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Abstract

Following Sen, we study the counting of (‘twisted’) BPS states that
contribute to twisted helicity trace indices in four-dimensional CHL mod-
els with N = 4 supersymmetry. The generating functions of half-BPS
states, twisted as well as untwisted, are given in terms of multiplicative
eta products with the Mathieu group, M24, playing an important role.
These multiplicative eta products enable us to construct Siegel modular
forms that count twisted quarter-BPS states.

The square-roots of these Siegel modular forms turn out be precisely
a special class of Siegel modular forms, the dd-modular forms, that have
been classified by Clery and Gritsenko. We show that each one of these
dd-modular forms arise as the Weyl-Kac-Borcherds denominator formula
of a rank-three Borcherds-Kac-Moody Lie superalgebra. The walls of the
Weyl chamber are in one-to-one correspondence with the walls of marginal
stability in the corresponding CHL model for twisted dyons as well as
untwisted ones. This leads to a periodic table of BKM Lie superalgebras
with properties that are consistent with physical expectations.
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1 Introduction

The microscopic counting of black hole degeneracy in four-dimensional string
theories with N = 4 supersymmetry has seen enormous progress in the past few
years. The prototypical example is furnished by type II string theory compactified
on K3×T 2 or equivalently, the heterotic string compactified on T 6. In this case,
the degeneracy of electrically charged 1

2
-BPS states is generated by the SL(2,Z)

modular form of weight 12, ∆(τ) = η(τ)24, while the degeneracy of (dyonic) 1
4
-

BPS states is the Sp(2,Z) Igusa cusp form of weight 10, Φ10(Z) [1]. There are
two natural extensions of this construction.

1. Carry out the analogous counting to other models with N = 4 supersym-
metry such as the CHL orbifolds [2–8]

2. Carry out the counting for a subset of states(that we call twisted BPS
states) that contribute to a twisted index first considered by Sen [9].

One can, of course, combine both the above extensions and count twisted BPS
states in the CHL orbifolds [10]. The first question that this paper addresses
is the following: Are there modular forms that are the analogs of the modular
forms ∆(τ) = η(τ)24 and Φ10(Z) for ZM -twisted BPS states in CHL ZN -orbifolds.
An observation in [8] indicates that the Mathieu group, M24, should play an
important role in this construction.

The square-root of the Igusa cusp form, ∆5(Z), appears as the Weyl-Kac-
Borcherds denominator identity for a particular rank-three Borcherds-Kac-Moody
(BKM) Lie superalgebra [11]. It has been shown that walls of the Weyl chamber
of this BKM Lie superalgebra gets mapped to the walls of marginal stability [12]
across which the degeneracy of 1

4
-BPS states jumps due to the non-existence of

two-centered black holes on one side of a wall [13]. A similar relation has been
observed between the square-roots of the genus-two modular forms that count
1
4
-BPS states and other rank-three BKM Lie superalgebras for CHL ZN -orbifolds

for N = 2, 3, 4 [8, 14]. Further, it has been observed that the BKM Lie super-
algebras constructed in [15] play an identical role for ZM -twisted 1

4
-BPS states

in type IIA string theory on K3. Is there a Lie algebraic structure associated
with twisted dyons in the CHL ZN -orbifolds? This is the second question that is
addressed in this paper.

Summary of results

We summarize the main results of this paper.

1. We provide a derivation of the map, Eq. (2.10), that relates cycle shapes
(M24 conjugacy classes) to multiplicative eta-products. These eta-products
are the generating functions of electrically charged twisted and untwisted
1
2
-BPS states (see appendix A).
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2. We construct Siegel modular forms, Φ
(N,M)
k (Z), of the paramodular group,

Γt(P ) (t = (N.M) and P = max(N/t,M/t)) using the additive lift of a
Jacobi form. The modular forms are generating functions of ZM -twisted
1
4
-BPS states in the CHL ZN -orbifold.

3. The square-root of the modular forms are the dd-modular forms of Clery
and Gritsenko. The sum and product representations of all dd-forms are
the Weyl-Kac-Borcherds (WKB) denominator formulae for a family of rank-
three Lorentzian Kac-Moody Lie superalgebras, GN(M). These BKM Lie
superalgebras are summarised in Table 3.

Cycle
shape ρ

map−−−→
(2.10)

Eta-product
gρ(τ/N)

Additive−−−−→
Lift

Siegel modular
form Φ

(N,M)
k (Z)

square−−−→
root

BKM Lie
superalgebra
GN (M)

Figure 1: A pictorial summary of results

Organization of the paper

After the introductory section, in section 2, we summarize known results about
modular forms that count untwisted BPS states in CHL models. In section 3,
we extend these considerations to construct modular forms that generate the
degeneracies of twisted BPS states in the CHL models for twists that are sym-
plectic automorphisms of K3. These modular forms are shown to have properties
that are compatible with macroscopic considerations, wall-crossing as well as S-
duality. In section 4, we show that the square-root of each of these modular
forms are the WKB denominator identity of a BKM Lie superalgebra. These
BKM Lie superalgebras are shown to have properties that are compatible with
physical expectations. We end in section 5 with some concluding remarks. The
appendices contain important technical details. Appendix A provides a deriva-
tion of the map that relates cycle shapes to eta-products. Appendix B gives the
details about the paramodular group, its modular forms and their characters.
We also prove the invariance of the constructed modular forms under extended
S-duality. Appendix C provides product formulae for the modular forms in fairly
explicit form. Appendix D gives the (partial) Fourier expansion of two modular

forms Q1 and Q̃1 where we explicitly track the simple real roots of two BKM Lie
superalgebras.

2



2 Counting BPS states in the CHL models

The CHL models that we consider will be ZN orbifolds of type IIA string theory
compactified onK3×S1×Ŝ1 (or equivalently asymmetric orbifolds of the heterotic

string compactified on T 4 × S1 × Ŝ1) [16]. The ZN group is generated by the
simultaneous symplectic automorphism, g, of K3 (of order N) and a shift of order
N , g̃, on the S1-circle. The vector multiplet moduli space is given by

(
Γ1(N)

∖SL(2)
U(1)

)
×
(
SO(6, p;Z)

∖ SO(6, p)

SO(6)× SO(p)

)
, (2.1)

where p is determined from the orbifold action; SO(6, p;Z) is the T-duality sym-
metry group and Γ1(N) ⊂ PSL(2,Z) is the S-duality symmetry group which acts
on the heterotic axion-dilaton, λ, as

λ 7−→ aλ+ b

cλ+ d
,

(
a b
c d

)
∈ Γ1(N) . (2.2)

There is also a parity transformation that enlarges the modular group from
PSL(2,Z) to PGL(2,Z) and acts on the charges and the heterotic axion-dilaton
[13]

w :

(
qe
qm

)
→
(

qe
−qm

)
, λ→ λ̄ . (2.3)

On adding the parity symmetry to the S-duality group, Γ1(N), one obtains the

‘extended S-duality symmetry group’, Γ̂1(N) [13, 14]. For N ≤ 4, the group

Γ̂1(N) is generated by the following three generators [8, 14]:

γ(N) =

(
1 −1
N 1−N

)
, δ =

(
−1 1
0 1

)
and w =

(
1 0
0 −1

)
. (2.4)

The first two matrices generate a dihedral group, Dih(PN ), which is of infinite
order when N = 4. This dihedral group turns out to be the symmetry of a
polygon (Weyl chamber), PN .

The electric and magnetic charges, (qe,qm), transform as vectors under the
T -duality group. The quantization of the charges in terms of T -duality invariants
is such that

N q2
e

2
∈ Z , qe · qm ∈ Z , q2

m

2
∈ Z . (2.5)

We will indicate these integers, respectively, by (n, ℓ,m) in this paper. It is useful
to form the matrix, Q,

Q ≡
(

q2
e qe · qm

qe · qm q2
m

)
=

(
2n
N

ℓ
ℓ 2m

)
, (2.6)

in terms of which the S-duality action is given by

Q 7→ γ · Q · γT for γ ∈ Γ̂1(N) . (2.7)
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For the ZN -orbifolds of interest, one has 1
2
q2
e ≥ − 1

N
and 1

2
q2
m ≥ −1.

The sequence of dualities which relates the various descriptions of the CHL
model are given in the Figure 2 (taken from [17]). The quantization of charges is
specified in the heterotic/CHL string (Description 2) with electric charges being
defined as those carried by states of the heterotic string. The microscopic counting
of David and Sen is carried out in Description 3 where one has a configuration
of D1-D5 branes [5] – this provides a direct derivation of all the modular forms
that appear in this paper.

Type IIB on
K3×S1×S̃1

Description 3

S−−−→
dual

Type IIB on
K3×S1×S̃1

T dualize−−−−−→
S̃1 to Ŝ1

Type IIA on
K3×S1×Ŝ1

Description 1

str-str−−−−→
duality

Heterotic on
T 4×S1× Ŝ1

Description 2

Figure 2: The chain of dualities. The above chain is expected to hold after
ZN -orbifolding of K3× S1 that leads to the CHL models.

2.1 Generating functions for degeneracies

Let d(n) denote the microscopic degeneracy of electrically charged 1
2
-BPS states.

Consider the generating function, gρ(τ), formally defined as follows

16

gρ(τ/N)
=

∞∑

n=−1

d(n) qn/N , (2.8)

where q = exp(2πiτ) and the label ρ will denote a cycle shape as will be discussed
later. The 16 reflects the degeneracy of a single 1

2
-BPS multiplet – thus [d(n)/16]

counts the number of 1
2
-BPS multiplets with electric charge, q2

e/2 = n/N .
Similarly, let D(n, ℓ,m) denote the microscopic degeneracy of dyonic 1

4
-BPS

states and define its generating function as follows:

64

Φ(Z)
=
∑

(n,ℓ,m)

D(n, ℓ,m) qn/Nrℓsm , (2.9)

where Z = ( τ zz σ ), r = exp(2πiz) and s = exp(2πiσ). The 64 reflects the degen-
eracy of a single 1

4
-BPS multiplet – thus [D(n, ℓ,m)/64] counts the number of

1
4
-BPS multiplets with charges (n, ℓ,m).
An important point is that both the functions, g(τ) as well as Φ(Z) turn

out to be modular forms of suitable subgroups of SL(2,Z) and Sp(2,Z) with τ
(Z) becoming coordinates on the upper-half plane (space). This enables one to
compute the degeneracies, in the limit of large charges, using the saddle point
approximation [1–3]. These results agree with the macroscopic computation (of

4



the degeneracy) using the Bekenstein-Hawking entropy for 1
4
-BPS extremal black

holes [1, 3] and the Bekenstein-Hawking-Wald entropy for 1
2
-BPS extremal black

holes [2, 18–20].

2.2 Eta-products from 1
2
-BPS degeneracies

It was shown in ref. [8] that the 1
2
-BPS degeneracy in the CHL ZN orbifolds are

given by multiplicative eta-products associated with specific cycle shapes. The
cycles shapes correspond to (conjugacy classes of) elements of the 24-dimensional
permutation representation of the Mathieu group M24 that also reduce to el-
ements of M23 [21, 22]. The relevant cycle shapes can be obtained from the
list given in [21] after imposing the constraints on cycle shapes discussed by
Mukai [23] and are reproduced in Table 1. The eta-product, gρ(τ), associated
with the cycle shape, ρ is given by the map

ρ = 1a12a2 · · ·NaN 7−→ gρ(τ) ≡
N∏

j=1

η(jτ)aj . (2.10)

The weight of the eta-product is given by 1
2

∑
s as ≡ (k+2). A derivation of the

eta-products starting from the explicit orbifold action is provided in appendix A.
One can show that

1

gρ(τ/N)
≡ 1

g

= Trg(q
L′

0−a) , (2.11)

where Trg denotes a trace (over oscillator modes in a generic Fock space) in the
g-twisted sector with g = 1 indicating the untwisted sector and a denotes the
ground state zero-point energy in the g-twisted sector. In the examples that we
consider, a = 1/N , where N is the order of g. Further, as explained in appendix
A, L′

0 is the contribution of the left-moving oscillator modes to L0,

N 1 2 3 4 5 6 7 8

ρ 124 1828 1636 142244 1454 12223262 1373 12214182

conj. class 1A 2A 3A 4B 5A 6A 7A/B 8 A

Table 1: Cycle shapes and their M24 conjugacy classes [24] for the ZN -orbifold.

2.3 From eta-products to dyon degeneracies

One of the standard constructions of Siegel modular forms is through the additive
(Saito-Kurokawa-Maaß [25, 26]) lift and its variants [27–30]. All of them take a
(weak) Jacobi form of ΓJ0 (N) as input and give a Siegel modular form of the same
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weight as output. We shall indicate the additive lift symbolically by

Φk(Z) = A
[
φk,1(τ, z)

]
, (2.12)

where the additive seed φk,1(τ, z) is a Jacobi form of weight k, index 1 of a suitable
subgroup of the Jacobi group, possibly with character. We will see that the Jacobi
form is determined completely by the eta-products that generate the counting of
1
2
-BPS states.
A physical derivation of the Siegel modular form Φk(Z) (in description 3 of

Figure 2) from the D1-D5 system was carried out by David-Sen [5]. The result
is obtained as a product of three distinct contributions in their setup. One has

64

Φk(Z)
=

4 η(τ)6

θ1(τ, z)2
× 16

gρ(τ/N)
× 1

E(K3/ZN )
, (2.13)

where the first term arises from the overall motion of the D1-D5 system in Taub-
NUT space; the second term arises from the excitations of KK monopoles1 and
third term, E(K3/ZN), arises from the excitations of the D1-branes (wrapping
S1) moving inside the D5-brane wrapping K3×S1) – this is the second-quantized
elliptic-genus ofK3/ZN [31]. It was observed in [8] that the inverse of the product
of the first two terms is the (weak) Jacobi form

φ̃k,1(τ, z) =
θ1(τ, z)

2

η(τ)6
× gρ(τ/N) . (2.14)

However, gρ(τ/N) is not a modular form of Γ0(N) but is rather a modular form of
the conjugate group S ·Γ0(N) ·S−1, where S : τ → −1/τ . Hence, the S-transform
of gρ(τ/N) which is proportional to gρ(τ) gives rise to a different Jacobi form2

φk,1(τ, z) =
θ1(τ, z)

2

η(τ)6
× gρ(τ) . (2.15)

This Jacobi form gives rise to a Siegel modular form using the additive lift [3,8,25]

Φk(Z) = A
[
φk,1(τ, z)

]
,

=
∑

n,m∈Z>0

ℓ∈Z
(4nm−ℓ2)>0

∑

d|(n,ℓ,m)
(d,N)=1

χ(d) dk−1 a
(
nm
d2
, ℓ
d

)
qnrℓsm , (2.16)

1In description two, the excitations of the KK monopole gets mapped to states of the
heterotic/CHL string.

2This Jacobi form will reappear in the next section when we construct modular forms twisted
BPS states in the heterotic string on T 6.
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where the non-trivial characters are

χ(d) =





(−1
d

)
, for N = 4 ,

(−7
d

)
, for N = 7 ,

(−2
d

)
for N = 8 .

Following [3, 6, 8],we define Φ̃k(Z) by the S-transform (volρ ≡
∏N

j=1(j)
aj )

Φ̃k(Z) ≡ (volρ)
1/2 τ−k Φk(Z̃) , (2.17)

with
τ̃ = −1/τ , z̃ = z/τ , σ̃ = σ − z2/τ .

Explicit formulae for Φ̃k(Z) in some cases have been derived in Appendix C of [3].

The Fourier expansion of Φ̃k(Z) about the cusp at τ, σ = i∞ is thus equivalent
to the Fourier expansion of Φk(Z) about an inequivalent cusp at τ = 0, σ = i∞.

Note: We will denote the two Siegel modular forms Φk(Z) and Φ̃k(Z) (that were

constructed in this subsection) respectively by Φ
(1,N)
k (Z) and Φ

(N,1)
k (Z) to better

organize the many Siegel modular forms that appear in the sequel.

3 Modular forms counting twisted BPS states

3.1 A twist in the dyon partition function

The inverse of the modular forms that we considered in the previous section
arise from four-dimensional indices given by helicity traces, B4 and B6, which are
defined as follows [32]

B2n =
1

2n!
Tr
[
(−1)2h (2h)2n

]
, (3.1)

where h is the third component of the angular momentum of a state in the rest
frame and trace is over all states carrying a given set of charges. The index
B6 receives contributions from states that break 12 of 16 supersymmetries while
the index B4 receives contributions from states that break 8 of the supersymme-
tries. The inverse of the modular forms, Φk(Z) and gρ(τ/N), are the generating
functions associated, respectively, with the indices B6 and B4.

Sen recently proposed a generalization of this index [9]. Let g be a symmetry
of the theory – this requires one to restrict the moduli to be on special sub-
spaces compatible with this symmetry. Further, one restricts the charges to be
g-invariant. The twisted indices defined by Sen are [9]

Bg
2n =

1

2n!
Tr
[
g (−1)2h (2h)2n

]
. (3.2)
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For CHL models, we will construct modular forms that arise as generating func-
tions for these twisted indices using the additive lift. Sen has constructed the
same modular forms using the D1-D5 system (as in [5]) thereby obtaining prod-
uct formulae for these modular forms [9, 10]. Thus, our results complement the
results of Sen.

3.2 Generating functions for twisted degeneracies

Let h generate a symplectic automorphism of K3 of order M ≤ 4 (under which
all sixteen supersymmetries are invariant) and further it commutes with the ZN -
orbifolding in the CHL model. We will refer to states which contribute to the
twisted index ZM -twisted states. Let us denote by dh(n) (resp. Dh(n, ℓ,m)) the
degeneracy of ZM -twisted electrically charged 1

2
-BPS states (resp. dyonic 1

4
-BPS

states). We define generating functions as we did for the untwisted case.

16

gρ(τ/N)
=
∑

n

dh(n) qn/N ,

64

Φ(N,M)(Z)
=
∑

(n,ℓ,m)

Dh(n, ℓ,m) qn/Nrℓsm . (3.3)

We will again find that these two functions turn out to be modular forms as in
the untwisted case. Further, the 1

2
-BPS counting leads to eta-products associated

with cycle shapes ρ – we have indicated this by adding a subscript ρ to the
generating function.

3.3 Eta-products for twisted 1
2
-BPS states

We have seen that electrically charged 1
2
-BPS states correspond to states of the

CHL string with the supersymmetric (right-moving) sector in their ground state.
The level matching condition then relates the oscillator level of left-movers to q2

e.
Generalizing the discussion to the twisted case, we see that the following trace is
the generating function of 1

2
-BPS multiplets

1

gρ(τ/N)
≡ h

g

= Trg(h q
L′

0−a) , (3.4)

where L′
0 is the contribution of the left-moving oscillator modes as explained in

appendix A.

Heterotic string on T 6

For the heterotic string on T 6 (N = 1 and g = 1), the generating functions, gρ(τ),
are given by multiplicative eta-products from the same cycle shapes given in Table
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1 that appeared in the untwisted computation for the CHL ZM -orbifolds. This is
easy to see since the two computations are related by τ → −1/τ transformation
up to a numerical factor.

CHL ZN -orbifolds

For the CHL ZN -orbifolds, a straightforward computation shows that the result
is expressible again as multiplicative eta-products arising from cycle shapes of
the 24-dimensional permutation representation of the Mathieu group, M24 – see
Table 2 where we summarize the results. Unlike the cycle shapes that appeared in
the untwisted counting, these do not reduce to conjugacy classes of the Mathieu
group,M23. This is easily seen as none of the cycle shapes have length-one cycles.
However, they do consist of at least five orbits.

G H ρ conj. class gρ(τ/N) k χ(d)

Z2
Z2 212 2B η(τ)12 4

Z4 2444 4A η(τ)4η(2τ)4 2

Z3 Z3 38 3B η(τ)8 2

Z4
Z4 46 4C η(τ)6 1

(−4
d

)

Z2 2444 4A η(τ)4η(τ/2)4 2

Table 2: The eta-products (along with cycle shapes, M24 conjugacy classes [24],
weight k of the Siegel modular form) that count h-twisted 1

2
-BPS dyons in the

CHL model for the group G.

3.4 From eta-products to twisted-dyon degeneracies

Following the conjecture in [8], we consider the additive lift of the following (weak)
Jacobi form with gρ(τ/N) taken from Table 2.

φk,1(τ, z) ≡
θ1(τ, z)

2

η(τ)6
× gρ(τ/N) =

∑

n,ℓ

a(n, ℓ) qn/Nrℓ . (3.5)

Heterotic string on T 6 (N = 1)

The additive lift is exactly the one we considered in Eq. (2.16) and thus the
Siegel modular forms Φ(1,M)(Z) that we constructed are the (proposed) generating
functions for ZM -twisted dyons in the heterotic string compactified on T 6. This
is in agreement with the results of Sen where possible and extends it in other
cases – the additive lift given here complementing the product formulae naturally
appearing in Sen’s approach [9].
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CHL models with N =M > 1

We shall focus first, for simplicity, on the situation when N = M = 2, 3, 4 as
they lend a uniform construction. The additive lift of the Jacobi forms that
appear have been considered in work of Gritensko and Nikulin [29] where several
generalizations of the Maaß additive lift have been considered. In particular, we
will consider the one called Lift1(φk,1) in [29]. This lift leads to a Siegel modular
form, Φk(Z), of weight k of the double extension, Γ+

N , of the paramodular group,
ΓN , with character induced by (vη)

24/N × 1 (see appendix B.1). The formula for
Φk(Z) given by the additive lift is

Φ
(N,N)
k (Z) ≡

∑

n,m∈Z+;ℓ∈Z
n,m=1 mod N
4nm−Nℓ2≥0

∑

d|(n,ℓ,m)

χ(d) dk−1 a
(
nm
d2
, ℓ
d

)
qn/Nrℓsm , (3.6)

where a(n, ℓ) are the Fourier coefficients of the Jacobi form and χ(d) is as given
in Table 2. These three modular forms are the squares of the modular forms
denoted ∆k/2(Z) by Gritsenko and Nikulin in [29,33] – the easy way to see this is
to see that the squares of Jacobi forms of index 1/2 that appear in the additive
lift for ∆k/2(Z) are precisely the additive seeds for Φk(Z) (for k = 4, 2, 1). We can

show that ∆2(Z) (and Φ
(2,2)
4 (Z)) can be written as a product of four genus-two

theta constants (defined in appendix C.1) as shown

Φ
(2,2)
4 (Z) =

(
1

16
θ

[
0
1
0
0

]
(Z) θ

[
1
1
0
0

]
(Z) θ

[
0
1
1
0

]
(Z) θ

[
1
1
1
1

]
(Z)

)2

≡ [∆2(Z)]
2 . (3.7)

The q ↔ s2 symmetry of Φ
(2,2)
4 (Z) gives a second equivalent representation in

terms of different theta constants:

Φ
(2,2)
4 (Z) =

(
1

16
θ

[
1
0
0
0

]
(Z′) θ

[
1
1
0
0

]
(Z′) θ

[
1
0
0
1

]
(Z′) θ

[
1
1
1
1

]
(Z′)

)2

≡ [∆2(Z)]
2 . (3.8)

where Z′ =

(
τ/2 z
z 2σ

)
.

Similarly, ∆1/2(Z) can be written in terms of a single genus-two theta constant
as follows:

Φ
(4,4)
1 (Z) =

(
1

2
θ

[
1
1
1
1

]
(Z′)

)2

≡
[
∆1/2(Z)

]2
, (3.9)

where Z′ =

(
τ 2z
2z 4σ

)
.

CHL models with N 6=M

The remaining two modular forms, Φ
(2,4)
2 (Z) and Φ

(4,2)
2 (Z), need a generalization

of the additive lift for paramodular groups to higher level. This has been consid-
ered recently by Clery and Gritsenko [30]. These are modular forms of the doubly
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extended paramodular group, Γ+
2 (2) at level two. The relevant cycle shape given

in Table 2 is 2444 and the corresponding Jacobi form is

φ2,1(τ, z) =
θ1(τ, z)

2

η(τ)6
× η(τ)4η(2τ)4 =

∑

n∈Z>0,ℓ∈Z
n=1 mod 2
2n−ℓ2>0

a(n, ℓ) qn/2rℓ . (3.10)

The additive lift of the above Jacobi form is given by

Φ
(2,4)
2 (Z) = A

[
φ2,1(τ, z)

]

≡
∑

n,m∈Z+;ℓ∈Z
n,m=1 mod 2
2nm−ℓ2>0

∑

d|(n,ℓ,m)
(d,2)=1

d a
(
nm
d2
, ℓ
d

)
qn/2rℓsm . (3.11)

Again, one can show that Φ
(2,4)
2 (Z) is the square of the modular form, Q1, defined

in [30]. This more or less follows from the relationship between the Jacobi forms
that generate them as well as their modular properties.

The modular form Φ
(4,2)
2 (Z) corresponds to Φ

(2,4)
2 (Z) expanded about the other

cusp. It is defined through the S-transform as follows

Φ
(4,2)
2 (Z) ≡ 4 τ−2 Φ

(2,4)
2 (Z̃) , (3.12)

with
τ̃ = −1/τ , z̃ = z/τ , σ̃ = σ − z2/τ .

We will denote the square-root of by Φ
(4,2)
2 (Z) by Q̃1 – this can equivalently be

defined in terms of Q1 expanded about the other cusp and hence is a well-defined
Siegel modular form. We have shown that both Q1 and Q̃1 can be defined in
terms of genus-two theta constants (defined in appendix C.1). We obtain the
following expressions

Φ
(2,4)
2 (Z) =

(
1

4
θ

[
1
0
0
1

]
(Z′) θ

[
1
1
1
1

]
(Z′)

)2

= [Q1(Z)]
2 , (3.13)

Φ
(4,2)
2 (Z) =

(
1

2
θ

[
0
0
1
1

]
(Z′) θ

[
1
1
1
1

]
(Z′)

)2

=
[
Q̃1(Z)

]2
, (3.14)

where Z′ =

(
τ 2z
2z 4σ

)
. The q ↔ s2 symmetry of Φ

(2,4)
2 (Z) gives a second repre-

sentation in terms of genus-two theta constants.

Φ
(2,4)
2 (Z) =

(
1

4
θ

[
0
1
1
0

]
(2Z) θ

[
1
1
1
1

]
(2Z)

)2

= [Q1(Z)]
2 . (3.15)

We provide a partial Fourier expansion for Q1 and Q̃1 in appendix D.
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3.5 Properties of the modular forms

In this section we have constructed Siegel modular forms, Φ(N,M)(Z), that gener-
ate the degeneracy of ZM -twisted dyons in the CHL ZN -orbifold for all values of
N,M ≤ 4. We now list some of the properties of Φ(N,M)(Z) with N ≤ M (when
N > M , the modular forms are given by the S-transform given in Eqs. (2.17)
and (3.12))

1. They are modular forms of the paramodular group Γt(P ) with level P =
M/(N,M) and t = (N,M).

2. Clery and Gritsenko define dd-modular forms to be all Siegel modular forms
that vanish exactly on the discriminant-one Humbert surface H1 ≡ (Z ∈
H2|z = 0) and its Γt(P ) translates with order one and classified them [30].
All modular forms that we have constructed are squares of dd-modular
forms. We will summarise the detailed relationship in the Table 3.

3. As all our modular forms are squares of dd-modular forms, they have double
zeros at z = 0 and its images under the action of Γt(P ). One has

lim
z→0

Φ(N,M)(Z) = (2πz)2gρ(τ/N) gρ(σ) ,

where ρ is the relevant cycle shape.

4. The extended S-duality group Γ̂1(N) (N = tP ′) can be embedded in Γ
(2)
t (P )

as follows:

Γ
(1)
0 (tP ′) ∋ γ ≡

(
a b
ct d

)
7−→ γ̂ ≡




d −ct c 0
−b a 0 b/t
0 0 a b
0 0 ct d


 ∈ Γt(P ) , (3.16)

with c = 0 mod P ′. This generalizes the embeddings considered earlier
[3, 15] to the paramodular group. The modular forms are invariant under
extended S-duality i.e.,

Φ(N,M)(γ̂ · Z) = Φ(N,M)(Z) . (3.17)

This is a consequence of the character, v(γ̂) = 1, for all the generators of
the extended S-duality group – the details are provided in the appendix
B.2.

5. The formula for the additive lift(s) clearly shows that the modular forms
have a symmetry corresponding to q ↔ sN (or τ ↔ Nσ) – this corresponds
to exchanging the definition of electric and magnetic charges. This can be
stated as the the invariance of the modular form under the action of the
generator Vt defined in Eq. (B.3).

Φ(N,M)(Vt · Z) = Φ(N,M)(Z) . (3.18)

12



6. The degeneracies of the ZM -twisted quarter BPS states in the CHL ZN -
orbifolds are given by an integral [3]

Dh(n, ℓ,m) =
(−1)ℓ

N

∫

C

dZ
e−2πiTr(Q·Z)

Φ(N,M)(Z)
, (3.19)

where Tr(Q ·Z) = nτ/N + ℓz +mσ and C is a three-dimensional subspace
given by (we write τ = τ1 + iτ2, z = z1 + iz2 and σ = σ1 + iσ2)

0 ≤ τ1 ≤ N , 0 ≤ z1 ≤ 1 , 0 ≤ σ1 ≤ 1 ,

with their imaginary parts being fixed to large positive numbers.

7. For large charges, i.e., 1
2
q2
e ≫ 0, q2

m ≫ 0 and qe · qm ≫ 0, Sen shows that
the macroscopic entropy is given by [9, 10]

SBH =
1

M

[
π
√
q2
e q

2
m − (qe · qm)2

]
?
= Shstat ≡ logDh. (3.20)

This is smaller than the entropy for untwisted states by a factor ofM . One
can ask whether the statistical entropy given matches the above answer. It
is clear that the leading contribution arises from the dominant saddle-point
in the integral (3.19) – this corresponds to identifying the dominant zero of
the modular form. For the modular forms Φ(M,M)(Z), according to [30, Eq.
1.22] the zeros occur at the quadratic rational divisor

t n2(τσ− z)2 + tn1σ+ jz +m1τ +m2 = 0 , (j,m1, m2, n1, n2) ∈ Z , (3.21)

when the discriminant D = j2 − 4tm1n1 − 4tm2n2 = 1. Using the compu-
tation described in [1, 3, 34, 35], one obtains that the dominant zero occurs
when |n2| = 1 and the answer matches the macroscopic computation, as
t = (M,M) =M . Sen has also verified this relation in several examples, in
particular Φ1,M (Z) for which t = 1 and P = M [9, 10]. It appears that the
zeros of all modular forms are of the form3

tP n2(τσ − z)2 + ( terms linear in τ, z, σ) = 0 , n2 ∈ Z , (3.22)

with discriminant one. The dominant contribution is always from |n2| = 1
and gives a result that is consistent with the macroscopic answer on using
M = tP .

8. All the modular forms admit product formulae with even multiplicities.
This is important for the BKM superalgebra interpretation that we discuss
next. The detailed formulae are discussed in appendix C.3.

The properties of the modular forms are thus consistent with macroscopic con-
siderations discussed in [9, 10]. This provides substantial evidence that the con-
jecture for the additive seed given in [8].

3The only two examples for which this has not been proved are (N,M) = (2, 4), (4, 2).
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4 BKM Lie superalgebras

The main idea in [15] and subsequently in [8, 14] was to associate an algebraic
structure to the square-root of the Siegel modular forms that generate the degen-
eracy of 1

4
-BPS CHL dyons. This was carried out in these papers by showing that

the square-root of these generating functions are related the Weyl-Kac-Borcherds
(WKB) denominator formula of a BKM Lie superalgebra. The intent of this sec-
tion is to extend these considerations to the modular forms that were considered
in the previous section. In other words, we will look for a family of BKM Lie
superalgebras, that we denote by GN (M), whose WKB denominator formula is
given by

∆
(N,M)
k/2 (Z) ≡

√
Φ

(N,M)
k (Z) .

Since we do not provide an introduction to BKM Lie superalgebras, we refer the
reader to [11, 36] for a mathematical introduction to BKM Lie superalgebras as
well [14,15] for a physical introduction in the context of counting dyons. All the
BKM Lie superalgebras that appear in this paper are of a special kind – they
are all (Borcherds) extensions of rank-three Lorentzian Kac-Moody Lie superal-
gebras with only even(bosonic) simple real roots. These Lie algebras have been
studied extensively and classifed by Gritensko and Nikulin(see [37] and references
therein).

4.1 Wall crossing: a prelude to BKM Lie superalgebras

Following a very nice observation due to Cheng and Verlinde in [13], we expect
that the walls of marginal stability of the 1

4
-BPS dyons get mapped to the walls

of the Weyl chamber of the BKM Lie superalgebra GN (M). For the BKM Lie
algebras GN (1) with N ≤ 4 that are associated with untwisted dyons, this has
been been verified in [8, 14].

Sen argues that since the twisted dyons occur in the same CHL model, the S-
duality group as well as the walls of marginal stability should remain unchanged
for the twisted dyons. Assuming that the BKM Lie superalgebra GN (M) for
M > 1 exists, then the physical prediction is that its Weyl chamber is identical
to that of the the BKM Lie superalgebra GN(1). Since every wall in the Weyl
chamber is identified with a simple real root, it implies that, for fixed N and
varying M the Lie superalgebras GN (M) should have the same set of real simple
roots and Cartan matrix.

In [15], the existence of the the BKM Lie superalgebras G1(M) for M =
1, 2, 3, 4, 5 was established. Indeed, it was shown that all the five BKM Lie
superalgebras shared the same Weyl vector, three simple real roots and Cartan
matrix A(1) defined in Eq. (4.3). One sees that this agrees with the physical
expectations. Does it hold when M > 1?
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4.2 Studying the structure of GN(M)

First, ∆
(N,M)
k/2 (Z) must be a well-defined modular form. As we have seen in this

previous section, that all of them turn out to be dd-modular forms in the clas-
sification of Clery and Gritsenko [30]. So this is trivially satisfied in all our
examples and we list them in Table 3. The dd-modular forms should satisfy
the following properties for them to lead to a BKM Lie superalgebra – we will
restrict our remarks to the dd-modular forms, ∆2, ∆1, ∆1/2, Q1 and Q̃1, in this
section as all other examples have already been considered in the physics litera-
ture(see [8, 14, 15].)

• We should be able to provide representations in terms of sums and prod-
ucts for them. The additive lifts provide the sum side of the denominator
identity. Product formulae for four of the dd-modular forms in the form
of multiplicative (Borcherds) lifts of weight zero modular forms of index
(N,M) have already appeared in the literature [29, 30] and they are given
in appendix C.3.

• We need to establish the integrality of all coefficients. On the sum side, it
follows from our observation that ∆2, ∆1/2, Q1 and Q̃1 have representations
as products of genus-two theta constants (the dividing factors of two cancel
out). On the product side, we also need to show that the multiplicities of
various roots are integers. This follows from the fact that the weak Jacobi
forms that are used in the multiplicative lift used in C.3 all have integral
coefficients [29, 30].

• We need to show that the simple real roots all appear with correct multi-
plicity. This is achieved by showing the invariance of the modular forms
under γ(N) and δ as they generate all the simple real roots through their
action. Since we have already proven the invariance of Φ

(N,M)
k (Z) under

S-duality, we need to verify that no sign arises on taking the square-root.
A practical way to do this is to check to see that there is no relative sign
between two terms that are related by the action of γ(N) and δ. We find

∆
(N,M)
k/2 (γ(N) · Z) = ∆

(N,M)
k/2 (Z) and ∆

(N,M)
k/2 (δ · Z) = ∆

(N,M)
k/2 (Z) . (4.1)

• The sum side of the denominator formula implies that ∆
(N,M)
k/2 (Z) must

change sign under a Weyl reflection due to any simple real root. Due to
the dihedral symmetry of the modular form, it suffices to show that the
modular form is an odd function of z :

∆
(N,M)
k/2 (w · Z) ≡ ∆

(N,M)
k/2

(
( τ −z
−z σ )

)
= −∆

(N,M)
k/2

(
( τ z
z σ )

)

The z → −z operation is an elementary Weyl reflection due to a simple
real root present in all the models. This implies that the extended S-duality

15



group is realized in the Lie algebra as

Γ̂1(N) = W(A(N))⋊ Dih(PN) , (4.2)

where W(A(N)) is the Weyl group generated by all the simple real roots
and Dih(PN) is the dihedral group acting on the fundamental polygon, PN
that represents the Weyl chamber [8, 13, 14].

4.3 The BKM Lie superalgebras: GN(M)

The considerations of the previous subsection leads to the existence of a fam-
ily of BKM Lie superalgebras, GN (M), (N = 1, 2, 3, 4) satisfying the following
properties:

1. The BKM Lie superalgebras GN (M) arise as inequivalent (for different val-
ues ofM) automorphic extensions of the rank-three Lie algebra with Cartan
matrix A(N). In other words, for a given N , all the BKM Lie superalgebras
GN(M) have identical real simple roots as well as Weyl vector. However,
the imaginary simple roots differ.

A(1) = A1,II =




2 −2 −2
−2 2 −2
−2 −2 2


 , (4.3)

A(2) = A2,II ≡




2 −2 −6 −2
−2 2 −2 −6
−6 −2 2 −2
−2 −6 −2 2


 , (4.4)

A(3) = A3,II ≡




2 −2 −10 −14 −10 −2
−2 2 −2 −10 −14 −10
−10 −2 2 −2 −10 −14
−14 −10 −2 2 −2 −10
−10 −14 −10 −2 2 −2
−2 −10 −14 −10 −2 2




, (4.5)

A(4) = (anm) where anm = 2− 4(n−m)2 , with m,n ∈ Z . (4.6)

In the above equations, AN,II , is the notation used by Gritsenko and Nikulin
in their classification of Cartan matrices for rank-three Lorentzian Kac-
Moody Lie algebras.

2. The Weyl-Kac-Borcherds denominator formula for GN (M) correspond to

the product and sum representations of a Siegel modular form ∆
(N,M)
k/2 (Z)

– the weight k is dependent on both N and M .

3. The square of the Siegel modular form, ∆
(N,M)
k/2 (Z), is the generating func-

tion of ZM -twisted dyons in the CHL ZN -orbifold. The allowed values of
M correspond to symplectic involutions of K3 of the form ZM × ZN .
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❍❍❍❍❍❍N
M

1 2 3 4 Cartan matrix

1
124

∆5

1828

∇3

1636

∇2

142244

∇3/2 A(1)

2
1828

∇̃3

212

∆2 �
�
�❅

❅
❅

2444

Q1 A(2)

3
1636

∇̃2 �
�
�❅

❅
❅

38

∆1 �
�
�❅

❅
❅

A(3)

4
142244

∇̃3/2

2444

Q̃1 �
�
�❅

❅
❅

46

∆1/2 A(4)

Table 3: The periodic table of BKM Lie superalgebras, GN (M): the the (N,M)
entry is the relevant cycle shape and the dd-modular form in the notation of Clery-
Gritsenko [30] – the dd form is ∆N,M

k (Z) in our notation. Note that all BKM Lie
superalgebras in a given row have identical Cartan matrices as specified in the
last column. The modular forms ∇k and ∇̃k are related by the S-transform lead
to distinct BKM Lie superalgebras.

4. The walls of the Weyl chamber of GN (M) are independent of M and get
mapped to the walls of marginal stability of the dyons.

It is easy to check that all the aforementioned properties follow from the proper-
ties of the modular forms Φ

(N,M)
k (Z) discussed in the previous section up to signs

that can be fixed by considering terms appearing in the Fourier expansions of
the dd-modular forms ∆

(N,M)
k/2 (Z). A more direct approach is to prove the prop-

erties directly from the modular properties of the dd-modular form. The table
3 provides a nice summary of the results and constitutes the main result of this
paper.

Remarks: The BKM Lie superalgebras GN(1) and G1(M) were denoted re-

spectively by G̃N and GM in [8,15]. The BKM Lie superalgebras GN (N) and their
Cartan matrix were discussed in [29]. Thus the BKM Lie superalgebras associated

with Q1 and Q̃1 are new though their occurence was anticipated in [30].

5 Concluding Remarks

We have seen that the counting of twisted BPS states in CHL models has lead to
a nice connection with dd-modular forms as well as rank-three Lorentzian Kac-
Moody algebras. The BKM Lie superalgebras G4(M) for M = 1, 2, 4 provide us
concrete examples of rank-three Lorentzian Kac-Moody Lie algebras of parabolic
type – they all have an infinite number of simple real roots that physical consid-
erations imply must be identical. A practical result of our study is that several of
these dd-modular forms can be written in terms of products of genus-two theta
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constants. It appears that one can write product formulae for all the ten even
genus-two theta constants starting from the most odd even theta-constant.4

It is hard to miss the fact that the Mathieu group, M24, played an important
role in the construction of the Siegel modular forms. Multiplicative eta products
identical to the ones that appeared in the counting of 1

2
-BPS states played an

important role in constructing twisted versions of the Fake Monster Lie algebra
of Borcherds [38–40]. It is natural to ask if the Lie algebras GN (M) are twisted
versions of the Lie algebra GN(1) and it appears to be the case. It is also of interest
to ask whether modules of the BKM Lie superalgebras GN(1) decompose into
irreps ofM24 leading to a moonshine forM24 analogous to the one for the Monster
group. An exciting paper by Cheng [41] (that appeared recently) explores this
aspect as well the appearance of the M24 in the elliptic genus of K3 (and hence
on the product side of these modular forms) in the work of Eguchi et al. [42](see
also [43]). In work that is appear soon, using replication formulae, we show that
the Siegel modular forms Φ(1,M)(Z) (and their inverses) are obtained as twisted
traces of a M24-module [44].

In their classification of rank-three Lorentzian Kac-Moody Lie algebras [37],
Gritsenko and Nikulin observe that there are three kinds of such algebras based
on the behavior of the fundamental chamber, P, of the Weyl group and the Weyl
vector, ρ. Those of elliptic type have ρ2 < 0 and P has finite volume; those of
parabolic type have ρ2 = 0 while those of hyperbolic type have ρ2 > 0. In the other
two cases, the Weyl chamber has finite volume only under some restrictions (we
refer the reader to [37] for further details). We restricted our considerations to
CHL ZN -orbifolds with N ≤ 4 in this paper. The models with N = 1, 2, 3 leads
to algebras of elliptic type while the N = 4 models lead to algebras of parabolic
type. However, it appears that, at the very least, the N = 5 model might lead
to the first example of a rank-three Lorentzian Kac-Moody Lie algebra of hyper-
bolic type as the Weyl vector has ρ2 > 0 and the candidate Weyl chamber as
obtained from the walls of marginal stability appear to of the correct type [45].
The associated modular form is expected to be meromorphic and thus has not
appeared in the list of dd-modular forms of Clery-Gritsenko [30]. It is of interest
to study other kinds of twisted dyons in CHL models – it is possible to consider
twists that do not commute with the ZN -orbifold such as Z2 actions that lead to
dihedral groups that are symplectic automorphisms of K3. Another possibility,
is to look for twists that break supersymmetry – these might give insights into
BPS state counting in models with N = 2 supersymmetry.

Acknowledgments: We thank Prof. V. Gritsenko, D. Jatkar and K. Gopala
Krishna for useful conversations. We also thank the organizers of the National
Strings Meeting 2010(NSM10) held at IIT Bombay (Feb. 10-15, 2010) as well as

4It appears that this has been known to Gritsenko for several years and must not be con-
sidered as an original observation!
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theWorkshop on “Automorphic forms, Kac-Moody Lie algebras and Strings” held
Max Planck Institut für Mathematik, Bonn (May 10-14, 2010) for the opportunity
to present these results at the workshops. This manuscript was completed during
a visit to the Albert Einstein Institut, Golm and we thank Stefan Theisen and
all members of AEI for a wonderful atmosphere.

A Cycle shapes to eta-products: a derivation

This appendix provides a derivation and more importantly, the intuition behind
the appearance of multiplicative eta products in counting 1

2
-BPS states. In par-

ticular, we establish the map, Eq. (2.10), that directly relates cycle shapes to
multiplicative eta products.

Counting states of the CHL string

Electrically charged 1
2
-BPS states arise as states of the heterotic string. For the

CHL-ZN orbifolds, electrically charged states carrying fractional charge such that
N
2
q2
e ∈ Z arise in the g-twisted sector, where gN = 1. Thus, we will carry out the

counting in the g-twisted sector i.e.,

X(σ + 2π) = g ·X(σ) ,

whereX represents the 24 left-moving scalars in the bosonic sector of the heterotic
string in the light-cone gauge and σ is the circle coordinate on the worldsheet with
cylindrical topology. Recall that g has no action on the supersymmetric right-
movers as well as the two remaining left-movers arising from four-dimensional
spacetime.

In the type IIA picture (Description 1), the action of g involves a shift on
the S1 combined with a symplectic automorphism of K3. The shift affects the
zero-modes (momenta and winding modes along the circle) but does not affect
on the oscillator modes. Using the duality that relates the heterotic string to the
NS5-brane wrapped on K3, the action on the scalars can be worked out. In fact,
it suffices to know the cycle shapes corresponding to the action of g on H∗(K3,Z)
since g acts trivially on the right-movers. The action on the oscillator (non-zero)
modes have the same cycle shape.

Following the arguments of Sen [2, see section 3], one can show that the
level-matching condition for a 1

2
-BPS state with charge 1

2
q2
e is given by

1
2
q2
e = L′

0 + a , (A.1)

where a is the contribution of zero-point energies from the chiral bosons and L′
0

represents the contributions of the left-moving oscillator modes5. Thus, we need

5In an arbitrary twisted sector, L′

0 also includes the contribution of momenta that don’t
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to count the degeneracy of ZN -invariant states of oscillator number 1
2
q2
e + a in a

g-twisted sector. The generating function of these degeneracies are given by

1

N

N−1∑

s=0

Trg

(
gs qL

′

0
+a
)
. (A.2)

where the trace runs over all excitations of left-moving oscillator modes and
the sum imposes the projection on to ZN -invariant states. This expression can
be simplified since the ZN -projection implements level matching in the twisted
sector. Since level-matching has already been imposed, g acts trivially on these
states – we an replace the sum by a single term given by the s = 0 piece and
removing the factor of 1

N
. We finally obtain the following result: the degeneracy

of the electric 1
2
-BPS is generated by

1

g

≡ Trg

(
qL

′

0
+a
)
. (A.3)

Computing the zero-point energy

A boson with fractional moding αn+φ (with 0 ≤ φ < 1) gives rise to a zero-point
energy contribution given by a =

[
− 1

16
(2φ− 1)2 + 1

48

]
. For twisted bosons that

are part of a cycle of length m, the moding (in a diagonal basis) is given by
φj = j/m mod 1 for j = 0, 1, . . . , m − 1. The cumulative contribution of the
m-cycle to the zero-point energy is −1

24m
. The zero-point energy for 24 bosons in

cycle shapes given in table 1 for the CHL ZN -orbifold is then equal to a = −1/N .

Deriving the eta-products

Let φj denote the eigenvalues of g acting on the 24 light-cone scalars. The
contribution of the oscillators from these scalars to Trg q

L′

0 is

1

g

= qa
[ 24∏

j=1

∞∏

n=0

′
(
1− qn+φj

) ]−1

, (A.4)

where the prime over the product indicates that the n = 0 term is excluded for
all j for which φj = 0. In order to understand the appearance of eta products,
consider m scalars that form a cycle of length m under the action of g. The m

contribute to the electric charge (as the charge lattice may be only a sub-lattice in momentum
lattice in the twisted sector) – this is not the case in the twisted sector that we consider.
For instance, in the untwisted sector of a CHL model, the allowed momenta lie in the (22, 6)
dimensional lattice of the heterotic string on T 6 though the CHL models have charges valued
in some sub-lattice.
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eigenvalues of g are thus φj = j/m for j = 0, 1, . . . , (m − 1) which gives rise to
the product that contributes to Trg q

L′

0:

[ m∏

j=1

∞∏

n=0

(
1− qn+j/m

) ]−1

=
[ ∞∏

n=1

(
1− qn/m

) ]−1

∝
[
η
(
τ
m

) ]
. (A.5)

It is easy to verify that the factor of qa provides precisely the power of q needed
to convert the Euler functions to an eta function.

For counting twisted BPS states, we need obtain the simultaneous eigenvalues
under the action of g and h – call them φj and ψj respectively. Then, the only
change in the earlier computation that lead to eta products is the addition of
phases exp(2πiψj) leads to the following formula:

h

g

= qa
[ 24∏

j=1

∞∏

n=0

′
(
1− e2πiψj qn+φj

) ]−1

, (A.6)

where the prime over the product indicates that the n = 0 term is excluded for
all j for which φj = 0. We illustrate the computation for a specific example when
both g and h generate Z2 – both of them have cycle shapes 1828 since the cycle
shape is uniquely determined in terms of the order of the element. We now need
to specify explcitly the action of g and h – this needs more details given, for
instance, by Chaudhuri and Lowe. We quote their result where they write out
the action of g and h on the scalars. g acts with eigenvalues (18, (−1)8, 18) and h
acts with eigenvalues (18, (−1)4, 14, (−1)4, 14). Again, we track only terms that
contribute to Trg h q

L′

0 and obtain

q−1/2
[ ∞∏

n=0

′

(1− qn)8
(
1 + qn+

1
2

)4(
1− qn+

1
2

)4

(1 + qn)4 (1− qn)4
]−1

= q−1/2
[ ∞∏

n=0

′

(1− qn)8
(
1− q2n+1

)4 (
1− q2n

)4 ]−1

(A.7)

=
[
q1/24

∞∏

n=1

(1− qn)12
]−1

= η(τ)−12 =
[
gρ(

τ
2
)
]−1

for ρ = 212 .

A straightforward and mildly tedious computation (not shown here) leads to the
remaining eta products quoted in Table 2. We can carry a couple of consistency
checks on results. First, the leading power of q coming from the eta products
always reduce to 1/N as required from considerations of zero-point energies. Sec-
ond, for the ZN × ZN examples, the eta products take the form η(τ)D (for some
D) – this is related to the fact that h

g

= g

h

in these instances.
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B The paramodular group

The group Sp(2,Q) is the set of 4 × 4 matrices written in terms of four 2 × 2
matrices A, B, C, D (taking values in Q) as

M =

(
A B
C D

)

satisfying ABT = BAT , CDT = DCT and ADT − BCT = I. This group acts
naturally on the Siegel upper half space, H2, as

Z =

(
τ z
z σ

)
7−→M · Z ≡ (AZ+B)(CZ+D)−1 . (B.1)

The paramodular group at level P that we denote by Γt(P ) is defined as
follows (we follow [30] for all definitions) (for t, P ∈ Z>0):

Γt(P ) =

{( ∗ ∗t ∗ ∗
∗ ∗ ∗ ∗t−1

∗P ∗Pt ∗ ∗
∗Pt ∗Pt ∗t ∗

)
∈ Sp(2,Q), all ∗ ∈ Z

}
. (B.2)

When t = 1, then Γ1 = Sp(2,Z) ≡ Γ(2) is the usual symplectic group and

Γ1(P ) = Γ
(2)
0 (P ) is its congruence subgroup at level P . Further when P = 1, we

get the full paramodular group, Γt.
We denote by Γ+

t (N) = Γt(N)∪ Γt(N)Vt a normal double extension of Γt(N)
in Sp(2,R) with6

Vt =
1√
t

(
0 t 0 0
1 0 0 0
0 0 0 1
0 0 t 0

)
, (B.3)

with det(CZ +D) = −1. This acts on H2 as

(τ, z, σ) −→ (tσ, z, τ/t) . (B.4)

The group Γ+
t (P ) is generated by Vt and its parabolic subgroup

Γ∞
t (P ) =

{( ∗ 0 ∗ ∗
∗ 1 ∗ ∗t−1

∗P 0 ∗ ∗
0 0 0 1

)
∈ Γt(P ), all ∗ ∈ Z

}
. (B.5)

The Jacobi group is defined by

ΓJ(P ) =
(
Γ∞
t (P ) ∩ Sp(2,Z)

)
/±14 ≃ Γ

(1)
0 (P )⋉H(Z) . (B.6)

The embedding of ( a bc d ) ∈ Γ
(1)
0 (P ) in Γt(P ) is given by

(̃
a b
c d

)
≡




a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1


 , c = 0 mod P . (B.7)

6We will denote by Γ+
t
(1) by Γ+

t
.
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The above matrix acts on H2 as

(τ, z, σ) −→
(
aτ + b

cτ + d
,

z

cτ + d
, σ − cz2

cτ + d

)
, (B.8)

with det(CZ + D) = (cτ + d). The Heisenberg group, H(Z), is generated by
Sp(2,Z) matrices of the form

[λ, µ, κ] ≡




1 0 0 µ
λ 1 µ κ
0 0 1 −λ
0 0 0 1


 with λ, µ, κ ∈ Z (B.9)

The above matrix acts on H2 as

(τ, z, σ) −→
(
τ, z + λτ + µ, σ + λ2τ + 2λz + λµ+ κ

)
, (B.10)

with det(CZ +D) = 1. It is easy to see that ΓJ preserves the one-dimensional
cusp at Im(σ) = ∞.

B.1 Characters of Γ+
t (P )

A Siegel modular form of weight k and character v with respect to Γt(P ) is a
holomorphic function F : H2 → C satisfying

F (M · Z) = v(M) det(CZ+D)k F (Z) , (B.11)

for all Z ∈ H2 and M ∈ Γt(P ). Let M1 and M2 be any two Γt(P ) matrices.
Then, for any character one has

v(M1 ·M2) = v(M1) v(M2) . (B.12)

This property is useful in simplifying the computation of characters into those
that generate the group.

We wish to derive the characters of the modular forms constructed by the
additive lift in section 3. The character is induced by the character of the Jacobi
form that is the additive seed. Hence we first discuss the characters of the Jacobi
forms before establishing the characters for the Siegel modular forms.

Characters of the additive seeds

The Jacobi forms (of index t) are modular forms of the Jacobi group ΓJ(P ) ≃
Γ
(1)
0 (P )⋉H(Z). It suffices to give the character, χ, for Γ

(1)
0 (P ) transformations

and character v2tH under the Heisenberg group – we indicate this by χ×v2tH . Recall
that

vH
(
[λ, µ, κ]

)
= (−1)λ+µ+λµ+κ , (B.13)
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is the unique binary character of the Heisenberg group. A useful observation for
our purposes is that weight −1, index 1 Jacobi form

[
ϑ1(τ, z)/η(τ)

3
]
has character

1× vH . The additive seed for modular forms Φ
(N,M)
k (Z) is given by

φk,1(τ, z) =

[
ϑ1(τ, z)

2

η(τ)6

]
× gρ(τ/N) . (B.14)

The character of the additive seed is thus completely determined by the eta
product gρ(τ/N) since the first factor transforms without character as v2H = 1.
When N =M = 1, 2, 3, 4, since gρ = η(τ)24/N , the character is given by χρ ≡ vNη
where vη is the character of the Dedekind eta function which is always a 24-th
root of unity – an explicit formula may be found, for instance, in [21,29].. Using
the details of vη, one can show that

χρ(T ) = e2πi/N and χ(γ) = 1 for γ =

(
1 0
N 1

)
. (B.15)

For N = 2, M = 4 one has [30]

χρ(γ) = (−1)d(b−c) for γ =

(
a b
2c d

)
∈ Γ

(1)
0 (2) . (B.16)

Characters of the Siegel modular form

The results quoted below are taken from the additive lifts for paramodular groups
[29, Theorem 1.12] and their congruence subgroups [30, Theorem 2.2]. Let φ be
a Jacobi form with weight k, index 1 whose additive lift (Lift1) gives a Siegel
modular form, Φ of the paramodular group Γt(P ). Since Γ+

t (P ) is generated
by Vt and Γ∞

t (P ), the characters for the Vt and Γ∞
t (P ) completely specify the

character of Φ under arbitrary elements of Γ∞
t (P ). One has

v(Vt) = (−1)k , (B.17)

where k is the weight of the modular form. This can also be seen by noticing the
q ↔ sN symmetry of the modular forms. Γ∞

t (P ) differs from ΓJ(P ) by its center
– these are elements of the form [0, 0, κ/t]. Thus, the character of elements in
Γ∞
t (P ) of the form [χ × 1 × e2πiκ/t] where [χ × 1] is the character of the Jacobi

form φ and e2πiκ/t is the character of the element [0, 0, κ/t].
Conclusion: The character of the Siegel modular form, Φ(N,M)(Z), is of the
form [χρ × 1 × e2πiκ/t], where χρ is the character induced by the eta product
gρ(τ/N) with t = (N,M). In other words, consider an element of Γt(P ) of the
form U = γ̃ · [λ, µ, κ′] · [0, 0, κ/t], then v(U) = χ(γ)× e2πiκ/t where γ̃ is related to
γ through Eq. (B.7).
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B.2 S-duality invariance of Φ
(N,M)
k (Z)

We need to show that the modular forms Φ
(N,M)
k (Z) under the three generators,

γ(N), δ and w embedded into Γt(P ) as described in Eq. (3.16).

• The action of w on Z is given by z → −z with τ and σ being invariant. The
only z dependence in the additive seed appears through ϑ1(τ, z)

2 which is
an even function of z. It is easy to see from the detailed formula for the
additive lift that it implies that all Φ

(N,M)
k (Z) are even functions of z. A

similar argument shows that their square-roots are necessarily odd functions
of z.

• Next, consider the generatory δ or equivalently, w · δ. The generator w · δ
gets mapped to the element [−1, 0, 0] of H(Z) and hence the modular forms
are all invariant as the additive seeds transform without character under
H(Z).

• For (N = 2,M = 4), one can show that χρ(γ
(2)) = 1. For the others

instances with N =M , first observe that one can write

γ(N) =

(
1 0
N 1

)
· T−1 where T =

(
1 1
0 1

)
.

Thus one has

χρ
(
γ(N)

)
= χρ

(
( 1 0
N 1 )

)
× χρ(T

−1) = χρ(T
−1) =

1

χρ(T )
.

It suffices to study the character induced by T in the Siegel modular form.
One can show that the embedding of T in the paramodular group, denoted
by T̂ (Eq. (3.16)), is given by the following product

T̂ = Vt · U0 · T̃−1 · Vt · T̃ · Vt · U−1
0 · Vt , (B.18)

where T̃ is defined in Eq. (B.7) and

U0 =




1 0 0 0
0 0 0 1

t

0 0 1 1
t −t 0 0


 .

The character, v(T̂ ), thus reduces to the one induced by χρ(T
−1)×χρ(T ) =

1. An alternate method to fix v(γ̂(N)) is to check the relative sign (or
possible phase) of any two elements such as two real simple roots that are

related by γ(N) action – we have used this method for Q̃1, for instance.

This completes that proof of the invariance of the modular forms under extended
S-duality.

25



C Product formulae for Φ
(N,M)
k (Z)

C.1 Theta Functions

The genus-one theta functions are defined by

θ
[a
b

]
(τ, z) =

∑

l∈Z
q

1

2
(l+ a

2
)2 r(l+

a
2
) eiπlb , (C.1)

where a.b ∈ (0, 1) mod 2. We define ϑ1 (τ, z) ≡ θ
[
1
1

]
(τ, z), ϑ2 (τ, z) ≡ θ

[
1
0

]
(z1, z),

ϑ3 (τ, z) ≡ θ
[
0
0

]
(τ, z) and ϑ4 (τ, z) ≡ θ

[
0
1

]
(τ, z).

We define the genus-two theta constants as follows [11]:

θ
[a
b

]
(Z) =

∑

(l1,l2)∈Z2

q
1

2
(l1+

a1
2
)2 r(l1+

a1
2
)(l2+

a2
2
) s

1

2
(l2+

a2
2
)2 eiπ(l1b1+l2b2) , (C.2)

where a =

(
a1
a2

)
, b =

(
b1
b2

)
, and Z =

(
τ z
z σ

)
∈ H2.

C.2 Weak Jacobi forms

We will consider the following weak Jacobi modular forms of weight zero and
index t, φ0,t in constructing product formulae for the Siegel modular forms [29, see
Lemma 2.5 and Example 2.3].

φ0,2(τ, z) =
φ2,2(τ, z)

η(τ)4
=
∑

n,ℓ∈Z
c(n, ℓ) qnrℓ ,

= (r + 4 + r−1) + q(r3 − 8r2 − r + 16− r−1 − 8r−2 + r−3) +O(q2)

φ0,3(τ, z) =

(
ϑ1(τ, 2z)

ϑ1(τ, z)

)2

=
∑

n,ℓ∈Z
c(n, ℓ)qnrℓ (C.3)

= (r + 2 + r−1) + q(−4r3 − r2 + 2r + 4 + 2r−1 − 4r−2 − 4r−3) +O(q2)

φ0,4(τ, z) =
ϑ1(τ, 3z)

ϑ1(τ, z)
=
∑

n,ℓ∈Z
c(n, ℓ) qnrℓ

= (r + 1 + r−1)− q(r4 + r3 − r + 2− r−1 + r−3 + r−4) +O(q2)

where7

φ2,2(τ, z) = 2

[
ϑ1(τ, z),

ϑ1(τ, 2z)

ϑ1(τ, z)

]
.

7Let (φ1, φ2) be two Jacobi forms of weights (k1, k2) and index (m1,m2) respectively. Then
the operation, [φ1, φ2] ≡ (m2φ

′

1φ2 −m1φ
′

2φ1)/(2πi) (with φ′(τ, z) = ∂zφ(τ, z)) produces a new
Jacobi form of weight (k1 + k2 + 1) and index (m1 +m2) [26].
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The product formula for Q1(Z) is given by the multiplicative lift of the fol-
lowing weak Jacobi form [30]

ψ0,2(τ, z) = 2
ϑ2(τ, 2z)

ϑ2(τ, 0)
. (C.4)

Since this is a level 2 Jacobi form, we need its Fourier coefficients about the cusps
at i∞ and 0. The expansions are [30]

ψ0,2(τ, z) =
∑

n,ℓ∈Z
c1(n, ℓ) q

nrℓ = (r + r−1)− q(r3 − r − r−1 + r−3) +O(q2)

(C.5)

ψ0,2|S =
∑

n,ℓ∈Z
c2(n, ℓ) q

nrℓ = 2− 2q1/2(r2 − 2 + r−2)− 4q(r2 − 2 + r−2)

− 8q3/2(r2 − 2 + r−2) +O(q2)

The weak Jacobi forms have integral coefficients according to [29, 30].

C.3 Explicit Product formulae

We provide product formulae for the modular forms ∆k using the Borcherds
(multiplicative) lift of the weak Jacobi forms, φ0,t(τ, z) of weight zero, index t.
Let c(n, ℓ) be the Fourier-Jacobi coefficients of the Jacobi form as defined in Eq.
(C.3). For (k, t) ∈

[
(2, 2), (1, 3), (1/2, 4)

]
, then one has the following product

representation for ∆k(Z) [29]

∆k(Z) = qArBsC
∏

(n,ℓ,m)>0

(
1− qnrℓstm

)c(nm,ℓ)
, (C.6)

with

A = 1
24

∑

ℓ∈Z
c(0, ℓ) , B = 1

2

∑

ℓ∈Z,ℓ>0

ℓ c(0, ℓ) and C = 1
4

∑

ℓ∈Z
ℓ2 c(0, ℓ) .

Using the explicit values of the Fourier-Jacobi coefficients given in Eq. (C.3), one
obtains that A = 1

2t
and B = C = 1

2
.

The product formula for Q1 needs us to consider ψ0,2(τ, z) which is a Jacobi
form at level two. It has two cusps and let us denote the Fourier-Jacobi coefficients
at the two cusps, i∞ and 0, respectively by c1(n, ℓ) and c2(n, ℓ). Using the fact
that the width, h, of the cusps are 1, 2 respectively, the formula given in [30,
Theorem 3.1] reduces to

Q1(Z) = qArBsC
∏

(n,ℓ,m)>0

(
1− qnrℓs2m

)c1(nm,ℓ) ×
(
1− (qnrℓs2m)2

)c2(nm,ℓ) , (C.7)
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with

A = 1
24

2∑

j=1

∑

ℓ∈Z
hj cj(0, ℓ) , B = 1

2

2∑

j=1

∑

ℓ∈Z,ℓ>0

ℓ hj c(0, ℓ) and C = 1
4

2∑

j=1

∑

ℓ∈Z
ℓ2 hj c(0, ℓ) .

Using the explicit values of the Fourier-Jacobi coefficients given in Eq. (C.5), one
obtains that A = 1

4
and B = C = 1

2
.

D Explicit formulae for Q1 and Q̃1

We indicate the terms corresponding to simple real roots in bold face. Note that
all four of them (r−1, qr, rs2 and qr3s2) appear with the coefficient −1 indicating
a multiplicity of one.

Q1 = q1/4r1/2s1/2
[( (

−1
r
+ 1
)
+ s2

(
1
r2

− 1
r
+ 1− r

)
+ s4

(
1
r2

− r
)
+ · · ·

)

+q
( (

1
r2

− 1
r
+ 1− r

)
+
(

1
r4

− 2
r3

− 1
r
+ 1 + 2r2 − r3

)
s2+

(
− 1
r5

+ 1
r2

− r + r4
)
s4+· · ·

)
+· · ·

]

As for Q1, we indicate in bold face four of the simple real roots (r−1, qr, rs4 and

q3r7s4) that appear in the Fourier expansion of Q̃ to the order given below.

Q̃1 = q1/8r1/2s1/2
[ ((

−1

r
+ 1
)
+ s2

(
2
r
− 2
)
+ s4

(
1
r2

− r
)
+ · · ·

)
+

√
q
((

2
r
− 2
)
+
(
− 2
r3

+ 2
r2

− 2r + 2r2
)
s2 +

(
− 2
r2

+ 2r
)
s4 + · · ·

)

+ q
((

1
r2

− r
)
+
(
− 2
r2

+ 2r
)
s2 +

(
− 1
r5

+ r4
)
s4 + · · ·

)

+ q3/2
((
− 2
r2

+ 2r
)
+
(

2
r4

− 2
r
+ 2− 2r3

)
s2 +

(
2
r5

− 2r4
)
s4 + · · ·

)

+ q2
((
−2
r
+ 2
)
+
(

2
r5

− 2
r4

+ 2r3 − 2r4
)
s2 +

(
2
r2

− 2r
)
s4 · · ·

)

+q3
((
− 1
r3

+ 2
r2

− 2r + r2
)
+
(
− 2
r6

+ 4
r3

− 4r2 + 2r5
)
s2 +

(
1
r8

− 2
r5

+ 2r4 − r7
)
s4 + · · ·

)
+· · ·

]
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