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ABSTRACT 

 

The quadtree is a hierarchical-type data structure where each parent is recursively divided into four 

children. This structure makes it particularly efficient for adaptive mesh refinement in regions with 

localised gradients. Compared with unstructured triangles, mesh generation is more efficient using 

quadtree decompositions. The finite number of patterns in the quadtree decomposition makes it 

efficient for data storage and retrieval. Motivated by these advantages, a crack propagation modelling 

approach using a quadtree-based scaled boundary finite element method (SBFEM) is developed. 

Starting from the formulation of an arbitrary n-sided polygon element, each quadrant in the quadtree 

mesh is treated as a polygon within the framework of the SBFEM. Special techniques to treat the 

hanging nodes are not necessary. Moreover, the SBFEM enables accurate calculation of the stress 

intensity factors directly from its solutions without local mesh refinement or asymptotic enrichment 

functions. When a crack propagates, it is only necessary to split each quadrant cut by the crack into 

two. These quadrants are polygons that can be directly modelled by the SBFEM. Changes to the mesh 

are minimal. The efficiency of this approach is demonstrated using numerical benchmarks. 
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INTRODUCTION  

 

Quadtrees (Yerry and Shepard 1983) have unique properties that make them particularly suitable for 

computational modelling of problems that require high efficiency. Its hierarchical tree-like data 

structure makes it very efficient in adaptive meshing of complex geometries and regions experiencing 

localised gradients. Moreover, the finite number of patterns in a quadtree structure allows quick data 

storage and retrieval, making computations with quadtrees very efficient. 

 

Despite of these advantages, adaptation of quadtree meshes into computational analyses within the 

framework of the finite element method (FEM) is not common in practice. The primary reason for this 

is the presence of hanging nodes between two adjacent elements of different sizes. The hanging nodes 

destroy the displacement compatibility between the elements and require special remedial techniques 

such as imposing constraints, subdivision into triangles and transitional elements (Gupta 1978). 

Sukumar and Tabarraei (2004) developed an approach to construct conforming shape functions for 

polygons with arbitrary number of sides and showed that this procedure can be directly employed for 
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computations with quadtree meshes (Tabarraei and Sukumar 2005). It does not make any distinction 

between hanging nodes and corner nodes in a quadtree mesh. 

 

The scaled boundary finite element method (SBFEM) is a semi-analytical technique that was 

developed by Song and Wolf (1997). It can be formulated on polygons with arbitrary number of sides 

(Ooi et al. 2012), allowing it for adaption with quadtree meshes. Each cell in the mesh, regardless of 

the presence of hanging nodes, is treated as a polygon. This enables the structure of the quadtree to be 

exploited for efficient computations. This polygon-based formulation also enables the SBFEM to 

better discretise curved boundaries. The cells that are trimmed by the boundaries are directly treated as 

polygons. When applied to fracture problems, stress singularities of any kind are analytically 

represented in the SBFEM’s solution of stresses (Song and Wolf 1997) and therefore very accurate. 

Motivated by these advantages, an approach that combines a quadtree mesh with the SBFEM to model 

crack propagation is developed in this study. 

 

SCALED BOUNDARY FINITE ELEMENT METHOD 

 

The SBFEM is briefly reviewed. A complete discussion on this subject has been reported in numerous 

instances in the literature e.g. Song and Wolf (1997). The SBFEM can be implemented on polygons 

with arbitrary number of sides (Ooi et al., 2012). The polygon geometry is required to satisfy the star 

convexity criterion i.e. there exists a point within the polygon where the entire boundary is directly 

visible from it. This point is called the scaling centre.  

 

   
 

   (a) normal polygon                                                   (b) crack polygon 

 

Figure 1. SBFEM discretisation using polygons 

 

The scaled boundary finite element coordinate system (ξ, η) of a generic polygon is shown in Figure 

1a and a polygon modelling a crack in Figure 1b. ξ is the radial coordinate. ξ = 0 at the scaling centre 

and ξ = 1 at the polygon boundary. η is the local coordinate defined for each one-dimensional finite 

element that discretises the polygon boundary. The equilibrium condition in each polygon can be 

derived from the method of weighted residuals and results in the first order differential equation 
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where u(ξ) are radial displacement functions, q(ξ) is the equivalent force vector and Z is the standard 

Hamiltonian matrix in the SBFEM (Song and Wolf 1997). Z can be decoupled into pairs of 

eigenvalues (-λi, λi) using an eigenvalue decomposition as 
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where 
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nΦ , 
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nΦ , 
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pΦ  and 
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pΦ  are transformation matrices related to the deformation modes in a 

polygon. nΛ  and pΛ  are diagonal matrices containing the negative and positive eigenvalues -λi and 

λi respectively. The stiffness matrix of a polygon Kp can be evaluated as 
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The displacement field u(ξ, η) of a sector covered by a line element on a polygon boundary is  

cΦNu
Λnu
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where N(η) is the shape functions of the finite elements and c are integration constants that can be 

determined from the boundary conditions. Correspondingly, the stress field σ( ξ, η) is 

cΨσ
IΛ 

 n  )(),(                                             (5) 

where  T
zzyyxx

)()()()(   ΨΨΨΨ   is the stress mode (Song and Wolf 1997). 

 

QUADTREE MESHES IN THE SCALED BOUNDARY FINITE ELEMENT METHOD 

 

A cell in a quadtree mesh can be directly modelled by the SBFEM as a polygon having arbitrary 

number of sides, similar to the approach of Tabarraei and Sukumar (2005). No distinction is made 

between a corner node and a hanging node. All the cells in the quadtree mesh are directly modelled by 

a unified formulation within the framework of the SBFEM. From the point-of-view of finite element 

mesh generation algorithms, this is particularly appealing given that a quadtree decomposition is 

efficient and usually employed prior to triangularisation of the mesh. By employing quadtree meshes 

directly, the triangularisation process and reduces the computational resources for mesh generation.  

 
In most applications, quadtree meshes are usually generated by constraining the size (lengths) between 

adjacent elements to 2:1, also known as the 2:1 rule. While the SBFEM does not have to adhere to this 

restriction, the 2:1 rule contains features that facilitate more efficient computations. When the 2:1 rule 

is enforced, the cells in the mesh are limited to only the patterns shown in Figure 2.  Considering all 

orthogonal rotations of each of the cells, the total number of different cells that can be present in the 

quadtree mesh is 24. This can be reduced to 16 for isotropic homogeneous materials considering that 

rotation does not have effect on some of the cells. Only the stiffness matrices of these cells need to be 

computed in a linear elastic analysis. These can be pre-calculated and stored for quick data retrieval. 

 

 
 

Figure 2. Regular cells in a quadtree mesh satisfying the 2:1 rule 

 

FRACTURE ANALYSIS 

 

Computation of Stress Intensity Factors 

 

In the SBFEM, a crack is sufficiently modelled using a single polygon (Figure 1b). The crack surfaces 

are not discretised. The line elements discretising the polygon boundary do not form a closed loop. In 
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a crack polygon, the matrix Λn contain two eigenvalues i , i = 1, 2 satisfying -1 < Re( i ) < 0. These 

eigenvalues lead to a singular stress field in Eq. (5) as ξ → 0. This feature enables the SBFEM to 

model the stress singularity accurately. The singular stress field can be obtained from Eq. (5) as 
)()()(
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where 
)(s

nΛ  is a diagonal matrix containing the two eigenvalues i , )()( 
s

Ψ  is the singular stress 

mode and 
)(s

c  are the corresponding integration constants (Song and Wolf 1997). 

 

The stress intensity factors are directly evaluated from their definitions. For a crack that is aligned with 

the Cartesian coordinate system as shown in Figure 1b, the stress intensity factors are 
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where LA is the distance from the scaling centre to the boundary in the direction of the crack at θ = 0. 

 

Crack Propagation Modelling 

 

The crack propagation direction θp is determined from the stress intensity factors using the maximum 

circumferential stress criterion (Sukumar and Prevost 2003) 
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where θc is the crack angle. 

 

Automatic Remeshing Algorithm 

 

                
        

       (a) crack tip mesh         (b) quadtree refinement   (c) generate crack polygon      (d) split cells cut    

 

Figure 3. Automatic remeshing procedure 

 

Figure 3a shows the mesh in the vicinity of a crack tip during a generic load step. The remeshing 

algorithm is depicted in Figure 3 and involves the following four steps: 

1. Identify the smallest cell surrounding the crack polygon hmin. Refine the mesh in the region near 

the crack tip to hmin. 

2. Identify the region around the new crack tip Ωcir. Any cells that are in contact with this region is 

refined. The region affected by the remeshing can be larger than Ωcir as the 2:1 rule is enforced 

during this process. The resulting mesh is depicted in Figure 3b. 

3. Identify the cells that intersect or overlap Ωcir and merge them into a single polygon as shown in 

Figure 3c. 

4. Split the cells cut by the crack path into two, leading to the mesh in Figure 3d. 

 

NUMERICAL EXAMPLE 

 

The cracked polymethylcrylate (PMMA) beam with three holes subjected to three-point bending 

shown in Figure 4 is considered. The load P = 4.45 N. This problem is a widely used numerical 
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benchmark for crack propagation problems e.g. Bittencourt et al. (1996). The material properties of the 

beam are: Young's modulus E = 29 GPa and Poisson’s ratio ν = 0.3. Plane stress conditions are 

assumed. Two cases, I and II, having different values of a and b as shown in Figure 4 are considered. 

 

 
 

Figure 4. Cracked beam with three holes subjected to three-point bending 

 

Figures 5a and 5b show the initial meshes of the beam for Cases I and II, respectively. The mesh for 

Case I has 473 cells of which 349 are regular square cells shown in Figure 1 and 124 are irregular cells. 

The total number of nodes for this mesh is 658. In Case II, the mesh has 476 cells of which 354 are 

regular square cells and 122 are irregular cells. The total number of nodes for this mesh is 661. In both 

Cases I and II, a crack incremental length Δa = 0.5 mm is specified for the simulation. 

 

                   
                         

                                (a) Case I                                                                           (b) Case II 

 

Figure 5. Initial meshes of the cracked beam 

 

Figures 6a and 6b show the final meshes of the beam for Cases I and II, respectively. For Case I, the 

final mesh has 1075 cells of which, 264 are irregular. For Case II, the final mesh has 829 cells of 

which, 264 are irregular. The difference in the crack length and location, as outlined in Figure 2 for 

both the cases considered, is observed to affect the crack propagation path.  

 

 

                   
                         

                                (a) Case I                                                                           (b) Case II 

 

Figure 6. Final meshes of the cracked beam 

 

In Case I, the crack initially curves towards the bottom hole. As it approaches the bottom hole, the 

crack turns towards the the middle hole. The crack path once again deflects towards the loading point 

as it approaches the middle hole. In Case II, the crack propagation is a curved line evolving towards 
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the middle hole. The crack trajectories in both cases obtained by the scaled boundary finite element 

method are reminiscence of the experimental results reported by Bittencourt et al. (1996) and the finite 

element simulation of Azocar et al. (2010) as shown in Figures 7a and 7b. 

 

                   
                         

                                                (a) Case I                                    (b) Case II 

 

Figure 7. Comparison of predicted crack paths with numerical results published in the literature 

 

CONCLUSIONS 

 

A crack propagation modelling technique has been developed by adapting quadtree meshes into the 

SBFEM. The use of quadtrees compliments the SBFEM in that the formulation makes no distinction 

between hanging nodes and corner nodes. This approach exploits the flexibility of the SBFEM in 

assuming polygons of arbitrary shapes, its accuracy in modelling stress singularities at the crack tip 

and the computational efficiency of the quadtree-polygon mesh. The evolution of the crack paths is 

conveniently modelled using an efficient local remeshing algorithm. The remeshing process is simple 

and involves only application of the quadtree decomposition in the region near the crack tips and 

splitting the cells cut by the crack into two. The developed technique was successfully validated using 

a standard numerical benchmark. The developed technique therefore, offers an interesting and viable 

alternative to the standard approaches reported in the literature. 
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