S, under which τ → −1/τ maps the cusp at 0 to
the cusp at i∞. When N is prime, Γ0(N) has only these two cusps. One may wish
to obtain the Fourier expansion about the cusp at 0 – this is done by mapping 0
to i∞ using the S transform. To obtain the transform of the Eisenstein series,
first consider

E∗
2(Nτ)

∣∣
S
= (τ)−2 E∗

2(NS · τ)

= (τ)−2 E∗
2(−N/τ) = (τ)−2(τ/N)2E∗

2(τ/N) =
1

N2
E∗

2

(
τ
N

)
. (A.17)

14All expansions for the Eisenstein series given here have been obtained using the mathematics
software SAGE [53]. We are grateful to the authors of SAGE for making their software freely
available. It was easy for us to verify Eq. (A.19) using SAGE to the desired order.
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Using this result, it is easy to see that

EN(τ)
∣∣
S
= − 1

N
EN

(
τ
N

)
. (A.18)

Note that τ = 0 in the LHS corresponds to τ = i∞ in the RHS of the above
equation. Thus, given the Fourier expansion at i∞, we can obtain the Fourier
expansion about 0. Notice the appearance of fractional powers of q, q1/N to be
precise, at this cusp. This is expected as the width of the cusp at 0 is N . Also,
note that the above formula is valid for all N , not necessarily prime.

Another useful addition formula for the Eisenstein series is the following:

E4(τ) + E4(τ +
1
2
) = 2 E2(2τ) . (A.19)

This formula was experimentally obtained by us and its veracity has been checked
to around twenty orders in the Fourier expansion.

A.6 Fourier transform about other cusps

The same method can be used to obtain the expansion about other cusps. Again
we will need to map the cusp to i∞ and then track the transformation of the
non-holomorphic Eisenstein series. Let us do a specific example that is of interest
in this paper. Let N = 4 and consider the cusp at 1/2. γ =

(
1 −1
2 −1

)
maps 1/2 to

i∞.

E4(τ)
∣∣
ST 2S

= −1
4
E4(

τ
4
)
∣∣
ST 2 = −

1

4
E4(

τ
4
+ 1

2
)
∣∣
S

= −1
4

(
2E2(

τ
2
)
∣∣
S
−E4(

τ
4
)
∣∣
S

)
= (E2(τ)−E4(τ)) (A.20)

In the penultimate step, we made use of Eq. (A.19) in order to write E4(
τ
4
+ 1

2
) in

terms of objects with known S-transformations. The final answer is in terms of
Eisenstein series whose Fourier coefficients are known thus giving us the expansion
of E4(τ) about the cusp at 1/2.

For the CHL models with N = 6 and N = 8, it appears that there are no
standard methods to determined the Fourier expansion of E6(τ) and E8(τ) about
all the cusps – this is a minor technical hurdle that needs to be surmounted to
complete the computation of the twisted elliptic genus in the corresponding CHL
models. It would be helpful if one can obtain identities similar to the one given
in Eq. (A.19).

B The twisted elliptic genus

First, let us define the twisted elliptic genus for a ZN -orbifold of K3:

F r,s(τ, z) = 1
N
TrRR,gr

(
(−)FL+FRgsqL0 q̄L̄0e2πızFL

)
, 0 ≤ r, s ≤ (N − 1) , (B.1)
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where g generates ZN and q = exp(2πıτ). We will figure out the F r,s(τ, z) by use
of their transformation properties under the modular group. We shall do them
in several steps. Let γ = ( a b

c d ) ∈ SL(2,Z). Then, one has

F r,s(τ, z)
∣∣∣
γ
= F ar+cs,br+ds(τ, z) . (B.2)

In particular, under T : τ → τ + 1 and S : τ → −1/τ , one has

F 0,s(τ, z)
∣∣∣
T
= F 0,s(τ, z) , F 0,s(τ, z)

∣∣∣
S
= F s,0(τ, z) . (B.3)

More generally, the F r,s(τ, z) are weak Jacobi forms of weight zero and index one
at level N .

Step 1: Forming T-orbits

In step 1, we study the action of T on the F r,s(τ, z) and break them up into
orbits.

• We have already seen that F 0,s(τ, z) are T -invariant i.e., they form orbits
of length one.

• When gcd(r,N) = 1, all the F r,s(τ, z) form a single orbit of length N (under
repeated action of T ).

• When gcd(r,N) = m, then the F r,s(τ, z) break up into m distinct orbits of
length N/m.

We will use these results to impose constraints on the form of the F r,s(τ, z).

Step 2: Ansatz for F 0,s(τ, z)

Claim: It suffices to work out F 0,s(τ, z) and the other F r,s(τ, z) can be obtained
by the action of suitable SL(2,Z) operations.

In step 2, we write out the most general F 0,s(τ, z). Using proposition 6.1
of [29] for weak Jacobi forms of ΓJ

0 (N), F 0,s(τ, z) can be written as follows:

F 0,0(τ, z) = 2
N
A(τ, z) , (B.4)

F 0,s(τ, z) = a A(τ, z) + αN(τ) B(τ, z) , s 6= 0 , (B.5)

where αN(τ) is a weight-two modular form of Γ0(N) and

A(z1, z2) =

4∑

i=2

(
ϑi(z1, z2)

ϑi(z1, 0)

)2

, B(z1, z2) =

(
ϑ1(z1, z2)

η3(z1)

)2

. (B.6)
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When N is composite, the dimension of modular forms at weight two is greater
than one. We list the possibilities for N = 4, 6, 8.

α4(τ) = b1 E2(τ) + b2 E4(τ) , (B.7)

α6(τ) = b1 E2(τ) + b2 E3(τ) + b3 E6(τ) , (B.8)

α8(τ) = b1 E2(τ) + b2 E4(τ) + b3 E8(τ) , (B.9)

where EN(τ) is the Eisenstein series of weight-two and level N :

EN (τ) =
12i

π(N−1)
∂τ
[
ln η(τ)− ln η(Nτ)

]
,

normalized so that its constant coefficient is one.

Step 3: Imposing constraints from sizes of T-orbits

In step 3, we study the S transformation on our ansatz for F 0,s(τ, z) and then
follow its transformation under powers of T and make the ansatz for αN(τ) com-
patible with its orbit size.

• When (s,N) = 1, there are no obvious constraints.

• When (s,N) = m > 1, then there will be constraints.

– When N = 4 and s = 2, then b2 = 0 as we need to have an orbit of
size two.

– When N = 6 and s = 2, 4, then b1 = b3 = 0 so that it is consistent
with an orbit size of three.

– When N = 6 and s = 3, then b2 = b3 = 0 so that it is consistent with
an orbit size of two.

– When N = 8 and s = 2, 6, then b3 = 0 so that it is consistent with an
orbit size of four.

– When N = 8 and s = 4, then b2 = b3 = 0 so that it is consistent with
an orbit size of two.

Further simplification occurs when we consider the symmetry, F r,s(τ, z) = F−r,−s(τ, z).
It implies that we have the equivalence F 0,s(τ, z) = F 0,N−s(τ, z).

• For N = 4, we need to only work out F 0,0(τ, z), F 0,1(τ, z) and F 0,2(τ, z).

• For N = 6, we need to only work out F 0,0(τ, z), F 0,1(τ, z), F 0,2(τ, z) and
F 0,3(τ, z).

• For N = 8, we need to only work out F 0,0(τ, z), F 0,1(τ, z), F 0,2(τ, z),
F 0,3(τ, z) and F 0,4(τ, z).
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Step 4: Using topological data

In the next step, we fix the undetermined constants by studying the conditions
on the Fourier coefficients, c0,sb (−1) and c0,sb (0) of F 0,s(τ, z). As shown by David,
Jatkar and Sen [32], these two sets of numbers are related to topological objects
on K3 and hence can be determined by studying the action of the group on
H∗(K3,Z). Let Q0,s be the number of gs-invariant elements of H∗(K3,Z) (where
g generates ZN). David, Jatkar and Sen show that (see Eq. (4.2) for the definition
of ca,bm )

Q0,s = Nc0,s0 (0) + 2Nc0,s1 (−1) . (B.10)

FurtherNc0,s1 (−1) counts the number of gs-invariant (0, 0) and (0, 2) forms onK3.
For symplectic involutions, these forms are invariant and hence Nc0,s1 (−1) = 2.
(When N = 11, the involution is non-symplectic and here we expect the answer
to be different.) We thus obtain the relation

Nc0,s0 (0) = Q0,s − 4 . (B.11)

It is easy to compute Q0,s given the cycle shape which we shall do now.

• Prime N : The cycle shape is 1k+2Nk+2. When, s = 0, all forms contribute
and hence Q0,0 = 24. For any s 6= 0, one has Q0,s = k + 2. This implies
that Nc0,00 (0) = 20 and Nc0,s0 (0) = k − 2 for s 6= 0.

• N = 4: The cycle shape is 142244. This implies that Q0,1 = Q0,3 = 4 and
Q0,2 = 8. We thus obtain 4c0,s0 (0) = 0 for s = 1, 3 while 4c0,20 (0) = 4.

• N = 6: The cycle shape is 12223262. This implies that Q0,1 = Q0,5 = 2 and
Q0,2 = Q0,4 = 6 and Q0,3 = 8. Thus one has 6c0,s0 (0) = −2 for s = 1, 5,
6c0,30 (0) = 4 and 6c0,s0 (0) = 2 for s = 2, 4.

• N = 8: The cycle shape is 12214182. This implies that Q0,1 = Q0,3 = Q0,5 =
Q0,7 = 2 and Q0,2 = Q0,6 = 4 and Q0,4 = 8. Thus one has 8c0,s0 (0) = −2 for
s = 1, 3, 5, 7, 8c0,s0 (0) = 0 for s = 2, 6 and 8c0,40 (0) = 4.

Further, one has
c0,00 (0) = 20

N
, c0,s1 (−1) = 2

N
. (B.12)

A nice consistency check is to verify that k = 1
2

∑N−1
s=0 c

0,s
0 (0). This relation holds

in all our examples.

Step 5: Fixing undetermined parameters

Steps 1-4 are the same for all N , whether prime or composite. For prime N , at
the end of step 4, no undetermined parameters remain. However, for composite
N , this is not true. For N = 4, there is one undetermined parameter in F 0,1(τ, z).
For N = 6, there are two undetermined parameters and for N = 8, there are five
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undetermined parameters. These will have to be dealt with on a case by case
basis and we will illustrate the procedure for N = 4 in this paper. The occurrence
of additional cusps for composite N is the key to fixing these parameters.

C Explicit Formulae

Below we provide the initial terms in the Fourier expansion of the modular forms
∆k(Z) defined in this paper

∆5 =
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− 1√
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√
r

) √
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(
9

r
5
2

− 93

r
3
2

+
90√
r
− 90

√
r + 93 r
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2 s
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∆̃3/2 =
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+ · · · ,

where qh ≡ q1/4. The expression is symmetric under the exchange q ↔ s4 and
antisymmetric under r → r−1. An all-orders proof follows from the properties of
the even genus-two theta constants.

C.1 Invariance of Φ̃3(Z)

Under the level 4 subgroup, G0(4), of Sp(2,Z), the modular form Φ̃3(Z) trans-
forms as

Φ̃3(M · Z) =
( −1
detD

)
det(CZ+D)3 Φ̃3(Z) , (C.1)

where M =

(
A B
C D

)
∈ Sp(2,Z), M · Z = (AZ + B)(CZ + D)−1 and C = 0

mod 4.
Consider the subgroup of G0(4) given by B = C = 0 and AT = D−1. Under

this subgroup, Eq. (C.1) can be written as

Φ̃3(D
T · Z ·D) =

( −1
detD

)
(detD)3 Φ̃3(Z) . (C.2)

Choosing D = γ =

(
1 −1
4 −3

)
, one sees that Φ̃3(Z) is invariant since the Jacobi

symbol as well as detD = +1. Similarly, when D = δ =

(
−1 1
0 1

)
, again the

Jacobi symbol as well as detD = −1 leading to Φ̃3(Z) being invariant under the
G0(4) transformation generated by δ.
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