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Abstract. Convolutional neural network (CNN) based methods have
recently achieved great success for image super-resolution (SR). How-
ever, most deep CNN based SR models attempt to improve distortion
measures (e.g. PSNR, SSIM, IFC, VIF) while resulting in poor quanti-
fied perceptual quality (e.g. human opinion score, no-reference quality
measures such as NIQE). Few works have attempted to improve the
perceptual quality at the cost of performance reduction in distortion
measures. A very recent study has revealed that distortion and percep-
tual quality are at odds with each other and there is always a trade-off
between the two. Often the restoration algorithms that are superior in
terms of perceptual quality, are inferior in terms of distortion measures.
Our work attempts to analyze the trade-off between distortion and per-
ceptual quality for the problem of single image SR. To this end, we use
the well-known SR architecture- enhanced deep super-resolution (EDSR)
network and show that it can be adapted to achieve better perceptual
quality for a specific range of the distortion measure. While the original
network of EDSR was trained to minimize the error defined based on per-
pixel accuracy alone, we train our network using a generative adversarial
network framework with EDSR as the generator module. Our proposed
network, called enhanced perceptual super-resolution network (EPSR),
is trained with a combination of mean squared error loss, perceptual
loss, and adversarial loss. Our experiments reveal that EPSR achieves
the state-of-the-art trade-off between distortion and perceptual quality
while the existing methods perform well in either of these measures alone.

Keywords: Super-resolution, deep learning, perceptual quality, GAN.

1 Introduction

The problem of single image super-resolution (SISR) has attracted much atten-
tion and progress in recent years. The primary objective of SISR algorithms is to
recover the high-resolution (HR) image from a given single low-resolution (LR)
image. By definition, SISR is an ill-posed problem as no unique solution exists for
a given LR image. The same LR image can be obtained by down-sampling a large
number of different HR images. The ill-posedness of SISR becomes particularly
pronounced when the scaling factor increases. Deep learning approaches attempt
to solve this ill-posed problem by learning a mapping between the LR and its
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corresponding HR image in a direct or indirect manner. Recent works on deep
neural networks based SISR have shown significant performance improvement
in terms of peak signal-to-noise ratio (PSNR).

SISR with deep networks gained momentum with the primal work of Chao et
al. [12]. While [12] used a 3 layer convolutional neural network (CNN), the sub-
sequent works used deeper network architectures [23,24] and new techniques to
improve the restoration accuracy [31,20] and computational complexity [40,13].
Despite significant progress in both reconstruction accuracy and speed, a major-
ity of the existing works are still far away from reconstructing realistic textures.
This is mainly because of the fact that these works are aimed at improving distor-
tion scores such as PSNR and structural similarity index (SSIM) by optimizing
pixel-wise computed error measures such as mean squared error (MSE). In the
context of SISR, the optimal MSE estimator returns the mean of many possi-
ble solutions [28,39] which often leads to blurry, overly smooth, and unnatural
appearance in the output, especially at the information-rich regions.

Previous studies [46,27] revealed that pixel-wise computed error measures
correlate poorly with human perception of image quality. Considering the fact
that, the behavior of optimization-based SR methods are strongly influenced by
the choice of objective function, one should be able to obtain high-quality images
by picking the best suited objective function for the task at hand. This is the
main motivation behind the recent works on SISR [22,28,39,34] that came up
with new ways to improve the perceptual quality of reconstructed images.

A detailed analysis conducted by [5] showed that distortion and perceptual
quality are at odds with each other and there is always a trade-off between the
two. As observed in [5], the restoration algorithms that are superior in terms of
perceptual quality, are often inferior in terms of distortion measures. They came
up with a new methodology for evaluating image restoration methods which can
be used to better reveal this trade-off. They have proposed to map SR methods
onto a perception-distortion plane and choose the SR method which yields the
lowest perceptual score for a given range of distortion measure as the best per-
forming method for that range. They have also suggested that adversarial loss
can be used to achieve the desired trade-off for the specific application in mind.
Though the work in [5] concluded that the existing SISR works perform well
in either of these metrics, the possibility to achieve better trade-off in different
regions of the perception-distortion plane was left unexplored.

In this work, we analyze the perception-distortion trade-off that can be
achieved by the well-known SISR architecture- enhanced deep super-resolution
(EDSR) network [31]. In our analysis, we limit our focus to SISR by a factor of
4 for LR images distorted by the bicubic down-sampling operator. Selection of
EDSR was motivated by the fact that it is one of the state-of-the-art network
architecture in terms of the distortion measure for SISR. Since the original work
of EDSR proposed in [31] is aimed at improving distortion measure alone, the
perceptual quality achieved by EDSR is poor as pointed out by [5]. We train
EDSR network using a combination of loss functions that can improve distor-
tion measures as well as perceptual quality. Motivated by the observations in
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[22,28,39,5], we use a combination of MSE loss, perceptual (VGG) loss, and ad-
versarial loss to train EDSR. Use of adversarial loss to improve perceptual quality
allowed our approach to traverse different regions in the perception-distortion
plane with ease. We name our approach as enhanced perceptual super-resolution
network (EPSR). Our experiments reveal that EPSR can be used to achieve the
state-of-the-art trade-off between distortion measure and perceptual quality cor-
responding to three different regions in the perception-distortion plane.
Our main contributions are summarized below.
• We expand the scope of EDSR and show that it can be adapted to improve
the perceptual quality by compromising on distortion measures.
•Our proposed approach achieves the state-of-the-art perception-distortion trade-
off results corresponding to different regions in the perception-distortion plane

2 Related Works

Though there exist extensive literature studies on multi-image SR [6,38,14], here
we limit our discussions to SISR works alone. An overview of recent image SR
methods can be found in [37,47]. Early approaches on SISR used sampling theory
based interpolation techniques [2,29,50] to recover the lost details. While these
algorithms can be very fast, they cannot recover details and realistic textures.
Majority of the recent works aim to establish a complex mapping between LR
and HR image pairs. The works in [16,15] were some of the early approaches
to learn such a complex mapping using example-pairs of LR and HR training
patches. In [18], the presence of patch redundancies across scales within an image
was exploited to generate more realistic textures. This idea was further extended
by [21] wherein self-dictionaries were constructed using self-similar patches that
are related through small transformations and shape variations. The convolu-
tional sparse coding framework in [19] process the whole image and exploits the
consistency of neighboring patches to yield better image reconstruction.

To generate edge-preserving realistic textures, [42] employed a learning-based
approach driven by a gradient profile prior. [30] tried to capture the patch redun-
dancy across different scales using a multi-scale dictionary. HR images from the
web with similar contents were used with-in a structure-aware matching crite-
rion to super-resolve landmark images in [48]. The class of neighbor embedding
approaches [8,3,17,44,45] aim to find similar looking LR training patches from a
low dimensional manifold and then combine their corresponding HR patches for
resolution enhancement. The overfitting tendency of neighborhood approaches
was pointed out by [25] while also formulating a more generic approach using
kernel ridge regression. The work in [9] learned a multitude of patch-specific
regressors and proposed to use the most appropriate regressors during testing.

Recently, deep neural networks based SR algorithms showed dramatic per-
formance improvements in SISR. Preliminary attempts to deep-learning based
SISR appeared in [11,12] (SRCNN) wherein a 3 layer network was employed to
learn the mapping between the desired HR image and its bicubic up-sampled
LR image. This was followed by deeper network architectures [23,24] promising
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performance improvement over SRCNN. [23] proposed to use residual-learning
and gradient clipping with a high-learning rate, whereas [24] relied on a deep
recursive layer architecture. The works in [13,40] revealed that SR networks can
be trained to learn feature representations at the LR dimension itself thereby
allowing to use LR images as a direct input rather than using an interpolated im-
age as the input. This improvisation led to significant reduction in computations
while maintaining the model capacity and performance gain. To map from the
LR feature maps to the final HR image, these works used upsampling modules
at the very end of the network. For upsampling, [13] used a deconv layer whereas
[40] employed an efficient sub-pixel convolution layer. The work in [28] came up
with a deeper architecture made of residual blocks for LR feature learning, called
SRResNet. The well-known architecture of EDSR [31] is built as a modification
to SRResNet while using an improvised form of the residual block. They have
employed a deeper network architecture with more number of feature units as
compared to SRResNet to become the winners of NTIRE2017 [43]. The work in
[20] proposed a deep back-projection network (DBPN) to achieve performance
improvement over [43] for the distortion measure based SISR. It should be noted
that all the above-mentioned deep-learning based works have attempted to im-
prove the performance in terms of distortion measures by training loss functions
computed in the form of pixel-wise error measures.

Of particular relevance for our paper are the works that have attempted
to use loss functions that can better approximate perceptual similarity ensur-
ing recovery of more convincing HR images. The works along this line includes
[7,22,28,39,34,10]. Both [7] and [22] attempted to use an error function derived
from the features extracted from a pre-trained VGG network instead of low-
level pixel-wise error measures [41]. More specifically, they used the Euclidean
distance between feature maps extracted from the VGG19 network (called VGG
loss) as the loss function that was found to give more visually appealing results
as opposed to using the MSE loss computed at the pixel-space. SRGAN proposed
in [28] was the first attempt to use a GAN-based network which optimizes for
the so-called adversarial loss to improve the perceptual quality in SISR. While
[28] used a combination of MSE, VGG, and perceptual loss, the work in [39]
used an additional texture matching loss to generate more realistic textures.
[34] employed contextual loss to replace the perceptual loss for improved per-
ceptual quality. [10] proposed to combine the high-frequency information of a
GAN based method and the content information of an MSE loss based method
to obtain achieve the desired balance between distortion and perceptual quality.

3 Method

An LR image ILR can be related to its corresponding HR counterpart (IHR) as

ILR = dα(IHR) (1)

where dα refers to the degradation operator which when acts on IHR results in
ILR and α (>1) is the scaling factor. Though the degrading factors involved in
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dα can be a combination of blur, decimation, or noise, in this work, we assume
dα to represent a bicubic downsampling operation with a single scale factor of
4. The task of SISR is to find an approximate inverse f ≈ d−1 to yield an HR
image estimate Iest from ILR. This problem is highly ill-posed as there exists a
large number of possible image estimates Iest for which the degradation relation
(dα(Iest) = ILR) holds true.

Majority of the deep-learning approaches attempt to find f by minimiz-
ing the MSE loss between the network output and the ground truth image
(||Iest − IHR||22). While such a scheme can give excellent results in terms of dis-
tortion measures, the resulting images are often blurry and lack high-frequency
textures. Previous works on perceptual SR have shown that this limitation can
be overcome by employing the loss functions that favor perceptually pleasing
results. However, such perceptual improvements result in the reduction of distor-
tion measures. The objective of our work is to experimentally find the perception-
distortion trade-off for the state-of-the-art SISR architecture of EDSR.

Next, we will explain the details of our approach, including the network
architecture, loss functions, and the methodology that we adopted to find the
best possible trade-off corresponding to the network architecture of EDSR.
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Fig. 1. Network architecture of EPSR.

3.1 Network Architecture

The complete architecture of the SR network used in our work is shown in Fig.
1. Our network consists of EDSR acting as the generator module and a CNN
based classifier acting as a discriminator module. In the diagram shown in Fig.
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1, conv(n,k, s) refers to a convolution layer with n number of k× k filters per-
forming convolution by a stride factor of s. For simplicity we use the notation
(n,k, s) instead of conv(n,k, s) in the diagram corresponding to the discrimina-
tor. EDSR is built based on a modified form of residual block wherein no batch
normalization units are used. An additional residual scaling layer (multiplication
by a constant scale factor of 0.1) is inserted onto each residual block to numeri-
cally stabilize the training procedure in the absence of batch-normalization. This
kind of a modified form of the residual block has allowed the work in [31] to em-
ploy a deeper network architecture with more number of feature units in each
layer to improve the performance over the SRResNet architecture of [28]. The
generator module comprises of 32 (modified form of) residual blocks (refer Fig.
1 for more details). The LR images are directly provided to the network as in-
puts. To increase the resolution by a factor of 4, residual blocks are followed by
two pixel shuffler units each of which increases the spatial resolution by a factor
of 2. As shown in Fig. 1, the discriminator that we used is a 10 layer network
trained to produce a single output 0/1 depending on the input data which can
be Iest/IHR. The network consists of a number of convolution layers followed by
fully connected layers which map from an image to a single output value.

3.2 Training and Loss Functions

We used the following form of loss function to train the network.

L = λ1LVGG + λ2LE + λ3Ladv (2)

where L is the total loss function used for training the generator network. LE is
the MSE between the network output and ground truth HR image given by

LE = ||Iest − IHR||22 (3)

LVGG is the perceptual loss [22] computed using the VGG network [41] as

LVGG = ||φ(Iest)− φ(IHR)||22 (4)

where φ refers to VGG feature layers. Previous studies on perceptual SISR [28,39]
have shown that the use of perceptual loss LVGG can provide further boost in
the detail enhancement if used along with adverserial loss. Following this line,
we also use LVGG to provide an additional support to the adversarial loss for
improving the perceptual quality. Similar to the work in [28], we used VGG54 as
the feature extraction layer (i.e, the feature maps obtained by the 4th convolution
(after activation) and before the 5th max-pooling layer). Ladv is the adversarial
loss derived from the discriminator network and is given by

Ladv = − logD(G(ILR)) (5)

where G(·) and D(·) indicates the network outputs from the generator and dis-
criminator respectively. λ1, λ2, and λ3 are non-negative scale factors that can
be varied to control the perception-distortion trade-off.
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Network model → BNet EPSR

λ1 λ2 λ3 λ1 λ2 λ3

Region 1 (RMSE ≤ 11.5) 1 0.1 0.4 1 .05 0.4

Region 2 (11.5 < RMSE ≤ 12.5) 1 0.05 0.4 1 0.02 0.4

Region 3 (12.5 < RMSE ≤ 16) 1 0.0005 0.6 1 0.0005 0.6
Table 1. Parameter settings used for training BNet and EPSR to obtain results cor-
responding to Region 1, 2, and 3. BNet (refer Section 4) is a baseline network used for
performance comparison.

Motivated from the observation that GANs can provide a principled way to
approach the perception-distortion bound [5], we train our network using differ-
ent values of λ2 and λ3 (refer Table 1) to achieve the best possible perception-
distortion trade-off using EPSR. The training of EPSR is done similar to that of
[28]. The generator network is trained to learn a mapping from input image ILR
to an approximate estimate of the HR image Iest by optimizing the loss function
L. Simultaneously, the discriminative network D is trained to distinguish be-
tween real images IHR from the training dataset and generated image estimates
of the network G(ILR). To train the discriminator we minimize the loss function.

LD = −log(D(IHR))− log(1−D(G(ILR))) (6)

During training, the discriminator was updated twice followed by a single gen-
erator update. Also, to train the network with different values of λ2 and λ3, we
initialized the model weights of generator using pre-trained weights of EDSR
(obtained by training EDSR with λ1 = λ3 = 0).

3.3 Implementation Details

To train our network, we used the first 800 images of DIV2K dataset [1]. The HR
images were bicubically down-sampled by a factor of 4 to create the input LR
images for training. We followed a patch-wise training wherein the patch-size
of the network output was set to 192. We used ADAM [26] optimizer with a
momentum of 0.9 and a batch size of 4. The network was trained for 300 epochs
and the learning rate was initially set to 5e-5 which was reduced by a factor of 0.5
after 150 epochs. We used pre-trained VGGNet weights to enforce the effect of
perceptual loss. Our implementation was done in PyTorch and was built on top
of the official PyTorch implementation of [31] which was available online. The
code was run on TITAN-X Pascal GPU. It took around 45 hrs to complete the
training of one single network. On an average, during testing, to super-resolve
an input image of size 100 × 100, EPSR takes around 0.5 seconds.

4 Evaluation

To evaluate the performance, we follow a procedure similar to that of “The PIRM
challenge on perceptual super-resolution” (PIRM-SR) [4] and [5]. The evaluation
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Dataset Scores bicubic SRCNN[12] EDSR[31] DBPN[20] BNet1 EPSR1

PIRM-self

RMSE 13.2923 12.0194 10.8934 10.9779 11.4956 11.4924
PSNR 26.5006 27.5258 28.5754 28.4927 27.9752 27.9852
SSIM 0.6980 0.7429 0.7808 0.7773 0.7511 0.7508

PI 6.805 5.8247 5.0399 5.2043 4.1492 2.9459

Set5
PSNR 28.4164 30.5314 32.4034 32.3337 31.4505 31.6954
SSIM 0.8096 0.8630 0.8960 0.8949 0.8739 0.8751

PI 7.323 7.0858 5.8366 6.107 5.4136 4.8087

Set14
PSNR 25.6675 26.7191 27.4193 28.1266 27.0541 27.0123
SSIM 0.6921 0.7316 0.7543 0.7686 0.7342 0.7315

PI 6.968 6.0189 5.2942 5.5723 4.4824 3.7101

BSD100
PSNR 26.2128 26.7564 27.0088 27.0145 26.8711 26.7497
SSIM 0.6839 0.7198 0.7396 0.7364 0.71782 0.7133

PI 6.9485 5.9707 5.36 5.5362 4.6416 3.5503

Urban100
PSNR 22.7809 23.5834 24.5753 24.4825 24.1029 24.3012
SSIM 0.6477 0.6984 0.7517 0.7460 0.72199 0.7302

PI 6.8796 5.8414 5.0395 5.1944 4.2223 3.8994

Table 2. Results on public benchmark test data and PIRM-self validation data for
existing distortion measure specific methods and our methods corresponding to region
1 (BNet1 and EPSR1). Bold red indicates the best performance in Region 1 and light
red indicates the second best.

is done in a perceptual-quality aware manner [5], and not based solely on the
basis of distortion measures. To this end, we divide the perception-distortion
plane [5] into three regions defined by thresholds on the RMSE of the SR outputs.
The thresholds used for the three regions are mentioned in Table 1.

We used perceptual index (PI) to quantify the perceptual quality. PI is com-
puted by combining the quality measures of Ma-score [32] and NIQE [36] as
follows

PI =
1

2
((10−Ma-score) + NIQE) (7)

Note that, a lower PI indicates better perceptual quality. The algorithm with
the best perceptual score (or equivalently lowest PI) in each region is treated
as the one with most visually pleasing results corresponding to that particu-
lar region. This approach of region-wise comparison quantifies the accuracy and
perceptual quality of algorithms jointly, and will, therefore, enable a fair com-
parison of perceptual-driven methods alongside algorithms that target PSNR
maximization.

To have an idea about the performance level of EPSR, we compare it with
that of the trade-off values achieved by a baseline network formed by our-self. We
call our baseline network as BNet and is a simplified form of EPSR. Unlike EPSR,
the generator of BNet has no residual scaling. BNet uses 32 number of residual
blocks and 64 filters in each layer of the residual block. BNet is equivalent to the
network in [28] (SRGAN) except for the fact that [28] use batch normalization
units in the generator whereas BNet does not.
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Dataset Scores ENet[39] CX[34] BNet2 BNet3 EPSR2 EPSR3

PIRM-self

RMSE 15.9853 15.2477 12.4709 15.6292 12.4094 15.3586
PSNR 25.0642 25.4051 27.1789 25.2845 27.342 25.4541
SSIM 0.6463 0.6744 0.7184 0.6560 0.72744 0.6655

PI 2.6876 2.131 2.4795 2.2354 2.3881 2.0688

Set5
PSNR 28.5641 29.1017 30.7637 28.6764 31.2168 29.5757
SSIM 0.80819 0.82982 0.85485 0.80948 0.8630 0.8388

PI 2.9261 3.2947 4.0003 3.2223 4.1123 3.2571

Set14
PSNR 25.7521 25.2265 26.5242 25.2487 26.6068 25.5238
SSIM 0.67953 0.67606 0.7104 0.6595 0.71342 0.6848

PI 3.014 2.759 3.1706 2.6473 3.0246 2.6982

BSD100
PSNR 25.3764 24.2868 26.1619 24.7761 26.2819 24.9753
SSIM 0.64268 0.6396 0.6826 0.6217 0.69054 0.64503

PI 2.9297 2.2501 2.801 2.3674 2.7458 2.199

Urban100
PSNR 23.6771 22.8444 23.5657 22.0168 23.9985 22.7959
SSIM 0.69775 0.6748 0.6934 0.6454 0.71798 0.66631

PI 3.4679 3.3894 3.6345 3.2721 3.6236 3.3316

Table 3. Results on public benchmark test data and PIRM-self for existing perceptual
quality specific methods and our proposed methods corresponding to Region 2 and
Region 3 (EPSR2 and EPSR3). Bold blue (and red) indicates the best performance in
Region 2 (and Region 3) and light blue (and red) indicates the second best.

To perform a region-wise comparison, we train both BNet and EPSR with a
different set of weights for MSE loss and adversarial loss. The weights for the best
trade-off was empirically found for each region (refer to Table 1 for details). In the
following comparisons, BNet1 (/BNet2/BNet3) and EPSR1 (/EPSR2/EPSR3)
refers to the best model weights (i.e., the ones with the lowest PI) obtained for
Region 1 (/2/3) corresponding to BNet and EPSR respectively. We perform the
region-wise performance comparisons with the most relevant methods on dis-
tortion measure (bicubic interpolation, [12,31,20]) as well as perceptual quality
[39,34]. Since the code of SRGAN [28] was not available, an equivalent compar-
ison is done using BNet. We could not compare with the other perceptual SR
methods [7,22,10], as the source codes for them were not available.

Evaluation is done on the public benchmark data sets of Set5 [3], Set14 [49],
BSD100 [33], Urban100 [21] and the self-validation data from PIRM-SR (PIRM-
self) [4]. Since PIRM-self contains 100 images with an equal distribution of scenes
and quality, it can be treated as the most suited dataset for perceptual quality-
based evaluation. Consequently, we use the average MSE values computed over
PIRM-self to define the three regions in the perception-distortion plane.

4.1 Quantitative Results

To quantitatively compare the performance, we report the values of PSNR,
SSIM, and PI. The results corresponding to [31] is obtained using the model
weights of EDSR obtained through our own training. Also, the values that we
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042 from PIRM-self

IHR EDSR[31] ENet[39] CX[34] BNet1

BNet2 BNet3 EPSR1 EPSR2 EPSR3

8023 from BSD100

IHR EDSR[31] ENet[39] CX[34] BNet1

BNet2 BNet3 EPSR1 EPSR2 EPSR3

041 from Urban 100

IHR EDSR[31] ENet[39] CX[34] BNet1

BNet2 BNet3 EPSR1 EPSR2 EPSR3

Fig. 2. Qualitative comparison of our models with other works on x4 super-resolution.
The image examples are taken from datasets of PIRM-self (Row 1), BSD100 (Row 2),
and Urban100 (Row 3).

have obtained for the existing methods on distortion measure is slightly different
as compared to the ones reported in the original papers. This could be due to
the difference in the way we have computed the scores. All the scores reported
in this paper are computed on the y-channel after removing a 4-pixel border.

Table 2 lists the quantitative comparison of distortion measure based meth-
ods with that of BNet1 and EPSR1. 1 As is evident from Table 2, EPSR performs
the best and achieve the lowest PI in Region 1 and BNet turns out to be the
second best. Both BNet1 and EPSR1 is able to deliver low PI values (i.e., better
perceptual quality) while maintaining much better distortion measures (RMSE,
PSNR, and SSIM) as compared to bicubic interpolation and SRCNN. A careful
inspection of the distortion measure based method reveals that the perceptual

1 Bicubic and SRCNN correspond to Region 2 since their RMSE values are above 11.5



Enhanced Perceptual Super-resolution Network 11

quality improves as the PSNR increases, however, the relative improvement is
very narrow. Differently, a comparison between EDSR and EPSR1 shows that
the use of adversarial loss has helped EPSR1 to achieve significant improvement
in perceptual quality but while subjected to reduction in distortion measures.

Table 3 lists the quantitative comparison of perceptual-SISR methods with
that of BNet and EPSR corresponding to Region 2 and 3. It should be noted
that, among all the datasets that we have compared, Set5, Set14, and Urban
100 are not the ideal ones for perceptual quality comparisons. Because Set5 and
Set14 have only a small number of images whereas Urban100 covers only the
images of urban scenes. Both, BSD 100 and PIRM-self covers wide-variety of
scenes and can be treated as an ideal collection of natural images of different
kinds. Comparisons over BSD 100 and PIRM-self in Table 3 underscore the
superior perceptual quality improvement achieved by EPSR. In other datasets,
the method which has the lowest PI varies. In Set5, ENet[39] performs best in
Region 3, whereas BNet2 performs best in Region 2. In Set14 and Urban 100, the
best performing methods are CX[34], BNet, and EPSR with only a comparable
performance difference between each other.

Considering all regions together, one can see that, EPSR achieves the best
perceptual scores, with CX[34] being second best. By comparing BNet and EPSR
scores across different regions we can notice the trade-off between the PI and
RMSE. When we allowed having more distortion (i.e., higher RMSE), both BNet
and EPSR are able to yield significant improvement in perceptual quality. Note
that the generator network of BNet is inferior to that of EPSR in terms of
distortion measures. This allows EPSR to achieve better perceptual quality than
BNet for a fixed level of distortion. We believe the following as the primary reason
for such an effect. To improve the perceptual quality, a network needs to generate
more realistic textures resulting in an increase of the content deviation from the
ground truth image. Therefore, for a given distortion range, a generator network
which is superior in terms of distortion-measure is more likely to generate results
with the best perceptual quality when trained using a GAN framework.

4.2 Qualitative Results

For qualitative comparisons, we show a few examples from the standard bench-
mark datasets. In all the cases, we also show the ground truth (GT) images
to get an idea about the content distortions introduced by the perceptual SR
methods and also to visualize the extent to which the distortion measure based
methods can reveal the lost details. Fig. 2 and Fig. 3 shows visual comparisons of
seven examples in total. Examples in Fig. 2 and Fig. 3 clearly shows that, though
ENet[39] is able to achieve a significant level of detail enhancement, the texture
details added by the network is often very different from the ground-truth. Also,
ENet[39] appears to add strong noise components while attempting to do detail
enhancement. In comparison to ENet[39], the presence of noise and unrealis-
tic texture is less for the case of CX[35] while maintaining a comparable level
of detail enhancement. Contrarily, EPSR3 is able to generate realistic textures
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008 from Urban100

IHR Bicubic SRCNN[12] EDSR[31] DBPN[20]

ENet[39] BNet1 BNet3 EPSR1 EPSR3

053 from Urban100

IHR Bicubic SRCNN[12] EDSR[31] DBPN[20]

ENet[39] BNet1 BNet3 EPSR1 EPSR3

022 from PIRM-self

IHR Bicubic SRCNN[12] EDSR[31] DBPN[20]

ENet[39] BNet1 BNet3 EPSR1 EPSR3

045 from PIRM-self

IHR Bicubic SRCNN[12] EDSR[31] DBPN[20]

ENet[39] BNet1 BNet3 EPSR1 EPSR3

Fig. 3. Qualitative comparison of our models with other works on x4 super-resolution.
Examples are taken from datasets of Urban100 (Rows 1-2) and PIRM-self (Rows 3-4).
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that are faithful to both the GT image and the outputs from distortion-based
methods.

The presence of spurious noise components in ENet[39] outputs can be seen in
the first example of Fig. 2 as well as the first and second example of Fig. 3. For all
these examples, BNet3 also resulted in a very similar noise disturbance. However,
EPSR3 was able to generate visually pleasing realistic textures in the output.
Second and third examples in Fig. 2 corresponds to failure case of ENet[39],
CX[35], and BNet3 wherein all of them resulted in texture patterns that are
very different from the GT, whereas EPSR3 has succeeded in generating outputs
that are more faithful to the GT image. The fourth example of Fig. 3 shows
the detail-preservation ability of EPSR as compared to the other perceptual
methods. While EPSR3 succeeded in reconstructing the seal whiskers to a great
extent, both BNet and ENet[39] failed to do so.

In all the examples, the inadequacy of distortion based methods for recon-
structing detailed textures is clearly evident. While outputs from both bicubic
and SRCNN is affected by heavy blur, EDSR and DBPN output images with
a minimal level of blur. The perceptual SR methods, on the other hand, gener-
ates detailed structures that are not necessarily consistent with the GT image.
Among all the perceptual SR methods, EPSR performs the most convincing
detail enhancement and is the one which generates detail enhanced outputs
that are closest to the GT image. As indicated by the quantitative evaluation,
EPSR1 achieves significant perceptual quality improvement over EDSR while
incurring only minimal distortion as compared to EDSR. This effect is predom-
inantly visible in the first example of Fig. 2 and first two examples from Fig.
3. As is evident from the Visual comparison of images from EDSR and EPSR
reveals the progressive detail recovery that can be achieved by EPSR while
moving across different regions in the perception-distortion plane. A very sim-
ilar observation can also be made by comparing the images corresponding to
BNet too. The source code and results of our method can be downloaded from
https://github.com/subeeshvasu/2018_subeesh_epsr_eccvw.

4.3 Trade-off Comparison with BNet

To analyze the impact of the generator module in achieving the trade-off, we per-
form a trade-off comparison between BNet and EPSR. Note that BNet uses a
generator which is inferior to that of EPSR in terms of the distortion measures.
Therefore, we expect to obtain a better perception-distortion trade-off using
EPSR. Fig. 4(a) is a plot corresponding to the trade-off comparison between
BNet and EPSR, wherein we have used the network model weights correspond-
ing to different parameter settings that span different regions in the perception-
distortion plane. To generate the plot in Fig. 4, we use the PI and RMSE values
computed based on the PIRM-self dataset. To obtain model weights correspond-
ing to different trade-off points, we have trained BNet and EPSR with different
parameter settings and chose a number of network weights that yields the lowest
PI values over a certain range of RMSE. It is evident from Fig. 4 that EPSR is
able to deliver a much better trade-off as compared to BNet as expected.

https://github.com/subeeshvasu/2018_subeesh_epsr_eccvw
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Fig. 4. (a)Perception-distortion trade-off between BNet and EPSR. For both methods,
we plot the values corresponding to 19 model weights which span different regions on
the perception-distortion plane and the corresponding curves that best fit these values.
(b) Performance comparison of top 9 methods from PIRM-SR challenge [4]. Methods
are ranked based on the PI and RMSE values corresponding to the test data of PIRM-
SR. The entries from our approach are highlighted in red. Methods with a marginal
difference in PI and RMSE values share the same rank and are indicated with a *.

4.4 PIRM challenge on perceptual super-resolution

We have used our proposed model EPSR to participate in the PIRM-SR chal-
lenge [4] wherein the objective was to compare and rank perceptual SISR meth-
ods for an SR factor of 4. In order to rank each method, the perception-distortion
plane was divided into three regions defined by thresholds on the RMSE. In each
region, the winning algorithm is selected as the one that achieves the best per-
ceptual quality. We have used parameter-tuned variants of EPSR to obtain the
results corresponding to all three regions. The RMSE range used to define the
three regions and the parameter settings that we have used to generate the re-
sults corresponding to the three regions are mentioned in Table 1. Our method
was ranked 1,2, and 3 in region 1,2, and 3 respectively as shown in Fig. 4(b).

5 Conclusions

We proposed an extension to the state-of-the-art EDSR network by using it
within a GAN framework. The proposed approach, EPSR, scales well in differ-
ent regions of the perception-distortion plane and achieves superior perceptual
scores when compared in a region-wise manner to other existing works. The per-
formance improvement achieved by our approach is a cumulative result of the
following factors: state-of-the-art SR network (EDSR) as the generator module,
careful selection of loss function weights, and initialization of GAN training with
the pretrained weights of EDSR. Our analysis of the perception-distortion trade-
off between BNet and EPSR signal the possibility to further boost the trade-off
by adopting another generator module that yields better distortion measures.
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