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Abstract—Learning to communicate with alternative augmen-
tative communication devices can be difficult because of the
difficulty of achieving controlled interaction while simultaneously
learning to communicate. What is needed is a device that
harnesses a child’s natural motor capabilities and provides the
means to reinforce them. We present a kinematic sensor-based
system that learns a child’s natural gestural capability and allows
him/her to practice those capabilities in the context of a game.
Movement is captured with a single kinematic sensor that can
be worn anywhere on the body. A gesture recognition algorithm
interactively learns gesture models using kinematic data with the
help of a nearby teacher. Learned gesture models are applied
in the context of a game to help the child practice gestures to
gain better consistency. The system was successfully tested with
a child over two sessions. The system learned four candidate
gestures: lift hand, sweep right, twist right and punch forward.
These were then used in a game. The child showed better
consistency in performing the gestures as each session progressed.
We aim to expand on this work by developing qualitative scores
of movement quality and quantifying algorithm accuracy on a
larger population over long periods of time.

Index Terms—Cerebral Palsy, Accelerometer, Gyroscope,
Game, Motor Skills

I. INTRODUCTION

Alternative Augmentative Communication (AAC) systems
are commonly used for communication [1] by children with
cerebral palsy (CP). Typical operation of these devices requires
controlled motor interaction such as touching a switch or
pointing. One issue with their operation is that accurate reach
and press require a lot of training effort from the child,
detracting from the process of communication itself, since the
physical demands of the task are so high. The problem is
compounded when the child is visually impaired, a condition
found in 60% of children with CP. Visual impairment does
not allow precise motor control due to lack of feedback. Thus,
from a design perspective, what is needed is a communication
device that harnesses a child’s natural motor capabilities and
provides the means to reinforce them.

In this paper, we describe a kinematic sensor-based system
that is designed to learn a child’s existing motor capacity.
Movement is captured with a kinematic sensor (consisting of
accelerometers and gyroscopes) that can be worn anywhere
on the body. Attaching a kinematic sensor to the body allows
direct capture of movement free of occlusions. Kinematic
sensor-based activity monitors have been successfully used
in monitoring of gross movement [2, 3]. Accelerometer-
based sensors that recognize gestures have been developed
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to detect arm movements [4, 5] and in characterizing head
motion disorders for gesture recognition [6]. We extend this
work by employing a gesture recognition algorithm that uses
movement captured with kinematic sensors and interactively
learns gesture models that are natural to the child. Here, a
teacher or caregiver uses the child’s natural movements to
teach the system an understanding of what gestures the child
is capable of. These are then associated with a dictionary of
sentences or actions.

Another goal in this work is to reinforce a child’s natural
gestures to increase repeatability. One way to reinforce motor
skills and improve gesture consistency is through practice in a
game. Packaging motor skill training in a video game format
has the potential to improve sessions by reducing the stress
of learning. Jannink et al. [7] successfully used the EyeToy
game for training of upper extremity function in children.
Sandlund et al. [8] used off-the-shelf consoles and reported
high compliance. We adopt this approach by using learned
gesture models in the context of a game to help a child practice
gestures. An issue with previous systems is that they require
the infrastructure of a living room for full usability. Better
compliance could be achieved if the game were made even
more portable. In our system, kinematic data captured by the
sensor are transmitted wirelessly to a phone, thus allowing
easy portability according to the convenience of the child.

The unique contribution of this system is that it harnesses
existing motor capacity and movement in children to enable
communication. The device has the potential to enable clear
communication for students whose ability to control breathing
and sound production reduce drastically as their emotions or
discomfort rise. The sensor also makes it intuitive for a child
who is visually impaired, as there is no need to interact with
an object in space. It also has great potential for students
who have severe cognitive deficits, are non-verbal and whose
communication of needs are understood by subtle movements.
Using our system, one can verbalize these movements, making
their needs understood by a wider range of people who may
otherwise not understand their signals.

II. GESTURE CAPTURE AND LEARNING

Learning a gesture model involves supplying appropriate
(gesture, label) pairs in batch mode to a classifier that then
optimizes the model’s parameters. This approach was not
feasible in our case for a number of reasons. For children with
cerebral palsy without adequate training in gestures, it was not
always possible to perform a gesture consistently. In addition,
a child may be prone to involuntary movements which would
need to be segmented out. Thus the input gestures are noisy
and have many false positives. Additionally, in the absence
of prior information about gesture structure, the quality of
movement for the gesture needs to be assessed before passing
it as an input to the learning algorithm.

To tackle these constraints, we adopted an interactive ma-
chine learning [9, 10] paradigm. This paradigm relies on



Figure 1: Models can be learned to take advantage of a child’s individual motor capability. Here, rather than focusing on
teaching the child to adapt to the device, the teacher teaches the device to adapt to the child.

Figure 2: Sensor hardware used to collect data. Data
was streamed wirelessly to a nearby phone. Image source:
www.sparkfun.com

learning a gesture model in an online setting by providing
continuous feedback to the algorithm with a human in the
loop. As shown in Figure 1, the human in the loop was a
teacher who supervised the child and the algorithm during the
training procedure. The teacher decided whether a (gesture,
label) pair was appropriate for the gesture model. If approved,
the classifier would update its parameters to be consistent with
the teacher’s input. In this way, rather than simultaneously
teaching the child how to communicate and make gestures
appropriate to AAC hardware, the teacher could leave the
burden of adaptation to the gesture learning system. The
teacher could then focus on teaching the child the associations
between the learned natural movements and a communicative
output.

A. Hardware and Pre-processing

Kinematic data were captured using the Razor Inertial
Measurement Unit [11] from Sparkfun. The sensor captures
triaxial accelerations (using the ADXL345 accelerometer) and
rotational rates (using the ITG-3200 gyroscope). These data
are sampled at 50 Hz and transmitted via the RN-41 Bluetooth
module. Data were received by the Samsung 5360 phone
running Android v2.3.5. The phone has an 830 MHz ARMv6
processor. The sensor is typically worn on the particular limb
segment for which movement is to be recorded. Before using
the system, gyroscope readings needed to be calibrated by

subtracting a DC bias. This was done by keeping the sensor
still for 3 seconds, recording the mean bias values for each
axis, represented as

[
ĝx ĝy ĝz

]
and then continuously

subtracting the same from each gyroscope sensor stream.

B. Gesture Segmentation and Parametrization

Segmentation was achieved using gyroscopes. Gestures
were segmented using the rule that any movement outside of
rest should be recorded as a gesture. At an instant of time, t,
let each six dimensional data point be:

d(t) =
[
dacc(t) dgyr(t)

]
=

[
ax(t) ay(t) az(t) gx(t) gy(t) gz(t)

]
.

Given the gyroscopic component of the movement vector
dgyr, we calculated a movement magnitude time series where
each instantaneous term is given by:

mgyr(t) =

√
(gx(t)− ĝx)2 + (gz(t)− ĝy)2 + (gz(t)− ĝz)2.

This time series was then filtered using a low pass filter
with 3 dB cutoff that could be adjusted to anywhere between
1 Hz and 2 Hz, depending on the limb to which the sensor was
attached and the child’s movement capability. This was chosen
to preserve smoothness of movement while allowing a mini-
mum time lapse of 1 second (or 2 seconds) between gestures.
With the filtered time series, if the movement magnitude was
greater than a set threshold and remained so for a minimum
amount of time, the original time series d(t) corresponding
to this time period was segmented out as a gesture candidate.
Each gesture could be represented by a 6×Nn matrix where
Nn is the length of the nth gesture.

The segmented gesture was split into 4 sub-segments each
of dimension 6×

⌊
Nn

4

⌋
. This resulted in a total 24 sub-gestures

corresponding to 6 data streams and 4 sub-segments for each
dimension. These numbers were chosen based on experience
with the data. Each sub-gesture was parametrized into a feature
vector to represent the information contained in it. The features
calculated were mean, variance, and root-mean-squared value.
This resulted in a 72 dimensional feature vector, xn to describe
the nth gesture.



Algorithm 1 Algorithm to learn gesture models from data
Initialize:
Set W = 0

(
W ∈ Rk×d

)
for k classes and d features.

Let Wr be the rthrow of this matrix corresponding to class r.
Loop:
Foreach training data input xn

• Predict the label ŷn ← argmax
r

WT
r xn

• Provide the label ynby pressing button.
• If ŷn = yn, add {xn, yn} to reference set R return
• else run function_remodel

endFor

function_remodel -
er← 1
while(er = 1)
Foreach training pair {xn, yn} ∈ R
errors← 0

• Predict the label ŷn ← argmax
r

WT
r xn

• If ŷn 6= yn

– Wŷn
←Wŷn

− τnxn
– Wyn ←Wyn + τnxn
– errors← errors + 1

if errors = 0
er← 0

C. Algorithm Description
The segmented gesture candidates were used to train a

gesture model that maps gesture features to dictionary labels.
We implemented an interactive algorithm using a modified
version of the perceptron algorithm [12] with a winner-takes-
all extension to handle multiple classes. Our aim was to pick a
set of natural gestures that the child can perform and have the
algorithm learn them for future use. The perceptron algorithm,
described in algorithm 1, uses a modifiable linear model to
predict labels for gestures. The child supplies a candidate
gesture, represented by its feature vector xn. The algorithm
supplies a most likely label ŷn predicted using a linear model
as:

ŷn = argmax
r

WT
r xn

The teacher can decide whether to accept the label as cor-
rect, ignore the gesture or supply a correction label. If the
algorithm’s label is marked as correct, the feature-label pair
is added to a historical reference set. If a correction label is
supplied, then the algorithm adjusts its model parameters so as
to be simultaneously consistent with the new label and historic
reference set. Once the model is learned, the algorithm can
guess future gestures using the rule ŷn = argmax

r
WT

r xn.

D. Design Issues
In addition to the feedback that the teacher provides, addi-

tional heuristics were necessary to ensure that the algorithm
converged to the right model. We found that when providing
multiple examples of an input gesture, it was better to train
on a smaller set of “correct” gestures than a larger number of
noisy gestures. The learning algorithm was thus dependent on

Figure 4: Mobile phone game that requires a child to minimize
off-diagonal scores. With more practice while playing the
game, the child showed more consistent performance as the
session progressed due to increased familiarity.

the teacher making sure that input data quality was maintained.
Additionally, it was required to set a dynamic learning rate η
to account for the confidence of the learning algorithm. These
included cases where the algorithm had high confidence and
was wrong (fast learning rate to ensure quicker correction),
low confidence and wrong (slow learning rate for slower
correction) and corner cases such as encountering a gesture
for the first time.

III. SYSTEM EVALUATION

A. Game Design
A mobile game was developed to let the child practice the

gestures learned by the algorithm. The design considerations
for the game were that it should be easy to play, able to
keep the child engaged for sufficient practice and provide
meaningful outputs for a therapist to check the child’s perfor-
mance. Additionally, the game must also be visible for visually
impaired children. We formulated the game in the form of a
square matrix with each row corresponding to the performance
for a particular gesture. Each square also had a number
corresponding to the number of times the gesture was correct.
Each main diagonal element of the square corresponded to
the child performing the gesture correctly. These were colored
yellow (for easy visibility), the remaining colored gray. The
child was encouraged to perform the gesture corresponding
to each row. Depending on what the algorithm predicted, the
number of the corresponding box would increase. If performed
correctly, the number in the yellow box corresponding to that
gesture would increase. If performed wrong, the number in one
of the gray boxes in the same row would increase. Controls
for toggling between gestures were provided. Additionally, an
animation such as a big smile face replaced the yellow box
for half a second when the gesture was correct to attract the
child’s attention. The goal of the game was to get as high a
number on the main diagonal entries as possible. Raw data
were also recorded simultaneously for offline inspection.

B. Gesture Game Results
We evaluated the system on a single child. The child is a

quadriplegic with athetoid cerebral palsy, uses a wheelchair
for mobility, has limited speech and uses a communication
chart for better communication. Prior permission was granted
and the study was approved for safety. The sensor was worn
on the right hand in the form of a wristband. The teacher



(a) An example of the sensor being worn on upper
arm using a wrist-band.

(b) A typical session with the child performing
gestures and teacher training the algorithm.

(c) Game setup once gesture models were learned.

Figure 3: Illustration of capture of triaxial accelerations and rotational rates from the wrist when performing gestures.

ascertained four candidate gestures: lift hand, sweep hand
right, twist right and punch forward. These gestures were
learned using the learning algorithm described in section II-C
and the model was applied to the game. We then evaluated user
performance across two sessions. All sessions were performed
in the presence of a teacher who closely works with the child.
In each session, the child was asked to perform each gesture
20 to 25 times. Figure 4 illustrates the display used in the
game. The first session corresponded to the child playing the
game for the first time. Here, the child had to get used to the
game mechanics and had to use the gestures for the first time.
Typical gesture accuracies were in the range of 60-70%. As the
game progressed, the child became increasingly familiar with
the gestures. This was repeated in the second session with the
additional advantage the child was already familiar with the
gestures. This resulted in higher accuracy. These preliminary
results suggest that familiarity with the movement results in
increased consistency of motor skills. We aim to explore this
further in future work.

IV. SUMMARY

This paper described a kinematic sensor-based system de-
signed to capture natural gestural capability in children with
cerebral palsy and practice them in the context of a game.
Triaxial accelerations and rotational rates were sensed and
transmitted wirelessly to a phone. The game software first
learned gesture models from the the child’s natural movements
by interactively learning gestures with the assistance of a
teacher. These learned gestures were used as templates for the
child to practice in the context of a game. The system learned
four gestures and we presented an evaluation of our system
with a child over two sessions. The child’s gesture consistency
as predicted by the number of correct entries in our game
display improved between two sessions. This indicates initial
feasibility in improving motor skills.

We aim to improve our work in a number of ways. We plan
to use measures that are relevant from a clinical assessment
perspective to assess the quality of movements of the child
[13]. We also plan on conducting a study on a larger cohort
of children to examine in detail the effects of our algorithm
across individuals and over time. We are currently building
next generation hardware that records information on to an
SD card for further analysis. This will allow us to track long
term trends in movement and detect characteristic gestures
that a child is capable of based on several hours of data. We
also plan on improving the game mechanics by improving

sensor hardware, improving the game design and supply audio
outputs for each game.
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