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Betweenness Centrality – Incremental and Faster ⋆

Meghana Nasre ⋆⋆, Matteo Pontecorvi ⋆ ⋆ ⋆, and Vijaya Ramachandran †

Abstract. We consider the incremental computation of the betweenness centrality (BC) of all vertices
in a graph G = (V,E), directed or undirected, with positive real edge-weights. The current widely used
algorithm is the Brandes algorithm that runs in O(mn+ n2 log n) time, where n = |V | and m = |E|.
We present an incremental algorithm that updates the BC score of all vertices in G when a new edge is
added to G, or the weight of an existing edge is reduced. Our incremental algorithm runs in O(m′n+n2)
time, where m′ is bounded by m∗ = |E∗|, and E∗ is the set of edges that lie on a shortest path in
G. We achieve the same bound for the more general incremental update of a vertex v, where the edge
update can be performed on any subset of edges incident to v.
Our incremental algorithm is the first algorithm that is asymptotically faster on sparse graphs than
recomputing with the Brandes algorithm even for a single edge update. It is also likely to be much
faster than the Brandes algorithm on dense graphs since m∗ is often close to linear in n.
Our incremental algorithm is very simple, and we give an efficient cache-oblivious implementation that
incurs O(scan(n2)+n·sort(m′)) cache misses, where scan and sort are well-known measures for efficient
caching. We also give a static BC algorithm that runs in time O(m∗n+ n2 log n), which is faster than
the Brandes algorithm on any graph with m = ω(n log n) and m∗ = o(m).

1 Introduction

Betweenness centrality (BC) is a widely-used measure in the analysis of large complex networks. The BC of
a node v in a network is the fraction of all shortest paths in the network that go through v, and this measure
is often used as an index that determines the relative importance of v in the network. Some applications of
BC include analyzing social interaction networks [12], identifying lethality in biological networks [21], and
identifying key actors in terrorist networks [13,4].

Given the changing nature of the networks under consideration, it is desirable to have algorithms that
compute BC faster than computing it from scratch after every change. Our main contribution is the first
incremental algorithm for computing BC after an incremental update on an edge or on a vertex that is
provably faster on sparse graphs than the widely used static algorithm by Brandes [3]. By an incremental
update on an edge (u, v) we mean a decrease in the weight of an existing edge (u, v), or the addition of a new
edge (u, v) with finite weight if (u, v) is not present in the graph; in an incremental vertex update, updates
can occur on any subset of edges incident to v, including the addition of new edges.

Let G = (V,E) be a graph with positive real edge weights. Let n = |V | and m = |E|. To state our result
we need the following definitions. For a vertex x ∈ V , let m∗

x denote the number of edges that lie on shortest
paths through x. Let m̄∗ denote the average over all m∗

x, i.e., m̄
∗ = 1

n

∑
x∈V m∗

x. Finally, let m
∗ denote the

total number of edges that lie on shortest paths in G. For our incremental bound, we consider the maximum
of each of these terms in the two graphs before and after the update. Here is our main result.

Theorem 1. After an incremental update on a vertex v in a directed or undirected graph with positive
edge weights, the betweenness centrality of all vertices can be recomputed in O(m′ · n + n2) time, where
m′ = m̄∗ +m∗

v.

Our method is to efficiently maintain the single source shortest paths (SSSP) directed acyclic graph
(DAG) rooted at each source s ∈ V , and therefore ensure that after every change we only examine the
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edges that lie on shortest path DAGs. Since m∗
v ≤ m∗ for all v ∈ V , and m∗ ≤ m, the worst case time for

our incremental algorithm is bounded by O(mn + n2), which is a logn factor improvement over Brandes’
algorithm on sparse graphs. Moreover, our bound in terms of m̄∗ and m∗

v results in much better bounds
for many dense graphs. For example, as noted in [10], it is known [6,9,15] that m∗ = O(n log n) with high
probability in a complete graph where edge weights are chosen from a large class of probability distributions,
including the uniform distribution on the range {1, . . . , n2}, and our algorithm is much faster than [3] on
these graphs.

Our algorithm is very simple, especially for the edge update case, and we present an efficient cache-
oblivious version that incurs O(scan(n2) + n · sort(m′)) cache misses. Here, for a cache of size M that can
hold B blocks, scan(r) = r/B and sort(r) = (r/B) · logM r with a tall cache (M ≥ B2). Both scan and
sort are measures of good caching performance (even though sort(r) performs r log r operations, the base
of M in the log makes sort(r) preferable to, say r cache misses). In contrast, the Brandes algorithm calls
Dijkstra’s algorithm, which is affected by unstructured accesses to adjacency lists that lead to large caching
costs (see, e.g., [18]).

In our incremental algorithm, we assume that the BC score for all vertices has been computed and the
SSSP DAG rooted at every vertex is available. This can be achieved by running Brandes’ algorithm. We
present an alternate algorithm based on the Hidden Paths algorithm in Karger et al. [10], which computes
APSP in O(m∗n+n2 logn) time. This leads to a static BC algorithm with the same time bound as the Hidden
Paths algorithm, which is faster than Brandes’ when m∗ = o(m) and m = ω(n logn). We also note that
substituting Pettie’s O(mn+n2 log logn) [19] all-pairs shortest paths (APSP) algorithm for directed graphs
or the O(mn · logα(m,n)) [20] APSP algorithm for undirected graphs (where α is an inverse-Ackermann
function) in place of Dijkstra’s algorithm leads to static BC algorithms with the same time complexity as
the corresponding APSP algorithm, and both improve on Brandes. Our incremental algorithm has better
bounds than any of these APSP algorithms on sparse graphs, and is no worse (and likely better) on dense
graphs.

1.1 Related work

The notion of betweenness centrality was formalized by Freeman [5] who also defined other measures such as
closeness centrality. Approximation algorithms and parallel algorithms for BC have been considered in [2,7],
[16] respectively. Lee et al. [14] present a framework called QUBE (Quick Update of BEtweenness centrality)
which allows edges to be inserted and deleted from the graph, and recently, Singh et al. [23] build on the
work of Lee et al. [14] to allow nodes to be added and deleted. Another recent work by Kas et al.[11] deals
with the problem of incremental BC and their algorithm is based on the dynamic all pairs shortest paths
algorithm by Ramalingam and Reps [22]. All the above mentioned papers give encouraging experimental
results, but there are no performance guarantees.

Closest to our work is the incremental algorithm by Green et al. [8] for a single edge insertion in unweighted
graphs, which maintains a breadth-first search (BFS) tree rooted at every source s and identifies vertices for
which the distance (BFS level) from s has changed. However, unlike our algorithm, they do not maintain the
BFS DAG and hence need to run a BFS for all vertices whose distances have changed. Thus, in the worst
case, their algorithm takes Θ(mn + n2) time for compute the BC of all vertices in an unweighted graph. In
contrast, our algorithm, which takes time O(m′ · n + n2) even in the weighted case and even for a vertex
update, improves on the algorithm in [8] for unweighted graphs when m′ = o(m).

Organization: Section 2 presents the notation we use, and discusses Brandes’ algorithm. Section 3 presents
our basic BC algorithm for an incremental edge update, and this algorithm is extended to a vertex update in
Section 4. Finally, in Section 5 and Section 6 we give brief sketches of our cache-efficient and static algorithms.
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2 Preliminaries and background

We first consider directed graphs. Let G = (V,E) denote a directed graph with positive real edge weights,
given by w : E → R+. Let πst denote a path from s to t in G. Define w(πst) =

∑
e∈πst

w(e) as the weight of
the path πst. We use d(s, t) to denote the weight of a shortest path from s to t in G, also called its distance.

The following notation was developed by Brandes [3]. For a source s and a vertex v, let Ps(v) denote the
predecessors of v on shortest paths from s, i.e.,

Ps(v) = {u ∈ V : (u, v) ∈ E and d(s, v) = d(s, u) +w(u, v)} (1)

Further, let σst denote the number of shortest paths from s to t in G (with σss = 1). Finally, let σst(v)
denote the number of shortest paths from s to t in G that pass through v. It follows from the definition that,

σst(v) =

{
0 if d(s, t) < d(s, v) + d(v, t)

σsv · σvt otherwise
(2)

The dependency of the pair s, t on an intermediate vertex v is defined in [3] as the pair dependency δst(v) =
σst(v)
σst

.

For v ∈ V , the betweenness centrality BC(v) is defined by Freeman [5] as:

BC(v) =
∑

s6=v,t6=v

σst(v)

σst

=
∑

s6=v,t6=v

δst(v) (3)

The following two-step procedure computes BC for all v ∈ V :

1. For every pair s, t ∈ V , compute σst.
2. For every vertex v ∈ V , and for every s, t pair, compute σst(v) (Equation 2), and then compute BC(v)

(Equation 3).

Step 1 above can be achieved by n executions of Dijkstra’s single source shortest paths algorithm. Therefore
Step 1 takes time O(mn+n2 logn) time, if we use a priority queue with O(1) amortized cost for the decrease-
key operation. For every vertex v, Step 2 takesO(n2) time, since there areO(n2) pair dependencies. This gives
a Θ(n3) time algorithm to compute BC for all vertices. Thus, the bottleneck of the above algorithm is the
second step which explicitly sums up the pair dependencies for every vertex. To obtain a faster algorithm for
sparse graphs, Brandes [3] defined the dependency of a vertex s on a vertex v as: δs•(v) =

∑
t∈V \{v,s} δst(v).

Brandes [3] also made the useful observation that the partial sums satisfy a recursive relation. In particular,
the dependency of a source s on a vertex v ∈ V can be written as:

δs•(v) =
∑

w:v∈Ps(w)

σsv

σsw

· (1 + δs•(w)) (4)

(See [3] for a proof of Equation 4.) The above equation gives an efficient algorithm for computing BC
described in the next section.

2.1 Brandes’ algorithm

We present a high level overview of Brandes’ algorithm (this high-level algorithm is given in Appendix A).
The algorithm begins by initializing the BC score for every vertex to 0. Next, for every s ∈ V , it executes
Dijkstra’s SSSP algorithm. During this step, for every t ∈ V , it computes σst, the number of shortest paths
from s to t, and Ps(t), the set of predecessors of t on shortest paths from s. Additionally, the algorithm
stores the vertices v ∈ V in a stack S in order of non-increasing value of d(s, v). Finally, to compute the BC
score, the algorithm accumulates the dependency of s. We now elaborate on this final step, which is given
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in Algorithm 1 (Accumulate-dependency). This algorithm takes as its input a source s for which Dijkstra’s
SSSP algorithm has been executed and the stack S containing vertices ordered by distance from s. The
algorithm repeatedly extracts a vertex from S and accumulates the dependency using Equation 4. The time
taken by Algorithm 1 is linear in the size of the DAG rooted at s, i.e., it is O(m∗

s).
Note that in Brandes’ algorithm, the set S contains vertices v ∈ V ordered in non-increasing value of

d(s, v). However, for the dependency accumulation it suffices that S contains vertices v ∈ V ordered in the
reverse topological order of the DAG(s). Such an ordering ensures that the dependency of a vertex w is
accumulated to any of its predecessor v, only after all the successors of w in DAG(s) have been processed.
This observation is useful for our incremental algorithm, since topological sort can be performed in linear
time.

Algorithm 1 Accumulate-dependency(s, S) (from [3])

Input: For every t ∈ V : σst, Ps(t)
A stack S containing v ∈ V in a suitable order (non-increasing d(s, v) in [3])

1: for every v ∈ V do δs•(v)← 0
2: while S 6= ∅ do
3: w← pop(S)
4: for v ∈ Ps(w) do δs•(v)← δs•(v) +

σsv

σsw
· (1 + δs•(w))

5: if w 6= s then BC(w)← BC(w) + δs•(w)

3 Incremental edge update

In this section we present our algorithm to recompute BC of all vertices in a graph G = (V,E) after an
incremental edge update (i.e., adding a new edge (u, v) or decreasing the edge weight of an existing edge
(u, v)). We extend this to a vertex update in the next section. We first consider directed graphs.

Let G′ = (V,E′) denote the graph obtained after an edge update to G = (V,E). Let d(s, t), σst, and δs•(t)
denote the distance from s to t in G, the number of shortest paths from s to t in G, and the dependency of
s on t in G respectively, and let d′(s, t), σ′

st, and δ′s•(t) denote these parameters in the graph G′.
Our incremental algorithm relies on maintaining the SSSP DAG rooted at every s ∈ V after an edge

update. Let DAG(s), DAG′(s) denote the SSSP DAG rooted at each s in G and in G′ respectively. We show
how to efficiently maintain these DAGs after an update. The updated DAGs give us the updated P ′

s(t) for
every s, t ∈ V . We also show how to maintain for every s, t ∈ V , d′(s, t) and σ′

st. Then, using Algorithm 1,
we obtain the updated BC scores for all vertices.

We begin by making some useful observations.

Lemma 1. Let (u, v) denote the edge on which the weight is decreased. Then, for any vertex x ∈ V , the set
of shortest paths from x to u is the same in G and G′, and we have

d′(x, u) = d(x, u) and d′(v, x) = d(v, x); σ′
xu = σxu and σ′

vx = σvx

Proof. Since edge weights are positive, the edge (u, v) cannot lie on a shortest path to u or from v. The
lemma follows. ⊓⊔

By Lemma 1, DAG(v) = DAG′(v) after weight of (u, v) is decreased. The next lemma shows that after the
weight of (u, v) is decreased we can efficiently obtain the updated values d′(s, t) and σ′

st for any s, t ∈ V .

Lemma 2. Let the weight of edge (u, v) be decreased to w′(u, v), and for a any given pair of vertices s, t,
let D(s, t) = d(s, u) +w′(u, v) + d(v, t). Then,

1. If d(s, t) < D(s, t), then d′(s, t) = d(s, t) and σ′
st = σst.
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2. If d(s, t) = D(s, t), then d′(s, t) = d(s, t) and σ′
st = σst + (σsu · σvt).

3. If d(s, t) > D(s, t), then d′(s, t) = D(s, t) and σ′
st = σsu · σvt.

Proof. Case 1 holds because the shortest path distance from s to t remains unchanged and no new shortest
path is created in this case. In case 2, the shortest path distance from s to t remains unchanged, but there
are σsu ·σvt new shortest paths from s to t created via edge (u, v). In case 3, the shortest path distance from
s to t decreases and all new shortest paths pass through (u, v). ⊓⊔

By Lemma 2, the updated values d′(s, t) and σ′
st can be computed in constant time for each pair s, t.

Once we have the updated d′(·) and σ′
(·) values, we need the updated predecessors P ′

s(t) for every s, t pair for
the betweenness centrality algorithm. In order to obtain these updated predecessors efficiently, we maintain
the SSSP DAG rooted at every source s ∈ V . The next section gives a very simple algorithm to maintain an
SSSP DAG after an incremental edge update.

3.1 Updating an SSSP DAG

Let DAG(s), DAG′(s) denote the single source shortest path DAG rooted at s in G and G′ respectively.
Recall that since the update is a decrease in the edge weight of (u, v), we know that DAG′(v) = DAG(v).
For an s, t pair we define a flag(s, t) to capture the change in distance/number of shortest paths from s to
t after the decrease in the weight of the edge (u, v) as follows.

flag(s, t) =





NUM-changed if d′(s, t) = d(s, t) and σ′
st > σst

WT-changed if d′(s, t) < d(s, t)

UN-changed if d′(s, t) = d(s, t) and σ′
st = σst

(5)

By Lemma 2, flag(s, t) can be computed in constant time for each pair s, t. On input s and the updated
edge (u, v), Algorithm 2 (Update-DAG) constructs a set of edges H using these flag values, together with
DAG(s) and DAG(v). We will show that H contains exactly the edges in DAG′(s). We begin by initializing H
to empty (Step 1). We then consider each edge (a, b) in DAG(s) (in Steps 2–4) and in DAG(v) (in Steps 5–7)
and depending on the value of flag(s, b) decide whether to include it in the set H . Finally, we check if the
updated edge (u, v) will be inserted in H (in Steps 8–9). It is clear from the algorithm that the time taken
is linear in the size of DAG(s) and DAG(v) which is bounded by O(m∗

s +m∗
v).

Algorithm 2 Update-DAG(s, (u, v))

Input: DAG(s), DAG(v), and flag(s, t),∀t ∈ V

Output: An edge set H after weight of edge (u, v) has been decreased
1: H ← ∅
2: for each edge (a, b) ∈ DAG(s) and (a, b) 6= (u, v) do
3: if flag(s, b) = UN-changed or flag(s, b) = NUM-changed then

4: H ← H ∪ {(a, b)}
5: for each edge (a, b) ∈ DAG(v) do
6: if flag(s, b) = NUM-changed or flag(s, b) = WT-changed then

7: H ← H ∪ {(a, b)}
8: if flag(s, v) = NUM-changed or flag(s, v) = WT-changed then

9: H ← H ∪ {(u, v)}

Lemma 3. Let H be the set of edges output by Algorithm 2. An edge (a, b) ∈ H if and only if (a, b) ∈
DAG′(s).
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Proof. Since the update is an incremental update on edge (u, v), we note that for any b, a shortest path π′
sb

from s to b in G′ can be of two types:
(i) π′

sb is a shortest path in G. Therefore every edge on such a path is present in DAG(s) and each such edge
is added to H in Steps 2–4 of Algorithm 2.
(ii) π′

sb is not a shortest path in G. However, since π′
sb is a shortest path in G′, therefore π′

sb is of the form
s  u → v  b. Since shortest paths from s to u in G and G′ are unchanged (by Lemma 1), the edges in
the sub-path s  u are present in DAG(s) and they are added to H in Steps 2–4 of Algorithm 2. Finally,
since shortest paths from v to any b in G and G′ remain unchanged, the edges in the sub-path v  b are
present in DAG(v) and therefore are added to H in Steps 5–7 of Algorithm 2. ⊓⊔

3.2 Updating betweenness centrality scores

In this section we present Algorithm 3 (Incremental-BC), which updates the BC scores for all vertices after
an incremental edge update. The algorithm takes as input the graph G = (V,E) and the updated edge (u, v),
together with the current values of d(s, t) and σst for all s, t ∈ V , and the current shortest path dag DAG(s),
for every s ∈ V . We begin by initializing the BC score to 0 for every vertex (Step 1). For every pair s, t, we
compute the updated d′(s, t) and σ′

st using Lemma 2 (Step 2). Next, in Step 4 we compute DAG′(s) for every
source s ∈ V , using Algorithm 2. Note that this gives us the updated predecessor values P ′

s(t), for every
s, t ∈ V . We perform a topological sort of DAG′(s) to obtain an ordering of v ∈ V and store the ordered
vertices in a stack S. Finally, using S, the σ′

st, and the P ′
s(t), we run Brandes’ accumulation of dependencies

(Algorithm 1) to compute the updated BC scores.

Algorithm 3 Incremental-BC(G = (V,E))

Input: updated edge (u, v) with new weight w′(u, v),
d(s, t) and σst, ∀ s, t ∈ V ; DAG(s),∀ s ∈ V

Output: BC′(v), ∀v ∈ V

d′(s, t) and σ′
st ∀ s, t ∈ V ; DAG′(s),∀ s ∈ V

1: for every v ∈ V do BC′(v)← 0
2: for every s, t ∈ V do compute d′(s, t), σ′

st, flag(s, t) // use Lemma 2
3: for every s ∈ V do

4: Update-DAG(s, (u, v)) // use Algorithm 2
5: stack S ← vertices in V in a reverse topological order in DAG′(s)
6: Accumulate-dependency(s,S) // use Algorithm 1

The correctness of our algorithm follows from the correctness of maintaining d(·), σ(·), and the updated
DAGs. We now bound the time complexity of our algorithm. In Step 2 of Algorithm 3 we spend constant
time to compute the updated d′(s, t) and σ′

st values for an s, t pair, hence O(n2) time for all pairs. In Step 4,
we obtain DAG′(s) for each s ∈ V using Algorithm 2, which takes time O(m∗

s + m∗
v) for source s. This

amounts to a total of O(m∗
vn+

∑
x∈V m∗

x) = O((m̄∗ +m∗
v)n). Finally, Steps 5 and 6 take time linear in the

size of the updated DAG. Thus the time complexity of our Incremental-BC algorithm for an edge update is
bounded by O((m̄∗ +m∗

v)n+ n2). This establishes Theorem 1 for directed graphs for an update on a single
edge.

We remark that both Update-DAG and Increment-BC use very simple data structures: arrays, lists, and
stacks. Thus our algorithms are very simple to implement, and should have small constant factors in their
running time.

Undirected graphs: Consider an undirected positive edge weighted graph G = (V,E). To obtain an
incremental algorithm for G, we first construct the corresponding directed graph GD = (V,ED) from G by
replacing every edge {a, b} ∈ E by two directed edges (a, b) and (b, a), both with the weight of the undirected
edge {a, b}. Since edge weights are positive, no shortest path can contain a cycle, hence the SSSP sub-graph
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rooted at s in G is the same as the SSSP DAG rooted at s in GD. Our incremental algorithm for G for an edge
update on {u, v} is now simple: we apply two incremental edge updates on GD, one on (u, v) and another
on (v, u). Since the number of edges in GD is only twice the number of edges in G, all other parameters also
increase by only a constant factor. This establishes Theorem 1 for edge updates in undirected graphs.

4 Incremental vertex update

Here we show how to extend the incremental edge update algorithm to handle an incremental update to
a vertex v in G = (V,E), where we allow an incremental edge update on any subset of edges incoming
to and outgoing from the vertex v. Our algorithm is a natural extension of the algorithm for single edge
update. As in the algorithm for edge update, for every s, t ∈ V , we maintain d(s, t), σst, and for every s ∈ V ,
DAG(s), the SSSP DAG rooted at s in G. Once we have the updated DAGs, we use a topological sort and
accumulate dependencies in the reverse topological order to get updated BC scores for all vertices. However,
instead of working only with the graph G, here we also work with the graph GR = (V,ER), which is obtained
by reversing every edge in G. That is (a, b) ∈ ER iff (b, a) ∈ E. Thus, for every s ∈ V , we also maintain
DAGR(s), the SSSP DAG rooted at s in GR.

Broadly, our vertex update on v is processed as follows. Let Ei(v) and Eo(v) denote the set of updated
edges incoming to v and outgoing from v respectively. We process Ei(v) and Eo(v) in two steps. Let G′ denote
the graph obtained by applying to G the updates on edges in Ei(v). Let G

′′ denote the graph obtained by
applying to G′ updates on edges in Eo(v). For s, t ∈ V , let d(s, t), d′(s, t) and d′′(s, t) denote the distance
from s to t in G,G′, and G′′ respectively. We use a similar notation for other terms, such as σst and DAG(s).
The main observation that we use is the following: Since Ei(v) contains updated edges incoming to v, the
SSSP DAGs rooted at v in G and in G′ are the same, that is, DAG(v) = DAG′(v). We show that Algorithm 2
is readily adapted to obtain DAG′(s), for all s ∈ V . At this point, our goal is to apply the updates in Eo(v)
to G′ and obtain DAG′′(s) for every s. To achieve this efficiently, we first obtain DAG′

R(s) for every s. The
reason to work with the reverse graph G′

R and DAGs in the reverse graph is that the edges in Eo(v) are in
fact incoming edges to v in G′

R. Hence our method to maintain DAGs when incoming edges are updated
works as it is on G′

R and we obtain DAG′′
R(s), for every s. Finally, using DAG′′

R(s) for every s we efficiently
build DAG′′(s).

We now give details of each step of our algorithm starting with the graph G till we obtain the DAG′
R(s)

for every s.

(A) Compute d′(s, v) and σ′
sv for any s: In this step we show how to compute in G′ the distance and

number of shortest paths to v from any s. We make the following definitions: For (uj , v) ∈ Ei(v), let
Dj(s, v) = d(s, uj) +w′(uj , v). Since the updates on edges in Ei(v) are incremental, it follows that

d′(s, v) = min{d(s, v), min
j:(uj ,v)∈Ei(v)

{Dj(s, v)}} (6)

Further, if d′(s, v) = d(s, v), we define

σ̂′
sv = |{π′

sv : π′
sv is a shortest path in G′ and π′

sv uses e ∈ Ei(v)}| (7)

We also need to compute σ′
sv, the number of shortest paths from s to v in G′. It is straightforward to

compute d′(s, v), σ′
sv, and σ̂′

sv in O(|Ei(v)|) time. Algorithm 4 gives the details of this step.
(B) Compute d′(s, t) and σ′(s, t) for all s, t: Assuming that we have computed d′(s, v), σ′

sv and σ̂′
sv, we

show that the values d′(s, t) and σ′(s, t) can be computed efficiently. We state Lemma 4 which captures
this computation. This lemma is similar to Lemma 2 in the edge update case.

Lemma 4. Let Ei(v) denote the set of edges incoming to v which have been updated. Let G′ denote
the graph obtained by applying update in Ei(v) to G. For any s ∈ V and t ∈ V \ {v}, let D(s, t) =
d′(s, v) + d(v, t).
(a) If d(s, t) < D(s, t), then d′(s, t) = d(s, t) and σ′

st = σst.
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Algorithm 4 Compute-Dist-to-v (s, Ei(v))

Input: Ei(v) with updated weights w′

d(s, t) and σst, ∀ s, t ∈ V

Output: d′(s, v), σ′
sv , σ̂

′
sv

1: σ̂′
sv ← 0, σ′

sv ← σsv, currdist← d(s, v)
2: for each edge (ui, v) ∈ Ei(v) do
3: if currdist = d(s, ui) +w′(ui, v) then
4: σ′

sv ← σ′
sv + σsui

5: σ̂′
sv ← σ̂′

sv + σsui

6: else if currdist > d(s, ui) +w′(ui, v) then
7: currdist← d(s, ui) +w′(ui, v)
8: σ′

sv ← σsui

9: d′(s, v)← currdist

Algorithm 5 Update-Reverse-DAG(s, Ei(v))

Input: DAGR(s), and Rt, flag(s, t),∀t ∈ V

Output: An edge set X after update on edges in Ei(v)
1: X ← ∅
2: for each edge (a, b) ∈ DAGR(s) do
3: if flag(b, s) = UN-changed or flag(b, s) =

NUM-changed then

4: X ← X ∪ (a, b)
5: for each b ∈ V \ {s} do
6: if flag(b, s) = NUM-changed or flag(b, s) =

WT-changed then

7: X ← X ∪Rb

(b) If d(s, t) = D(s, t) and d(s, v) = d′(s, v), then d′(s, t) = d(s, t) and σ′
st = σst + σ̂′

sv · σvt.
(c) If d(s, t) = D(s, t) and d(s, v) > d′(s, v), then d′(s, t) = d(s, t) and σ′

st = σst + σ′
sv · σvt.

(d) If d(s, t) > D(s, t), then d′(s, t) = D(s, t) and σ′
st = σ′

sv · σvt.

(C) Compute DAG′(s) for every s: Assuming that we have computed d′(s, t) and σ′(s, t) for all s, t ∈ V ,
we now show how to obtain the updated DAGs. Note that we can readily compute the value flag(s, t)
for every s, t, using the updated distances and number of shortest paths. The algorithm to compute
DAG′(s) for any s ∈ V is very similar to Algorithm 2 in the edge update case. The only modification
to Algorithm 2 we need is in Steps 8–9 where we consider a single edge (u, v) – instead in this case we
consider every edge in Ei(v).

(D) Compute DAG′
R(s) for every s: We now need to update DAGR(s), for every s, for which we use

Algorithm 5. This algorithm requires for every t ∈ V , a set Rt which is defined as follow:

Rt = {(a, t) | (t, a) ∈ DAG′(t) and w′(t, a) + d′(a, v) = d′(t, v)} (8)

The set Rt is the set of (reversed) outgoing edges from t in DAG′(t) that lie on a shortest path from t
to v in G′.
Consider an edge e = (a, b) in the updated DAG′

R(s). If e is in DAGR(s), it is added to DAG′
R(s) by

Steps 2–4. If e lies on a new shortest path present only in G′
R, its reverse must also lie on a shortest path

that goes through v in G′, and it will be added to DAG′
R(s) by the Rb during Steps 5–7. (Rb could also

contain edges on old shortest paths through v already processed in Steps 2–4, but even in that case each
edge is added to DAG′

R(s) at most twice by Algorithm 5.) Note that we do not need to process edges
(uj , v) in Ei separately (as with edge (u, v) in Algorithm 2), because these edges will be present in the
relevant Ruj

. The correctness of Algorithm 5 follows from Lemma 5. This lemma similar to Lemma 3
and its proof is in the Appendix.

Lemma 5. An edge (a, b) ∈ X if and only if (a, b) ∈ DAG′
R(s) after the incremental update of the set

Ei(v).

At this point, after having Steps (A)–(D) above executed, we have processed the updates in Ei(v) and
obtained the modified distances d′(·), modified counts σ′

(·) and DAG′(s) for every s. In addition, we have

obtained the modified reverse DAG for every s. To process the updates in Eo(v), we work with G′
R. Since

we are processing incoming edges in G′
R, our earlier steps apply unchanged, and we obtain modified values

for d′′(·), σ′′
(·), and DAG′′

R(s) for every s. Finally, using Algorithm 5 we obtain the DAG′′(s) for every s.
This completes our vertex update and to compute the updated BC values, we apply Brandes’ accumulation
technique (Algorithm 1).
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Complexity: Computing d′(s, v), σ′
sv and σ̂′

sv requires time O(|Ei(v)|) = O(n) for each s, and hence O(n2)
time for all sources. Applying Lemma 4 to all pairs of vertices takes time O(n2). For any s, the complexity
of modified Algorithm 2 becomes O(m∗

s +m∗
v + n) which leads to a total of O(m′ · n+ n2).

Creating a set Rt requires at most O(E∗ ∩ {outgoing edges of t}), so the overall complexity for all the
sets is O(m∗). Finally, we bound the complexity of Algorithm 5: the algorithm adds (a, b) in a reverse DAG
edge set X at most twice. Since

∑
s∈V |E(DAG′(s))| =

∑
s∈V |E(DAG′

R(s))|, at most O(m̄∗n) edges can
be inserted into all the sets X when Algorithm 5 is executed over all sources. Finally, since applying the
updates in Eo(v) requires a symmetric procedure starting from the reverse DAGs, the final complexity bound
of O(m′ · n + n2) follows.

5 Cache-oblivious Implementation

Our incremental algorithms have efficient cache-oblivious implementaions. We describe here an efficient
cache-oblivious implementation of Algorithm 3 (Incremental-BC). As noted in Section 1, scan(r) = r/B and
sort(r) = (r/B) logM r are desirable cache-efficient bounds for a computation of size r.

Let V = {1, . . . , n}. Further, assume that for an s, t pair, we have the values d(s, t), σ(s, t), f lag(s, t)
stored in an array A[1..n2] ordered by the first component s and then by the second component t (i.e., stored
as an n× n row major matrix).

To perform Step 2 of Algorithm 3 using a scan, we extract the subarray Av• containing the entries with
v as the first component, and the subarray A•u containing the entries with u as the second component. We
scan the three arrays A,Av•, and A•u to compute the updated values d′, σ′, and flag for each pair s, t in
the order they appear in A. These are stored in A′[1..n2]. Overall, Step 2 incurs O(scan(n2)) cache misses.
We execute the for loop in Step 3 in increasing order of s ∈ V , and hence we will access successive segments
of A′.

For Step 4, we sort the edges (a, b) in DAG(v) and in DAG(s) in nondecreasing order of b. Across
all s ∈ V this can be performed in n · sort(m̄∗) cache misses. Then, Algorithm 2 can be executed in
scan(n2) + n · scan(m∗

v) cache misses across all sources since we only need flag(s, b) when we examine edge
(a, b) in DAG(s).

Instead of the reverse topologically sorted order for the stack S in Step 5 we use nonincreasing order of
d′(s, t), t ∈ V (as in the Brandes static algorithm). This is computed in sort(m∗

s) cache misses for source s
and n · sort(m̄∗) across all sources.

In the final step, Step 6, we execute Algorithm 1. As input to this algorithm, for a given s, we need to
generate for every w ∈ V , the predecessor list Ps(w). For this, for every v ∈ Ps(w), we store the value d

′(s, v).
This computation is done by sorting the edges (a, b) ∈ DAG(s) by the first component s. This sorted list
will be a subsequence of the row for s in A′[1..n2], and d′(s, v) can be copied to each edge (v, w) in scan(m∗

s)
cache misses. The Ps(v) lists are then generated with another sort, and each entry in the predecessor list
will contain the associated d′ value. Over all sources s, this computation takes O(scan(n2) + n · sort(m̄∗))
cache misses.

Having generated the predecessor lists, we need to execute Algorithm 1 for each source s. The cache-
oblivious implementation of Algorithm 1 is somewhat different from the earlier pseudocode. We use an
optimal cache-oblivious max-priority queue Z [1], that is initially empty. Each element in Z has an ordered
pair (d′(s, v), v) as its key value, and also has auxiliary data as described below. Consider the execution of
Step 4 in Algorithm 1 for vertices v ∈ Ps(w). Instead of computing the contribution of w to δs•(v) for each
v ∈ Ps(w) when w is processed, we insert an element into Z with key value (d′(s, v), v) and auxiliary data
(w, σsw , δs•(w)). With this scheme, entries will be extracted from Z in nonincreasing values of d′(s, v), and
all entries for a given v will be extracted consecutively. We compute δs•(v) as these extractions occur from
Z. Note that the stack S is needed only to identify the sinks in DAG(s) (which will have no entry in Z). So,
we can dispense with S, and instead initially insert an element with key value (d′(s, t), t) and NIL auxiliary
data for each sink t in DAG(s). Using [1], Step 6 takes sort(m∗

s) cache misses for source s, hence over all
sources, Step 6 takes O(n · sort(m̄∗)).
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Thus, the overall cache-oblivious incremental algorithm for betweenness centrality incurs O(scan(n2) +
n · sort(m′)) cache misses, where m′ = m̄∗ +m∗

v. This is a significant improvement over any algorithm that
computes shortest paths, as is the case with the static Brandes algorithm, since all of the known algorithms
for shortest paths face the bottleneck of unstructured accesses to adjacency lists (see, e.g., [18]).

6 Static betweenness centrality

In this section we present static algorithms that compute betweenness centrality faster than the Brandes
algorithm. We first consider an algorithm that is based on the Hidden Paths algorithm by Karger et al. [10]
together with Brandes’ accumulation technique. The Hidden Path algorithm runs Dijkstra’s SSSP in parallel
from each vertex. It identifies all pairs shortest paths while only examining the edges in E∗, the set of edges
that actually lie on some shortest path. A similar algorithm with the same running time of O(m∗n+n2 logn)
was developed independently by McGeoch [17]; here m∗ = |E∗|.

Our Static-BC algorithm is presented as Algorithm 6. In Step 1 we run the Hidden Paths algorithm to
compute E∗ as well as the shortest path distances for every pair of vertices. This is the step with the dominant
cost, while in Steps 2–8 the complexity is strictly related to the size of E∗. In Steps 2–4, we identify the
edges in each shortest path DAG and in each Ps(v): for every edge (u, v) ∈ E∗, if d(s, u) +w(u, v) = d(s, v),
then we add the edge (u, v) to DAG(s) and the vertex u to Ps(v). The overall time spent for constructing
the DAGs and the predecessor lists is bounded by O(m∗n). Step 7 counts the number of shortest paths from
s to v for all v ∈ V , by traversing DAG(s) according to the topological order of its vertices, maintained in
the double-ended queue Q (created in Step 6) used as a queue. We accumulate the path counts for a vertex v
according to the formula σsv =

∑
(u,v)∈DAG(s) σsu. This takes time linear in the size of DAG(s). Therefore,

across all sources, we spend time which is bounded by O(n2 +
∑

s∈V m∗
s) = O(m̄∗n + n2). Finally in Step

8, using Q as a stack (reverse topological order), we call Accumulate-dependency(s,Q) (Algorithm 1) to
accumulate dependencies. Thus the overall running time of this static BC algorithm is O(m∗n + n2 logn).
The correctness of the algorithm follows from the correctness of the Hidden Paths algorithm and the Brandes’
accumulation technique.

Algorithm 6 Static-BC(G = (V,E))

1: Using the Hidden Paths algorithm, compute E∗, and d(s, t) for every s, t ∈ V

2: for each node s ∈ V do

3: for each (u, v) ∈ E∗ do

4: if d(s, u) +w(u, v) = d(s, v) then add (u, v) to DAG(s) and u to Ps(v)
5: for each DAG(s) do
6: compute a dequeue Q containing the nodes of DAG(s) in topological order
7: for all v ∈ V , compute σsv =

∑
(u,v)∈DAG(s)

σsu by accumulating path counts on vertices extracted from Q in

queue order (topological order)
8: Accumulate-dependency(s,Q), using Q in stack order //use Algorithm 1

Algorithm 6 can be expected to run faster than Brandes’ on many graphs since m∗ is often much smaller
than m. However, its worst-case running time is asymptotically the same as Brandes’. We observe that if we
replace the Hidden Paths algorithm in Step 1 of Algorithm 6 with any other APSP algorithm that identifies
a set of edges E′ ⊇ E∗, we can use E′ in place of E in Step 3, and obtain a correct static BC algorithm
that runs in time O(m′n+ n2 + T ′), where m′ = |E′| and T ′ is the running time of the APSP algorithm
used in Step 1. In particular, if we use one of the faster APSP algorithms for positive real-weighted graphs
(Pettie [19] for directed graphs or [20] for undirected graphs) in Step 1, we can obtain asymptotically faster BC
algorithms than Brandes’ by using E′ = E. With Pettie’s algorithm [19], we obtain an O(mn+ n2 log logn)
time algorithm for static betweenness centrality in directed graphs, and with the algorithm of Pettie and
Ramachandran [20], we obtain a static betweenness centrality algorithm for undirected graphs that runs in
O(mn · logα(m,n)), where α is an inverse-Ackermann function.
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A Brandes’ algorithm

For completeness we present the Brandes algorithm here.
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Algorithm 7 Betweenness-centrality(G = (V,E)) (from [3])

1: for every v ∈ V do BC(v)← 0
2: for every s ∈ V do

3: run Dijkstra’s SSSP from s and compute σst and Ps(t),∀ t ∈ V \ {s}
4: store the explored nodes in a stack S in non-increasing distance from s

5: accumulate dependency of s on all t ∈ V \ s using Algorithm 1

B Proof of Lemma 5

Suppose (a, b) ∈ DAG′
R(s). This implies that there is at least one shortest from s to b in G′

R that uses the
edge (a, b). And similarly a shortest path from b to s that uses the edge (b, a) in G′. To show that (a, b) ∈ X
we consider the possible values for flag(b, s):

1. If flag(b, s) = UN-changed then the set of shortest paths from b to s in G and G′ are the same, so there
is a shortest path from b to s that uses the edge (b, a) in G. Further, since DAGR(s) is correctly kept,
the edge (a, b) is added to X from Step 4.

2. If flag(b, s) = WT-changed then every shortest path from b to s in G′ goes through the updated vertex
v. This implies that any shortest path π′

bs ∈ G′ is of the form π′
bs = b v  s. Similarly every shortest

path from s to b in G′
R goes through v and, since (a, b) ∈ DAG′

R(s), at least one shortest path in G′
R is

of the form s v  a → b. Therefore a shortest path of the form b → a v  s is in G′, and the edge
(b, a) must be one of the outgoing edges of b in DAG′(b) that lies on a shortest path from b to v in G′.
So (a, b) ∈ Rb. Thus the edge (a, b) is added to X by Step 7.

3. If flag(b, s) = NUM-changed then, there exist at least one path from b to s in G′ that goes through
v, and additionally there can be shortest paths from b to s in G′ that do not go through v. Since,
(a, b) ∈ DAG′

R(s), the edge (b, a) lies on one or both types of paths. Suppose (b, a) ∈ πbs, which does
not use v. Then the path πbs is a shortest path in G and hence (a, b) ∈ DAGR(s). In this case, (a, b) is
added to X by Step 4. If (a, b) ∈ π′

bs which contains v, then since π′
bs uses the vertex v, we know that

π′
bs = b v  s. Hence, similar to the case (2) above, we conclude that (a, b) ∈ Rb. Therefore the edge

(a, b) is added to X by Step 7.

Suppose edge (a, b) ∈ X . To show that (a, b) ∈ DAG′
R(s) we consider the different steps in Algorithm 5

where (a, b) can be added to X :

1. The edge (a, b) is added to X by Step 4. This implies that the edge (a, b) ∈ DAGR(s). Thus, there
exists a shortest path in GR of the form s  a → b. Therefore, there exists a shortest path in G
from b to s, say πbs = b → a  s. Note that we execute Step 4 when flag(b, s) = UN-changed or
flag(b, s) = NUM-changed. For either value of the flag every shortest path from b to s in G is also
shortest path in G′. Therefore, the path π′

sb = s a → b is a shortest path in G′
R and hence the edge

(a, b) ∈ DAG′
R(s).

2. The edge (a, b) is added to X by Step 7. Thus, (a, b) ∈ Rb. This implies that the edge (b, a) is on a
shortest path in G′ from b to v. Moreover, we add (a, b) in Step 7 when flag(b, s) = NUM-changed or
flag(b, s) = WT-changed. Therefore, there exists at least one shortest path from b to s in G′ that goes
through v. Since the edge (b, a) is on a shortest path from b to v in G′, the edge (b, a) lies on at least
one shortest path from b to s in G′. Therefore, (a, b) lies on at least one shortest path from s to b in G′

R,
and this establishes that (a, b) ∈ DAG′

R(s).

This completes the proof of the lemma.
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