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Finding a d-regular spanning subgraph (or d-factor) of a graph is easy by Tutte’s
reduction to the matching problem. By the same reduction, it is easy to find a
minimal or maximal d-factor of a graph. However, if we require that the d-factor is
connected, these problems become NP-hard – finding a minimal connected 2-factor
is just the traveling salesman problem (TSP).

Given a complete graph with edge weights that satisfy the triangle inequality,
we consider the problem of finding a minimal connected d-factor. We give a 3-
approximation for all d and improve this to an (r + 1)-approximation for even d,
where r is the approximation ratio of the TSP. This yields a 2.5-approximation for
even d. The same algorithm yields an (r+1)-approximation for the directed version
of the problem, where r is the approximation ratio of the asymmetric TSP. We also
show that none of these minimization problems can be approximated better than
the corresponding TSP.

Finally, for the decision problem of deciding whether a given graph contains a
connected d-factor, we extend known hardness results.

1 Introduction

The traveling salesman problem (Min-TSP) is one of the basic combinatorial optimization
problems: given a complete graph G = (V,E) with edge weights that satisfy the triangle
inequality, the goal is to find a Hamiltonian cycle of minimum total weight. Phrased differently,
we are looking for a subgraph of G of minimum weight that is 2-regular, connected, and
spanning. While Min-TSP is NP-hard [12, ND22], omitting the requirement that the subgraph
must be connected makes the problem polynomial-time solvable [19,27]. In general, d-regular,
spanning subgraphs (also called d-factors) of minimum weight can be found in polynomial time
using Tutte’s reduction [19, 27] to the matching problem. Cheah and Corneil [6] have shown
that deciding whether a given graph G = (V,E) has a d-regular connected spanning subgraph
is NP-complete for every d ≥ 2, where d = 2 is just the Hamiltonian cycle problem [12, GT37].
Thus, finding a connected d-factor of minimum weight is also NP-hard for all d.
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While one might think at first glance that the problem cannot become easier for larger d,
finding (minimum-weight) connected d-factors is easy for d ≥ n/2, where n = |V |, as in this
case any d-factor is already connected. This poses the question for which values of d (as a
function of n) the problem becomes tractable.

In this paper, we analyze the complexity and approximability of the problem of finding a
d-factor of minimum weight.

1.1 Problem Definitions and Preliminaries

In the following, n is always the number of vertices. To which graph n refers will be clear from
the context.

All problems defined below deal with undirected graphs, unless stated otherwise. For any
d, d-RCS is the following decision problem: Given an arbitrary undirected graph G, does G
have a connected d-factor? Here, d can be a constant, but also a function of the number n of
vertices of the input graph G. 2-RCS is just the Hamiltonian cycle problem.

Just as Min-TSP is the optimization variant of 2-RCS, we consider the optimization variant
of d-RCS, which we call Min-d-RCS: As an instance, we are given an undirected complete
graph G = (V,E) and non-negative edge weights w that satisfy the triangle inequality, i.e.,
w({x, z}) ≤ w({x, y}) + w({y, z}) for every x, y, z ∈ V . The goal of Min-d-RCS is to find a
connected d-factor of G of minimum weight. Min-2-RCS is just Min-TSP.

A bridge edge of a graph is an edge whose removal increases the number of components of
the graph. A graph G is called 2-edge connected if G is connected and does not contain bridge
edges. For even d, any connected d-factor is also 2-edge-connected, i.e., does not contain bridge
edges. This is not true for odd d. If we require 2-edge-connectedness also for odd d, we obtain
the problem Min-d-R2CS, which is defined as Min-d-RCS, but asks for a 2-edge-connected d-
factor. For consistency, Min-d-R2CS is also defined for even d, although it is then exactly the
same problem as Min-d-RCS.

Finally, we also consider the asymmetric variant of the problem: given a directed complete
graph G = (V,E), find a spanning connected subgraph of G that is d-regular. Here, d-
regular means that every vertex has indegree d and outdegree d. We denote the corresponding
minimization problem by Min-d-ARCS. Min-1-ARCS is just the asymmetric TSP (Min-ATSP).

Max-d-RCS and Max-d-ARCS are the maximization variants of Min-d-RCS and Min-d-ARCS,
respectively. For Max-d-RCS and Max-d-ARCS we do not require that the edge weights satisfy
the triangle inequality. In the same way as for the minimization variants, Max-2-RCS is the
maximum TSP (Max-TSP) and Max-1-ARCS is the maximum ATSP (Max-ATSP).

If the graph and its edge weights are clear from the context, we abuse notation by also
denoting by d-RCS a minimum-weight connected d-factor, by d-R2CS a minimum-weight 2-
edge-connected d-factor, and by d-ARCS a minimum-weight connected d-regular subgraph of
a directed graph.

In the same way, let d-F denote a minimum-weight d-factor (no connectedness required) of a
graph and let d-AF denote a minimum-weight d-factor of a directed graph. Let MST denote a
minimum-weight spanning tree, and let TSP and ATSP denote minimum-weight (asymmetric)
TSP tours. We have 2-RCS = TSP and 1-ARCS = ATSP. Furthermore, 2-F is the undirected
cycle cover problem and 1-AF is the directed cycle cover problem.

We note that d-factors do not exist for all combinations of d and n. If both n and d are
odd, then no n-vertex graph possesses a d-factor. For all other combinations of n and d with
d ≤ n− 1, there exist d-factors in n-vertex graphs, at least in the complete graph.
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In the following, Kn denotes the undirected complete graph on n vertices. A vertex v of a
graph G is called a cut vertex if removing v increases the number of components of G.

1.2 Previous Results

Requiring connectedness in addition to some other combinatorial property has already been
studied for dominating sets [14] and vertex cover [9]. For problems such as minimum s-t vertex
separator, which are known to be solvable in polynomial time, the connectedness condition
makes it NP-hard, and recent results have studied the parameterized complexity of finding a
connected s-t vertex separator [20]. Also finding connected graphs with given degree sequences
that are allowed to be violated only slightly has been well-studied [5, 26].

As far as we are aware, so far only the maximization variant Max-d-RCS of the connected
factor problem has been considered for d ≥ 3. Baburin, Gimadi, and Serdyukov proved that
Max-d-RCS can be approximated within a factor of 1− 2

d·(d+1) [2,13]. A slightly better approx-
imation ratio can be achieved if the edge weights are required to satisfy the triangle inequal-
ity [3]. Baburin and Gimadi also considered approximating both Max-d-RCS and Min-d-RCS
(both without triangle inequality) for random instances [3,4]. For d = 2, we inherit the approx-
imation results for Min-TSP of 3/2 [29, Section 2.4] and Max-TSP of 7/9 [21]. For d = 1, we
inherit the O(log n/ log log n)-approximation for Min-ATSP [1] and 2/3 for Max-ATSP [15]. As
far as we know, no further polynomial-time approximation algorithms with worst-case guar-
antees are known for Min-d-RCS. Like for Min-TSP [29, Section 2.4], the triangle inequality
is crucial for approximating Min-d-RCS and Min-d-ARCS – otherwise, no polynomial-time ap-
proximation algorithm is possible, unless P = NP. Baburin and Gimadi [2, 3] claimed that
Max-d-RCS is APX-hard because it generalizes Max-TSP. However, this is only true if we
consider d as part of the input, as then d = 2 corresponds to Max-TSP.

1.3 Our Results

Table 1 shows an overview of previous results and our results.
Our main contributions are a 3-approximation algorithm for Min-d-RCS for any d and a 2.5-

approximation algorithm for Min-d-RCS for even d (Section 3). The latter is in fact an (r+1)-
approximation algorithm for Min-d-RCS, where r is the factor within which Min-TSP can be
approximated. This result can be extended to Min-d-ARCS, where r is now the approximation
ratio of Min-ATSP. Our approximation algorithms, in particular for the maximization variants,
are in the spirit of the classical approximation algorithm of Fisher et al. [11] for Max-TSP:
compute a non-connected structure, and then remove and add edges to make it connected.

As lower bounds, we prove that Min-d-RCS and Min-d-ARCS cannot be approximated better
than Min-TSP and Min-ATSP, respectively (Section 4). In particular, this implies the APX-
hardness of the problems.

We prove some structural properties of connected d-factors and their relation to TSP, MST,
and d-factors without connectedness requirement (Section 2). Some of these properties are
needed for the approximation algorithms and some might be interesting in their own right or
were initially counterintuitive to us.

Our algorithms work for all values of d, even when d is part of the input. The hardness results
are extended to the case where d grows with n. In Section 5, we improve our approximation
guarantee for d ≥ n/3, prove that (n2 − 1)-RCS ∈ P, and generalize Baburin and Gimadi’s
algorithm [2] to directed instances.
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problem result reference

d-RCS in P for d ≥ n
2 − 1 trivial for d ≥ n/2, Section 5.2

NP-complete for constant d Cheah and Corneil [6]
and d of any growth rate up to O(n1−ε) Section 4.2

Min-d-RCS (r + 1)-approximation for even d Section 3.2
3-approximation for odd d Section 3.1
2-approximation for d ≥ n/3 Section 5.1
no better approximable than Min-TSP Section 4.1

Min-d-R2CS 3-approximation Section 3.1
no better approximable than Min-TSP Section 4.1

Min-d-ARCS (r + 1)-approximation Section 3.2
no better approximable than Min-ATSP Section 4.1

Max-d-RCS (1− 2
d·(d+1) )-approximation Baburin and Gimadi [2]

Max-d-ARCS (1− 1
d·(d+1) )-approximation Section 5.3

Table 1: Overview of the complexity and approximability of finding (optimal) connected d-
factors. We left out that all optimization variants are polynomial-time solvable for
d ≥ n/2 and APX-hard according to Sections 4.1 and 4.2. Here, r is the approximation
ratio of Min-TSP or Min-ATSP.

2 Structural Properties

In the following two lemmas, we make statements about the relationship between the weights
of optimal solutions of the different minimization problems. We call an inequality A ≤ c · B
tight if, for every ε > 0, replacing c by c− ε does not yield a valid statement for all instances.

Lemma 2.1 (undirected comparison). 1. w(MST) ≤ w(d-RCS) ≤ w(d-R2CS) for all d
and all undirected instances, and this is tight.

2. w(d-F) ≤ w(d-RCS) for all d and all undirected instances, and this is tight.

3. w(d-R2CS) ≤ 3 ·w(d-RCS) for all odd d and all undirected instances, and this is tight for
all odd d.

4. w(TSP) ≤ w(d-RCS) for all even d and all undirected instances, and this is tight.

5. w(TSP) ≤ 2 ·w(d-RCS) for all odd d and all undirected instances, and this is tight for all
odd d.

6. w(TSP) ≤ 4
3 · w(3-R2CS) for all undirected instances, and this is tight.

7. For all odd d, there are instances with w(TSP) ≥ (43 − o(1)) · w(d-R2CS).

8. w((d − 2)-F) ≤ d−2
d · w(d-F) and w((d − 2)-RCS) ≤ w(d-RCS) for all even d ≥ 4 and all

undirected instances, and both inequalities are tight.
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9. Monotonicity does not hold for odd d: for every odd d ≥ 5, there exist instances with
w((d − 2)-RCS) ≥ d+2

d · w(d-RCS).

Proof. Items 1 and 2: The inequalities follow immediately from the definitions. The inequality
of Item 2 and the second inequality of Item 1 are tight for instances where all edge weights are
equal. That the first inequality of Item 1 is also tight can be seen as follows: For any k ≥ 2
we can construct a graph consisting of k groups of d+1 vertices. We set the distance between
each pair of vertices from the same group equal to 0, and the distance between each pair of
vertices from different groups equal to 1. Any MST of the new instance has a weight of k− 1.
We can construct a (2-edge-)connected d-factor of weight k by combining a global TSP tour
with a d− 2-factor within each group. Since this holds for all k, the first inequality of Item 1
is tight.

Item 3: The inequality is shown to hold constructively by Algorithm 1, which computes
a 2-edge-connected d-factor that weighs no more than three times the weight of a minimum-
weight connected d-factor. It is tight because of the following example: The set of vertices of
the instance consists of a vertex v plus d sets V1, . . . , Vd which consist of d + 2 vertices each.
We set the distance of v to each of the other vertices equal to 1. The distance between each
pair of vertices from the same set Vi is 0. Finally, the distance between all pairs of vertices
from different sets Vi and Vj is 2. An optimal connected d-factor connects v to one vertex of
each Vi. Since each Vi has an odd number of vertices and d is odd as well, we can complete
the connected d-factor without any further cost. Thus, the total cost is d.

An optimal 2-edge-connected d-factor has a weight of 3d: Because each Vi has an odd number
of vertices and d is odd, any 2-edge-connected d-factor must have at least three edges leaving
each set Vi. If such an edge e is incident with v, then we charge its weight to Vi. The other
possibility is that e is incident with a vertex from some Vj, where j 6= i. In this case e has
a weight of 2 and we charge a weight of 1 to both Vi and Vj. The total charge of all sets VI

equals the total weight of the 2-edge-connected d-factor. Since each Vi is charged at least 3,
the total weight of any 2-edge-connected d-factor is at least 3d.

Item 4: Since d is even, d-RCS is Eulerian and we can take shortcuts to obtain a TSP tour
whose weight is no larger than w(d-RCS). This is tight because w(TSP) ≥ w(MST) and Item 1.

Item 5: If we duplicate each edge of a connected d-factor, we obtain a Eulerian multi-graph.
Taking shortcuts yields a TSP tour and proves the inequality. The same instance as we used
in the proof of Item 3 shows that this is tight, as every set Vi is charged at least 2 for any TSP
tour.

Item 6: We exploit the following property of 3-regular 2-edge-connected graphs: for every
odd subset U of the vertices, there are at least three edges that connect U to V \U . This implies
that the fractional edge-coloring number of such a graph is 3 [24, Corollary 28.5a]. We consider
an optimal solution 3-R2CS. The above implies that there exists a collection of – not necessarily
disjoint – matchings M1, . . . ,Mk for some k as well as non-negative numbers λ1, . . . , λk such
that

∑

i:e∈Mi
λi = 1 for all edges e ∈ 3-R2CS and

∑k
i=1 λi = 3 (Seymour [25] attributes this

to Edmonds [8]). This implies
∑k

i=1 λiw(Mi) = w(3-R2CS). Since the total number of edges
in 3-R2CS equals 3n/2 and the λi’s sum to 3, all the matchings M1, . . . ,Mk are necessarily
perfect. Also, since

∑k
i=1 λi = 3, there exists an i with w(Mi) ≤

1
3 · w(3-R2CS). Let M be

a minimum-weight perfect matching of the instance. Then w(M) ≤ w(Mi). Furthermore,
adding M to 3-R2CS yields a 4-regular connected multi-graph of weight at most 4

3 ·w(3-R2CS),
which is thus Eulerian. Taking shortcuts yields a TSP tour, which proves the claim. It is tight
by Item 7.
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A B

U1,1 U1,2 U1,m−1· · ·

U2,1 U2,2 U2,m−1· · ·

U3,1 U3,2 U3,m−1· · ·

cut1 cut2 cutm

Figure 1: Graph with w(TSP) ≥ (43 − o(1)) · w(d-R2CS). Gadgets A and B consist of d + 2
vertices, all Ui,j consist of d+1 vertices. Edges between a pair of vertices in the same
gadget have weight 0. An edge between two gadgets indicates that the weight of an
edge between a vertex in the first gadget and a vertex in the second gadget equals 1.
All other distances are obtained via metric completion.

Item 7: For arbitrary odd d we construct a complete graph G = (V,E) as follows: G consists
of 3m − 1 gadgets A, B, and Ui,j for i ∈ {1, 2, 3} and j ∈ {1, . . . ,m− 1}. The gadgets A and
B consist of d + 2 vertices, all Ui,j consist of d + 1 vertices. All pairs of vertices within the
same gadget have a distance of 0. All edges between A and Ui,1, between Ui,j and Ui,j+1, and
between Ui,m−1 and B have a weight of one for all i ∈ {1, 2, 3} and j ∈ {1, . . . ,m − 2}. All
other distances are obtained by metric completion, i.e., by taking the shortest path distances.
Thus, e.g., the distance between a vertex in A and a vertex in B is m. Figure 1 depicts the
construction.

We build a d-factor of total weight 3m as follows: For each pair of gadgets that has a distance
of 1, we take an edge between the two gadgets and include it in the d-factor. We do so in a way
that all selected edges of weight 1 are disjoint. We complete the d-factor by taking appropriate
edges of weight 0 within the gadgets. By the choice of the size of the gadgets, this can be done.
The d-factor obtained is even 2-edge-connected.

Now we show that w(TSP) ≥ 4m−2. Let T be a minimum-weight TSP tour on G. Consider
T ′, the multigraph where each edge in T of length greater than 0 is replaced by its shortest
path over edges with weight 1. Then w(T ′) = w(T ). For j ∈ {2, . . . ,m − 1}, let cutj be the
sum over all i of the number of edges connecting Ui,j−1 to Ui,j. Let cut1 be the number of
edges connecting A to U1,1, U2,1, and U3,1, and let cutm be the number of edges connecting
U1,m−1, U2,m−1, and U3,m−1 to B. (The cuts are indicated by dotted lines in Figure 1.) Since
T ′ uses only edges within gadgets or edges of weight 1, we have w(T ′) =

∑m
j=1 cutj. Since T ′

is Eulerian, we know that cutj is even for all j. Since T ′ is connected, cutj ≥ 2 for all j. If
cutj ≥ 4 for all j, then w(T ′) ≥ 4m− 2, and we are done. Otherwise, cutj = 2 for some j. For
ease of notation, we assume that j ∈ {2, . . . ,m− 1}. The remaining cases are almost identical.
Then there is some Ui,j−1 that is not connected to Ui,j in T ′. Thus, there must be two paths
in T ′ that connect Ui,j−1 via A to Ui′,j−1 and Ui′′,j−1 (i′, i′′ 6= i, but i′ = i′′ is allowed). In
the same way, T ′ must contain two paths from Ui,j via B to Ui′,j and Ui′′,j. The weight of
the former paths is 2j − 2 each. The weight of the latter paths is 2m− 2j each. In total, the
weight is 4m− 4. Adding cutj yields the result.

Item 8: The inequality w((d − 2)-F) ≤ d−2
d ·w(d-F) holds since every d-factor for even d can

be split into d/2 2-factors, and we can remove the lightest 2-factor to obtain a (d − 2)-factor.
This is tight if all edge weights are equal.
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Now consider the claim for connected factors. For n = d + 1, the d-factor is the complete
graph and the claim is trivial. Thus, we assume n > d+1. Let R be a connected d-factor. We
describe a process to obtain a connected (d− 2)-factor from R that weighs at most the weight
of R. To do this, we use the following invariants: First, if a graph has only even degrees and
is connected, then it is 2-edge-connected. (Otherwise, removing a bridge edge would result in
two components, and the sum of degrees within each component would be odd.) Second, if
the maximum degree of a graph is d ≤ n− 2 and the graph is connected, then any vertex with
degree d is adjacent to at least two vertices x and y such that x and y are not adjacent.

Let us now describe the process: We take any vertex v with degree d. If v is not a cut vertex,
then we choose a pair of edges {v, x} and {v, y} of R such that {x, y} /∈ R. This exists due
to the invariant. We replace {v, x} and {v, y} by {x, y}, which reduces the degree of v by two
and does not change the degree of the other vertices. The graph is still connected, as v has
still a degree of at least d− 2 ≥ 2 and was no cut vertex.

If v is a cut vertex, let C1, . . . , Ck be the components obtained by removing v. Vertex v has
at least two edges to each component by 2-edge-connectedness. We take one edge to x ∈ C1

and one edge to y ∈ C2 and shortcut it, i.e, remove {v, x} and {v, y} and add {x, y}. Again
this reduces the degree of v by two and does not change the degree of any other vertex. Also
by 2-edge-connectedness, it does not disconnect the graph. Repeating this process until all
vertices have degree d − 2 yields a connected (d − 2)-factor. By the triangle inequality, its
weight is no more than the weight of the connected d-factor.

The analysis is tight because of Item 4.
Item 9: Consider the following instance: we have a central vertex v and d sets V1, . . . , Vd,

which each consist of d + 2 vertices. The distance of v to each other vertex is 1. Within any
set Vi, the distances are 0. The distance between each pair of vertices in two different sets Vi

and Vj is 2.
The optimal connected d-factor has a weight of d: we connect v to one vertex of each set Vi

and complete the d-factor locally within each Vi. In any connected (d−2)-factor, v is connected
to k ≤ d− 2 of the sets V1, . . . , Vd. Thus, there are d− k sets that have to be connected with
an edge of weight 2. This results in costs of at least k + 2 · (d− k) ≥ d+ 2.

Lemma 2.2 (directed comparison). 1. w(d-AF) ≤ w(d-ARCS) for all d and all directed
instances, and this is tight.

2. w(ATSP) ≤ w(d-ARCS) for all d and all directed instances, and this is tight.

3. w((d − 1)-AF) ≤ d−1
d · w(d-AF) and w((d − 1)-ARCS) ≤ w(d-ARCS) for all d ≥ 2 and all

directed instances, and both inequalities are tight.

Proof. The inequality of Item 1 holds because we optimize over a larger set to obtain d-AF. It
is tight, e.g., if all edge weights are equal.

The inequality of Item 2 holds since d-ARCS is Eulerian and connected. Thus, we can obtain
a TSP tour by taking shortcuts and the triangle inequality guarantees that this does not
increase the weight. It is tight, e.g., for the following instance: We have two clusters of d+ 1
vertices each, and within each cluster, the weights are 0. Between the clusters, the weights are
1. Both ATSP and d-ARCS use only two edges between the two clusters, one in each direction.
Thus, they have equal weight.

The first part of Item 3 is straightforward, because d-regular directed graphs stand in one-
to-one correspondence to d-regular bipartite graphs, whose edges can be partitioned into d
perfect matchings [19, Lemma 1.4.17]. Tightness holds if all edge weights are equal.
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The tightness of the second inequality of Item 3 follows from the tightness of Item 2 and
the fact that 1-ARCS = ATSP. Its proof is similar to the proof of Lemma 2.1(8): Let R be a
minimum-weight connected d-factor. We iteratively decrease indegree and outdegree of every
vertex by one. The invariant that we use is that the graph is strongly connected. This holds
for every weakly connected directed graph where indegree equals outdegree at every vertex.

Consider a vertex v with indegree d and outdegree d. First, assume that v is a cut vertex,
and let C1, . . . , Ck be the components obtained by removing v. Since R is strongly connected,
there is an x ∈ C1 and y ∈ C2 with (x, v), (v, y) ∈ R. We remove these two edges and add
(x, y). The resulting graph is weakly connected and thus strongly connected.

If v is not a cut vertex, let y be arbitrary with (v, y) ∈ R. Since y has indegree at most
d, there must be an x with (x, v) ∈ R and (x, y) /∈ R. We replace (x, v) and (v, y) by (x, y).
Since v is no cut vertex, the resulting graph is connected. We iterate this process until we
have a (d − 1)-regular connected graph. By the triangle inequality, its weight is at most
w(d-ARCS).

3 Approximation Algorithms

3.1 3-Approximation for Min-d-RCS and Min-d-R2CS

The 3-approximation that we present in this section works for all d, odd or even. It also
works for d growing as a function of n. An interesting feature of this algorithm, and possibly
an indication that a better approximation ratio is possible for Min-d-RCS, is that the same
algorithm provides an approximation ratio of 3 for both Min-d-RCS and Min-d-R2CS. In fact,
we compute a 2-edge-connected d-regular graph that weighs at most three times the weight of
the optimal connected d-regular graph.

First we make some preparatory observations on 2-edge-connectedness. Given a connected
graph G = (V,E), we can create a tree T (G) as follows: We have a vertex for every maximal
subgraph of G that is 2-edge-connected (called a 2-edge-connected component), and two such
vertices are connected if the corresponding components are connected in G. In this case, they
are connected by a bridge edge. Now consider a leaf of tree T (G) and its corresponding 2-edge-
connected component C. Since C is a leaf in T (G), it is only incident to a single bridge edge e
in G. Now assume that G is d-regular with d ≥ 3 odd (for d = 2, any connected graph is also
2-edge-connected). Let u be the vertex of C that is incident to e. Then u must be incident to
d−1 other vertices in C. Thus, C has at least d vertices. Since the d−1 neighbors of u are not
incident to bridge edges, they must be adjacent to other vertices in C. Since G is d-regular, C
has at least d+1 vertices and more than d2/2 > d edges. Therefore, there exists an edge e′ in
C that is not incident to u, i.e., e′ does not share an endpoint with a bridge edge.

If G is not connected, we have exactly the same properties with “tree” replaced by “forest”.
To simplify notation in the algorithm, let k = k(G) denote the number of 2-edge-connected

components of G that are leaves in the forest described above, and let L1(G), . . . , Lk(G) denote
the 2-edge-connected components of a graph G that correspond to leaves in the tree described
above. For such an Li(G), let ei(G) denote an edge that is not adjacent to a bridge edge in G.
The choice of ei(G) is arbitrary.

We prove that Algorithm 1 is a 3-approximation for both Min-d-RCS and Min-d-R2CS by a
series of lemmas. Since the set of vertices is fixed, we sometimes identify graphs with their
edge set. In particular, R denotes both the connected d-factor that we compute and its edge
set.
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input : undirected complete graph G = (V,E), edge weights w, d ≥ 2
output: 2-edge-connected d-factor R of G

1 compute a minimum-weight d-factor d-F of G;
2 k ← k(d-F)
3 Q← {e1, . . . , ek} with ei = ei(d-F) = {ui, vi}
4 compute MST of G;
5 duplicate each edge of MST and take shortcuts to obtain a Hamiltonian cycle H
6 take shortcuts to obtain from H a Hamiltonian cycle H ′ through {u1, . . . , uk}, assume
w.l.o.g. that H ′ traverses the vertices in the order u1, . . . , uk, u1

7 obtain R from d-F by adding the edges {ui, vi+1} (with k + 1 = 1) and removing Q

Algorithm 1: 3-approximation for Min-d-RCS and Min-d-R2CS.

Lemma 3.1. Assume that R is computed as in Algorithm 1. Then R is a d-regular spanning
subgraph of G.

Proof. If R does not contain multiple edges between the same pair of vertices, then R is d-
regular since we obtain R from a d-factor, remove one edge incident to each ui and vi, and
add one edge incident to each ui and vi. We now show that indeed we have that R does not
contain multiple edges between the same pair of vertices. This can only happen if some edge
e = {ui, vi+1} is present in d-F. Since e connects two 2-edge-connected components, this can
only happen if e is a bridge edge. This is not the case as none of the vertices ui and vi are
incident to a bridge edge in d-F by the choice of the edges ei in Line 3 of Algorithm 1.

Lemma 3.2. Assume that R is computed as in Algorithm 1. Then R is 2-edge-connected.

Proof. First, we observe that R is connected: We do not remove any bridge edges and we
remove at most one edge per 2-edge-connected component of d-F. Furthermore, the 2-edge-
connected components that are not already connected in d-F are connected via H ′. To show
that R is 2-edge-connected, we show that the removal of a single edge does not disconnect the
graph.

If we remove an edge (ui, vi+1), then we still have a connection between ui and vi+1 via
ui+1, ui+2, . . . , ui−2, ui−1. If we remove a bridge edge e = (u, v) of d-F, then both u and v
must each be connected to at least one 2-edge-connected component of d-F. Since those 2-
edge-connected components are also connected through H ′, R remains to be connected: First,
if we remove a non-bridge edge e within a 2-edge-connected component C of d-F, then this
also does not disconnect the graph. If C does not correspond to a leaf in T (d-F), then it is
still 2-edge-connected in R. Thus removing one edge does not disconnect the graph. Second,
if C is a leaf in T (d-F), then an edge e = (u, v) is removed from C in R. If removing another
edge separates C in two components, then u and v must be in separate components, but then
these components are still connected through H ′. Thus, R remains to be connected also in
this case.

Lemma 3.3. Assume that R is computed as in Algorithm 1. Then w(R) ≤ 3 · w(d-RCS) ≤
3 · w(d-R2CS).

Proof. The second inequality follows from Lemma 2.1(1). For the first inequality, we observe
that w(MST) ≤ w(d-RCS) (Lemma 2.1(1)) and w(d-F) ≤ w(d-RCS). Also, w({ui, vi+1}) ≤
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w({ui, ui+1}) + w({ui+1, vi+1}) by the triangle inequality. We have

w(R) ≤ w(H ′) + w(Q)
︸ ︷︷ ︸

adding the {ui, vi+1}’s

− w(Q)
︸ ︷︷ ︸

removing Q

+w(d-F)

≤ w(H) + w(d-F) ≤ 2 · w(MST) +w(d-F) ≤ 3 · w(d-RCS).

The second-to-last inequality holds since we can obtain a TSP tour by duplicating all edges of
an MST and taking shortcuts.

The following theorem is an immediate consequence of the lemmas above.

Theorem 3.4. For all d, Algorithm 1 is a polynomial-time 3-approximation for Min-d-RCS
and Min-d-R2CS. This includes the case that d is a function of n.

Remark 3.5. If we are only interested in a 3-approximation for Min-d-RCS and not for
Min-d-R2CS, then we can simplify Algorithm 1 a bit: we only pick one non-bridge edge for
each component and not for every 2-edge-connected component. The rest of the algorithm and
its analysis remain the same. However, this does not seem to improve the worst-case approxi-
mation ratio.

Remark 3.6. The analysis is tight in the following sense: By Lemma 2.1 (3), a minimum-
weight 2-edge-connected d-factor can be three times as heavy as a minimum-weight connected
d-factor. Thus, any algorithm that outputs a 2-edge-connected d-factor cannot achieve an
approximation ratio better than 3. Furthermore, since w(MST) ≤ w(d-R2CS) and w(d-F) ≤
w(d-R2CS) are tight (Lemma 2.1 (1) and (2)), the analysis is essentially tight. If we only require
connectedness and not 2-edge-connectedness, we see that the analysis cannot be improved since
w(TSP) ≤ 2w(d-RCS) and w(d-F) ≤ w(d-RCS) are tight.

However, it is reasonable to assume that not all these inequalities can be tight at the same
time and, in addition, shortcutting of the duplicated MST to obtain a TSP tour through
u1, . . . , uk does not yield an improvement. Therefore, it might be possible to improve the anal-
ysis and show that Algorithm 1 achieves a better approximation ratio than 3.

Remark 3.7. Lines 4 and 5 of Algorithm 1 are in fact simply the double-tree heuristic for
Min-TSP [29, Section 2.4]. One might be tempted to construct a better tour using Christofides’
algorithm [29, Section 2.4], which achieves a ratio of 3/2 instead of only 2. However, in
the analysis we compare the optimal solution for Min-d-RCS to the MST, and we know that
w(MST) ≤ w(d-RCS) ≤ w(d-R2CS). If we use Christofides’ algorithm directly, we have to
compare a TSP tour to the minimum-weight connected d-factor. In particular for odd d,
we have that for some instances w(TSP) ≥ (43 − o(1)) · w(d-R2CS) ≥ (43 − o(1)) · w(d-RCS)
(Lemma 2.1 (7)). Even if this is the true bound – as it is for d = 3 (Lemma 2.1 (6)) –, the TSP
tour constructed contributes with a factor 3/2 times 4/3, which equals 2, to the approximation
ratio, which is no improvement.

3.2 (r + 1)-Approximation

In this section, we give an (r + 1)-approximation for Min-d-RCS for even values of d and
Min-d-ARCS for all values of d. Here, r is the ratio within which Min-TSP (for Min-d-RCS) or
Min-ATSP (for Min-d-ARCS) can be approximated. This means that we currently have r = 3/2
for the symmetric case by Christofides’ algorithm [29, Section 2.4] and, for the asymmetric
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input : undirected or directed complete graph G = (V,E), edge weights w, d
output: connected d-factor R of G

1 compute a minimum-weight d-factor C of G
2 let C1, . . . , Ck be the connected components of C, and let ei = (ui, vi) be any edge of Ci

3 compute a TSP tour H using an approximation algorithm with ratio r
4 take shortcuts to obtain from H a TSP tour H ′ through {u1, . . . , uk}, assume w.l.o.g.
that H ′ traverses the vertices in the order u1, . . . , uk, u1

5 obtain R from C by adding the edges (ui, vi+1) (with k+1 = 1) and removing e1, . . . , ek

Algorithm 2: (r + 1)-approximation for Min-d-RCS for even d and Min-d-ARCS.

case, we have either r = O(log n/ log log n) if we use the randomized algorithm by Asadpour
et al. [1] or r = 2

3 · log2 n if we use Feige and Singh’s deterministic algorithm [10]. Although
the algorithm is a simple modification of Algorithm 1, we summarize it as Algorithm 2 for
completeness.

Theorem 3.8. If Min-TSP can be approximated in polynomial time within a factor of r, then
Algorithm 2 is a polynomial-time (r + 1)-approximation for Min-d-RCS for all even d.

If Min-ATSP can be approximated in polynomial time within a factor of r, then Algorithm 2
is a polynomial-time (r + 1)-approximation for Min-d-ARCS for all d.

The results still hold if d is part of the input.

Proof. Let T be an optimal TSP tour, and let O be an optimal connected d-factor. Let C be
a minimum-weight d-factor, as computed by Algorithm 2. We have T = ATSP, O = d-ARCS,
and C = d-AF if the input graph is asymmetric and T = TSP, O = d-RCS, and C = d-F if the
input graph is symmetric.

By Lemma 2.1 and Lemma 2.2, we have w(T ) ≤ w(O) and w(C) ≤ w(O). Removing and
adding edges as in Line 5 of Algorithm 2 yields again a d-factor. For the asymmetric case, any
component is strongly connected. After removal of one edge per component, it is still weakly
connected. For the symmetric case, any component is 2-edge-connected. Thus, the removal of
edges in Line 5 does not split any component. Hence, the addition of edges in Line 5 yields
a connected d-factor R. By the triangle inequality, we have w(R) ≤ w(C) + w(H ′) ≤ w(C) +
w(H). Since we use an r-approximation to obtain H, we thus have w(R) ≤ w(C) + rw(T ) ≤
(r + 1) · w(O).

4 Hardness Results

4.1 TSP-Inapproximability

In this section, we prove that Min-d-RCS cannot be approximated better than Min-TSP.

Theorem 4.1. For every d ≥ 2, if Min-d-RCS can be approximated in polynomial time within
a factor of r, then Min-TSP can be approximated in polynomial time within a factor of r.

Proof. We show that Min-d-RCS can be used to approximate Min-TSP. Let the instance of
Min-TSP be given by a complete graph G = (V,E) and edge weights w = (we)e∈E that
satisfy the triangle inequality. Let n = |V |. We construct an instance of Min-d-RCS as
follows: The instance consists of a complete graph H = (V ′, E′). Here V ′ =

⋃

v∈V Vv, where
Vv = {v1, v2, . . . , vd+1}, i.e., H contains (d+1) ·n vertices. We assign edge weights w̃ as follows:
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• w̃{vi,vj} = 0 for all v ∈ V , i 6= j,

• w̃{ui,vj} = w{u,v} for all u 6= v, i and j.

Every TSP tour T of G maps to a connected d-factor R of H of the same weight: We give
T an orientation. For an edge from u to v in T , we include {u1, v2} in R. Adding all edges
except {v1, v2} to R within each Vv yields a connected d-factor R. Clearly, w̃(F ) = w(T ).

Now assume that we have a connected d-factor R of H. We claim that we can construct
a TSP tour T of G with w(T ) ≤ w̃(R). We construct a multiset T ′ of edges of G as follows:
For each edge {ui, vj} of R, if u 6= v, we add an edge {u, v} to T ′. Otherwise, if u = v, we
ignore the edge. The sum of the degrees in R of all vertices in each set Vv is equal to (d+ 1)d
and is therefore even. Thus, for each v, the number of edges leaving Vv in R, which equals
the number of edges incident to v in T ′ by construction, is even as well. Since R is connected,
the multigraph G′ = (V, T ′) is connected as well. By construction, w(T ′) = w̃(R). Since G′ is
connected and all its vertices have even degree, G′ is Eulerian. Therefore, we can obtain a TSP
tour T from T ′ by taking shortcuts. By the triangle inequality, w(T ) ≤ w(T ′) = w̃(R).

The same construction as in the proof of Theorem 4.1 yields the same result for Min-d-R2CS.
A similar construction yields the same result for Min-d-ARCS.

Corollary 4.2. For every d ≥ 2, if Min-d-R2CS can be approximated in polynomial time within
a factor of r, then Min-TSP can be approximated in polynomial time within a factor of r.

Corollary 4.3. For every d ≥ 2, if Min-d-ARCS can be approximated in polynomial time within
a factor of r, then Min-ATSP can be approximated in polynomial time within a factor of r.

Min-TSP, Min-ATSP, Max-TSP, and Max-ATSP are APX-hard [23]. Furthermore, the re-
duction from Min-TSP to Min-d-RCS is in fact an L-reduction [22] (see also Shmoys and
Williamson [29, Section 16.2]). This proves the APX-hardness of Min-d-RCS for all d. The
reductions from Min-TSP to Min-d-R2CS and from Min-ATSP to Min-d-ARCS work in the same
way. Furthermore, by reducing from Max-TSP and Max-ATSP in a similar way (here, the edges
between the copies of a vertex have high weight), we obtain APX-hardness for Max-d-RCS and
Max-d-ARCS as well.

Corollary 4.4. For every fixed d ≥ 2, the problems Min-d-RCS, Min-d-R2CS, and Max-d-RCS
are APX-complete. For every fixed d ≥ 1, Min-d-ARCS and Max-d-ARCS are APX-complete.

4.2 Hardness for Growing d

In this section, we generalize the NP-hardness proof for d-RCS by Cheah and Corneil [6] to the
case that d grows with n. Furthermore, we extend Theorem 4.1 and Corollaries 4.2 and 4.3 and
the APX-hardness of the minimization variants (Corollary 4.4) to growing d. The APX-hardness
of Max-d-RCS and Max-d-ARCS does not transfer to growing d – both can be approximated
within a factor of 1−O(1/d2), which is 1− o(1) for growing d.

Let us consider Cheah and Corneil’s [6, Section 3.2] reduction from 2-RCS, i.e., the Hamil-
tonian cycle problem, to d-RCS. Crucial for their reduction is the notion of the d-expansion of
a vertex v, which is obtained as follows:

1. We construct a gadget Gd+1 by removing a matching of size ⌈d2⌉ − 1 from a complete
graph on d+ 1 vertices.
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2. We connect each vertex whose degree has been decreased by one to v.

The reduction itself takes a graph G for which we want to test if G ∈ 2-RCS and maps it to a
graph Rd(G) as follows: For even d, Rd(G) is the graph obtained by performing a d-expansion
for every vertex of G. For odd d, the graph Rd(G) is obtained by doing the following for each
vertex v of G: add vertices u1, u2, . . . , ud−2; connect v to u1, . . . , ud−2; perform a d-expansion
on u1, . . . , ud−2. We have G ∈ 2-RCS if and only if Rd(G) ∈ d-RCS.

We note that Rd(G) has (d+2) ·n vertices for even d and Θ(d2n) vertices for odd d and can
easily be constructed in polynomial time since d < n.

Theorem 4.5. For every fixed ε > 0, there is a function f = Θ(n1−ε) that maps to even
integers such that f -RCS is NP-hard.

For every fixed ε > 0, there is a function f = Θ(n
1

2
−ε) that maps to odd integers such that

f -RCS is NP-hard.

Proof. We first present the proof for the case that we map to even integers. After that, we
briefly point out the difference for odd integers.

We choose d = 2⌈n
1−ε
ε ⌉ and apply R = Rd(G). The graph R has g(n) = n · (2⌈n

1−ε
ε ⌉ + 2)

vertices since d is even. We have g = Θ(n1/ε). Now we determine f : we require f(g(n)) = d =

2⌈n
1−ε
ε ⌉. This can be achieved because g = ω(n) is an injective function.

Expressed as a function of g, we have d = Θ(g(n)1−ε). For natural numbers that are not
images of g, we interpolate f to maintain the growth bound. Thus, f(n) = Θ(n1−ε).

Let us now point out the differences for functions f mapping to odd integers. In this case,

since the reduction for d maps to graphs of size Θ(d2n), we have to choose d = Θ(n
1−ε
2ε−1 ). This,

however, works only up to ε > 1/2 or functions up to n
1

2
−ε.

In the same way as the NP-completeness, the inapproximability can be transferred. The
reduction creates graphs of size (d + 1) · n. The construction is the same as in Section 4.1,
and the proof follows the line of the proof of Theorem 4.5. Here, however, we do not have to
distinguish between odd and even d for the symmetric variant, as the reduction in Section 4.1
is the same for both cases.

Theorem 4.6. For every fixed ε > 0, there is a function f = Θ(n1−ε) such that Min-f -RCS
and Min-f -R2CS are APX-hard and cannot be approximated better than Min-TSP.

For every fixed ε > 0, there is a function f = Θ(n1−ε) such that Min-f -ARCS is APX-hard
and cannot be approximated better than Min-ATSP.

5 Further Algorithms

5.1 2-Approximation for d ≥ n/3

If d ≥ n/3, then we easily get a better approximation algorithm forMin-d-R2CS andMin-d-RCS.
In this case, d-F consists either of a single component – then we are done – or of two components
C1 and C2 with Ci = (Vi, Ei). In the latter case, we proceed as follows: first, find the lightest
edge e = {u, v} with u ∈ V1 and v ∈ V2. Second, choose any edges {u, u′} ∈ E1 and {v, v

′} ∈ E2.
Third, remove {u, u′} and {v, v′} and add {u, v} and {u′, v′}. The increase in weight is at most
2 · w({u, v}) by the triangle inequality.

The resulting graph is clearly d-regular. It is connected since C1 and C2 are 2-edge-connected:
they both consist of at most 2n

3 −1 vertices and are d-regular with d ≥ n/3. Thus, they are even
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Hamiltonian by Dirac’s theorem [28]. Furthermore, any connected d-regular graph must have
at least two edges connecting V1 and V2: If d is even, then this follows by 2-edge-connectedness.
If d is odd, then |V1| and |V2| are even and, thus, an even number of edges must leave either
of them. Thus, w({u, v}) ≤ 1

2 · w(d-RCS). Since we add at most 2 · w({u, v}) and also have
w(d-F) ≤ w(d-RCS), we obtain the following theorem.

Theorem 5.1. For d ≥ n/3, there is a polynomial-time 2-approximation for Min-d-RCS.

5.2 Decision Problem for d = ⌈n

2
⌉ − 1

For d ≥ n/2, any d-factor is immediately connected and also the minimization variant can be
solved efficiently. In this section, we slightly extend this to the case of d ≥ n

2 − 1.
We assume that the input graph G is connected. To show that the case d = ⌈n2 ⌉ − 1 is in

P, we compute a d-factor. If none exists or we obtain a connected d-factor, then we are done.
Otherwise, we have a d-factor consisting of two components C1 and C2 which are both cliques
of size n/2. If G contains a cut vertex, say, u ∈ C1, then this is the only vertex with neighbors
in C2. In this case, G does not contain a connected d-factor. If G does not contain a cut
vertex, there are two disjoint edges e = {u, v}, e′ = {u′, v′} with u, u′ ∈ C1 and v, v′ ∈ C2.
Adding e and e′ and removing {u, u′} and {v, v′} yields a connected d-factor.

Theorem 5.2. d-RCS is in P for every d with d ≥ n
2 − 1.

5.3 Approximating Max-d-ARCS

The approximation algorithm forMax-d-RCS [2] can easily be adapted to work forMax-d-ARCS:
We compute a directed d-factor of maximum weight. Any component consists of at least d+1
vertices, thus at least d·(d+1) arcs. We remove the lightest arc of every component and connect
the resulting (still at least weakly connected) components arbitrarily to obtain a connected d-
factor. Since we have removed at most a 1

d·(d+1) -fraction of the weight, we obtain the following
result.

Theorem 5.3. For every d, Max-d-ARCS can be approximated within a factor of 1− 1
d·(d+1) .

6 Open Problems

An obvious open problem is to improve the approximation ratios. Apart from this, let us
mention two open problems: First, is it possible to achieve constant factor approximations
for minimum-weight k-edge-connected or k-vertex-connected d-regular graphs? Without the
regularity requirement, the problem of computing minimum-weight k-edge-connected graphs
can be approximated within a factor of 2 [18] and the problem of computing minimum-weight
k-vertex-connected graphs can be approximated within a factor of 2 + 2 · k−1

n for metric in-
stances [16] and still within a factor of O(log k) if the instances are not required to satisfy the
triangle inequality [7]. We refer to Khuller and Raghavachari [17] for a concise survey.

Second, we have seen that (⌈n2 ⌉ − 1)-RCS ∈ P, but we do not know if Min-(⌈n2 ⌉ − 1)-RCS can
be solved in polynomial time as well. In addition, we conjecture that also (⌈n2 ⌉ − k)-RCS is in
P for any constant k.
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