
A New Distinguisher on Grain v1 for 106 rounds

Santanu Sarkar

Department of Mathematics,
Indian Institute of Technology,

Sardar Patel Road, Chennai 600036, India.
sarkar.santanu.bir@gmail.com

Abstract. In Asiacrypt 2010, Knellwolf, Meier and Naya-Plasencia pro-
posed distinguishing attacks on Grain v1 when (i) Key Scheduling pro-
cess is reduced to 97 rounds using 227 chosen IVs and (ii) Key Schedul-
ing process is reduced to 104 rounds using 235 chosen IVs. Using similar
idea, Banik obtained a new distinguisher for 105 rounds. In this paper,
we show similar approach can work for 106 rounds. We present a new
distinguisher on Grain v1 for 106 rounds with success probability 63%.

Keywords: Differential Cryptanalysis, Distinguisher, Grain v1, Stream Cipher

1 Introduction

The Grain v1 is a well-known hardware-efficient, synchronous and bit oriented
stream cipher. Designed in 2005 by Hell, Johansson and Meier [17], it has been
widely studied for nearly a decade mostly because of its simplistic structure
and selection in the eStream hardware profile (profile 2) portfolio [13]. In order
to prevent the correlation attacks [6] on Grain v0, the modified versions Grain
v1 [17] was proposed after incorporating certain changes. Grain 128 and Grain
128a are inspired from Grain v1, and use a similar structure.

Küçük et al. [8] proposed related key-IV attack on Grain v1. They observed
that for any (K, IV) pair, there exist related (K ′, IV ′) pair with probability 0.25
that generates 1-bit shifted keystream. Bjørstad [7] showed that Grain v1 has
a low resistance to BWS sampling. Other cryptanalytic results related to this
cipher have been presented in [14, 15, 19, 24, 26, 27].

In [9], an attack on nonlinear filter generators with linear resynchronization
and filter function with few inputs is presented. To avoid such attacks, the ini-
tialization of stream ciphers should be designed carefully. The common design
paradigm (including the Grain family) of stream ciphers is as follows. The key K
and initialization vector IV are loaded into the state along with some padding
bits. Next, state update function is applied to the internal state iteratively for a
number of rounds without producing any output (key-stream). Hence, the num-
ber of rounds is important for both security and efficiency of the cipher, since
increasing the number of rounds will slow down the cipher, but at the same time
likely to increase the security. Hence, finding the minimal number of rounds that

would ensure the conjectured security level is a critical task, and studying the
ciphers in its reduced variant (i.e., treating as if the key-streams are avaiable
just after the key & IV are loaded to the register).

Trivium [18], another candidate in the hardware profile of eStream, has been
cryptanlysed for reduced round by many researchers. Englund et al. [14] showed
statistical weaknesses on Trivium for 736 rounds. Aumasson et al. [1] were able
to build a distinguisher on Trivium after 790 round. Independently Knellwolf et
al. [21] built a distinguisher up to 806 rounds.

Grain v1 is studied extensively for reduced round. In [2], a non-randomness
for 81 round has been reported. In [20], Knellwolf et al. proposed a distinguisher
for 97 rounds and 104 rounds. However results of [20] were based on experiments
only. Later, Banik [3] proved a theoretical result for 97 rounds. Recently a dis-
tinguisher for 105 round has been proposed in [4]. These attacks on Grain v1
are known as Conditional Differential Cryptanalysis (CDC), which was first in-
troduced by Ben-Aroya and Biham [5] for block cipher cryptanalysis. It studies
the output frequency of derivatives of output bit on specifically chosen IV .

However, in recent terminology, CDC on stream cipher can be described as
dynamic cube attack. Cube attacks, introduced by Dinur and Shamir [11], have
been used in cryptanalysis. Although cube attack works [10, 12] successfully on
Grain 128, its performance on Grain v1 is not that effective. Using CDC, Knell-
wolf et al., in their Asiacrypt 2010 paper [20] obtained a practical distinguisher
on Grain 128 for 215 rounds. Higher order conditional differential attacks on
Trivium and Grain 128 have been studied in [22]. CDC has been applied suc-
cessfully in [23] on Grain 128a. In this paper, we show that one can attack Grain
v1 up to 106 rounds using CDC method.

The paper is organized as follows. In Section 2, we describe the design of
Grain v1. We present our experimental results in Section 3. Section 4 gives a
new distinguisher on Grain v1 up to 106 rounds. Conclusion is presented in
Section 5.

2 Brief Description of Grain v1

Grain v1 has 80 bit key K and 64 bit initialization vector IV . The structure of
the Grain v1 is depicted in Fig. 1. The state consists an 80-bit LFSR and an
80-bit NFSR. The update function of the LFSR is given by: yt+80 = f(Yt), where
Yt = [yt, yt+1, . . . , yt+79] is an 80-bit vector that denotes the LFSR state at the
tth clock interval and f is a linear function on the LFSR state bits obtained
from a primitive polynomial in GF (2) of degree 80. The NFSR state is updated
as xt+80 = yt ⊕ g(Xt). Here, Xt = [xt, xt+1, . . . , xt+79] is an 80-bit vector that
denotes the NFSR state at the tth clock interval and g is a non-linear function
of the NFSR state bits.

The output keystream is produced by combining the LFSR and NFSR bits
as zt = h′(Xt, Yt) =

⊕
a∈A xt+a ⊕ h(Xt, Yt), where A is some fixed subset of

{0, 1, 2, . . . , n− 1}. Below we present the detailed description.

As stated, the key-stream generation of Grain v1 consists of three phases. In
the first phase, the key & IV bits are loaded to the state register in the Key Load-
ing Algorithm routine; then the state bits are updated during the Key Scheduling
Algorithm routine; and next the Pesudo-Random Generation Algorithm routine
produces the key-streams. These routines are described as follows.

Key Loading Algorithm (KLA) The key (80-bits) is loaded in the NFSR and
the IV(64-bits) is loaded in the 0th to the 63th bits of the LFSR. The remaining
64th to 79th bits of the LFSR are loaded with 1.

Key Scheduling Algorithm (KSA) After the KLA, for the first 160 clocks,
the keystream produced at the output point of the function h′ is XOR-ed to both
the LFSR and NFSR update functions. So during the first 160 clock intervals,
the LFSR and the NFSR bits are updated as yt+80 = zt ⊕ f(Yt), xt+80 =
yt ⊕ zt ⊕ g(Xt).

Pseudo-Random keystream Generation Algorithm (PRGA) After the
completion of the KSA, zt is no longer XOR-ed to the LFSR and the NFSR but
it is used as the Pseudo-Random keystream bit. Hence in this phase, the LFSR
and NFSR are updated as yt+80 = f(Yt), xt+80 = yt ⊕ g(Xt).

Fig. 1. Structure of Stream Cipher in Grain Family

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/

/

zt

⊕

⊕

The LFSR update rule is given by yt+80 = yt+62 ⊕ yt+51 ⊕ yt+38 ⊕ yt+23 ⊕
yt+13⊕yt. The NFSR state is updated as xt+80 = yt⊕g(xt+63, xt+62, xt+60, xt+52,
xt+45, xt+37, xt+33, xt+28, xt+21, xt+15, xt+14, xt+9, xt), where,

g(xt+63, xt+62, xt+60, xt+52, xt+45, xt+37, xt+33, xt+28, xt+21, xt+15, xt+14,

xt+9, xt)

= xt+62 ⊕ xt+60 ⊕ xt+52 ⊕ xt+45 ⊕ xt+37 ⊕ xt+33 ⊕ xt+28

⊕ xt+21 ⊕ xt+14 ⊕ xt+9 ⊕ xt ⊕ xt+63xt+60 ⊕ xt+37xt+33 ⊕ xt+15xt+9

⊕ xt+60xt+52xt+45 ⊕ xt+33xt+28xt+21 ⊕ xt+63xt+45xt+28xt+9+

xt+60xt+52xt+37xt+33 ⊕ xt+63xt+60xt+21xt+15

⊕ xt+63xt+60xt+52xt+45xt+37 ⊕ xt+33xt+28xt+21xt+15xt+9

⊕ xt+52xt+45xt+37xt+33xt+28xt+21.

The key-stream is produced by combining the LFSR and NFSR bits as:

zt =
⊕
a∈A

xt+a ⊕ h(yt+3, yt+25, yt+46, yt+64, xt+63),

where, A = {1, 2, 4, 10, 31, 43, 56} and h(s0, s1, s2, s3, s4) = s1⊕s4⊕s0s3⊕s2s3⊕
s3s4 ⊕ s0s1s2 ⊕ s0s2s3 ⊕ s0s2s4 ⊕ s1s2s4 ⊕ s2s3s4.

3 Biases Beyond 105 Rounds of KSA

Fig. 2. Growth of key-stream expression of Grain v1

0 10 20 30 40

0

2

4

6

8

·106

Round i→

N
u
m

b
er

o
f

m
o
n
o
m

ia
ls

in
z i
→

As evident from the description, the NFSR update function used in Grain
v1 is of degree 6. So symbolic expressions (treating the key & IV as symbolic

variables and then doing the state update operation) of Grain v1 grow very fast.
In Fig. 2, we show the number of monomials in key-stream expression of Grain
v1 over some initial rounds.

As mentioned, Knellwolf et al. [20] observed a new distinguisher on Grain
v1. Now we briefly explain how one can interpret the idea of [20] as a dynamic
cube attack. Recall from Section 2 that Grain v1 contains 80-bit key k0, . . . , k79
and 64-bit IV v0, . . . , v63. Grain v1 is initially loaded with X0 = [k0, . . . , k79] and

Y0 = [v0, . . . , v63,

16︷ ︸︸ ︷
1, . . . , 1] (here X0 corresponds to NFSR and Y0 corresponds to

LFSR).

Next start with NFSRX ′0 = [k0, . . . , k79] but different LFSR Y ′0 = [v0, . . . , 1⊕

v37, v63,

16︷ ︸︸ ︷
1, . . . , 1]. That is, in cube attack terminologies, v37 is chosen as cube.

Thus two states S0 and S′0 initialized by (X0, Y0) and (X ′0, Y
′
0) are different

only at one position. Suppose zi and z′i are the key stream bits for S0 and
S′0 respectively at i-th round of KSA. They observed experimentally that if
z12 = z′12, z34 = z′34, z40 = z′40 in KSA and KSA is reduced to 97 rounds, the
first output bit in PRGA will be same with probability more than 0.5. In ACISP
2014, Banik [3] gave the theoretical justification for this result.

Recently, Banik [4] showed a distinguishing attack for 105 round. Instead
of 37-th bit of IV, he chose 61-bit of IV for the differential. In his work, it is
considered the equality of z15 = z′15, z36 = z′36, z39 = z′39 and z42 = z′42 in KSA.

In this paper, we experiment for all single IV differential. Thus we have a
total of 64 differentials. For any such differential, in the initial rounds of KSA,
it is highly likely that zi = z′i is satisfied. We load symbolically with X0 =

[k0, . . . , k79] in NFSR and Y0 = [v0, . . . , v63,

16︷ ︸︸ ︷
1, . . . , 1] in Sage [25]. Next we run

KSA for few rounds, and find zi as a polynomial of k0, . . . , k79, v0, . . . , v63. For
each vj , we identify first four rounds where coefficient of vj in zi is not constant
for 0 ≤ j ≤ 63. We identify these rounds using Algorithm 1. In step 3 of the
algorithm, IA corresponds to the ideal generated by a set of polynomials in A.

Input: vj , zi and an empty array A
Output: An array A

1 i = 0 ;

2 while

(
Coefficient cij of vj in zi is nonconstant & |A| < 4

)
do

3 if ci,j /∈ IA then
4 Include ci,j in A ;

end
5 i = i + 1 ;

end

Algorithm 1 Generating polynomial equations in KSA

Conditions for each differential are presented in Appendix A. We find the
probability of the equality of the first output keystream bits for each KSA round
105 to 128. Our probability is taken over 230 random key-IV.

Fig. 3. Basies from 105 to 110 rounds of KSA for each single bit differential on IV

Rounds: 105 to 110
Diff

er
en

tia
ls:

0
to

63

P
(z

=
z
′)

Our experimental values have been presented in Fig.3 for rounds 105 to 110.
Here x axis corresponds to the rounds of KSA, y corresponds to each differential
and z corresponds the equality of output keystream bits. From the Fig. 3, it
is clear we may get distinguisher using the similar idea of [20] for 106 and 107
rounds. In fact, we observe

P
(
z105 = z′105

∣∣ z15 = z′15 & z36 = z′36 & z39 = z′39 & z42 = z′42
)

= 0.500365,

P
(
z106 = z′106

∣∣ z16 = z′16 & z34 = z′34 & z37 = z′37 & z40 = z′40
)

= 0.500245,

P
(
z107 = z′107

∣∣ z17 = z′17 & z35 = z′35 & z38 = z′38 & z41 = z′41) = 0.500246,

when differentials are given on v61, v62 and v63 respectively.
After 107 rounds, all curves become almost flat. Thus it seems beyond 107

rounds, it might not be possible to attack Grain v1 using single differentiable.

4 New result on Grain v1: Distinguisher upto 106 rounds

Grain v1 is first intialised with X0 = [k0, . . . , k79] and Y0 = [v0, . . . , v63,

16︷ ︸︸ ︷
1, . . . , 1].

Here X0 corresponds to NFSR and Y0 corresponds to LFSR.
Now choose v62 as cube. Hence start with NFSR X ′0 = [k0, . . . , k79] but

different LFSR Y ′0 = [v0, . . . , 1⊕ v62, v63,
16︷ ︸︸ ︷

1, . . . , 1].

Thus two states S0 and S′0 initialized by (X0, Y0) and (X ′0, Y
′
0) different only

at one position. But when more and more KSA rounds are completed, more and
more positions of the states will differ. The idea is to delay the diffusion of the
differential for as many KSA rounds as possible, by imposing many algebraic
conditions over key and IV. We find algebraic expressions using Sage [25]. The
conditions may be classified in to two types:

– Type 1: Conditions only on IV
– Type 2: Conditions on both Key and IV.

Let zt and z′t be the bit produced in the t-th KSA round when states are
loaded by (X0, Y0) and (X ′0, Y

′
0). Recall for r-th reduced version of Grain v1, all

bits zi, z
′
i are unknown to the attacker for i < r. But giving Type 1 and Type 2

conditions, attacker can guarantee that zi ⊕ z′i = 0 for few initial rounds. The
attack idea is as follows:

1. For i = 0, . . . , 15, it is not difficult to show that zi = z′i. Hence we do not
need any condition to make zi ⊕ z′i = 0 for 0 ≤ i ≤ 15.

2. When i = 16, zi ⊕ z′i is polynomial degree 2 over Key and IV. Now we set
v19 = v41 = 1, v46 = 0 and v0 = k1 ⊕ k2 ⊕ k4 ⊕ k10 ⊕ k31 ⊕ k43 ⊕ k56 ⊕
v3 ⊕ v13 ⊕ v23 ⊕ v25 ⊕ v38 ⊕ v51. Then z16 = z′16. Thus we have three Type
1 conditions v19 = v41 = 1, v46 = 0 and one Type 2 condition C1 : v0 =
k1 ⊕ k2 ⊕ k4 ⊕ k10 ⊕ k31 ⊕ k43 ⊕ k56 ⊕ v3 ⊕ v13 ⊕ v23 ⊕ v25 ⊕ v38 ⊕ v51.

3. For i = 17, . . . , 26, zi will be always equal to z′i.

4. When i = 27, z27 will be always different from z′27. So by imposing any
conditions, we can not make z27 ⊕ z′27 = 0.

5. zi will be always equal to z′i for i = 28, . . . , 33.

6. When i = 34, z34 ⊕ z′34 will be an algebraic expression on Key and IV.
However if attacker sets 17 Type 1 conditions v2 = v15 ⊕ v18 ⊕ v25 ⊕ v31 ⊕
v40⊕v53⊕v56⊕v59, v63 = 0, v14 = v24⊕v39⊕v52, v13 = v23⊕v38⊕v51, v17 =
v42, v43 = 0, v47 = 0, v38 = 0, v4 = 0, v1 = 0, v5 = 0, v20 = 0, v21 = 0, v26 =
0, v27 = 0, v37 = 0, v48 = 0 and one Type 2 condition

C2 : v59 = f1(K),

where f1(K) is a polynomial over Key of degree 16 and 9108 monomials,
z34 = z′34.

7. We have zi = z′i for i = 35, 36.

8. When i = 37, again z37⊕ z′37 will be an algebraic expression on Key and IV.
Now attacker sets 7 Type 1 conditions v15 = v18 ⊕ v25 ⊕ v31 ⊕ v53 ⊕ v55 ⊕
v56 ⊕ v59, v16 = v54, v49 = 1, v28 = 0, v6 = 0, v50 = 0, v23 = v45
and two Type 2 conditions

C3 : v3 = k4 ⊕ k5 ⊕ k7 ⊕ k13 ⊕ k34 ⊕ k46 ⊕ k59 ⊕ k66
C4 : v7 = v29 ⊕ f2(K),

where f2(K) is a polynomial over Key of degree 15 and 1535 monomials.
Then we have z37 = z′37.

9. We have zi = z′i for i = 38, 39.

10. If we set 7 Type 1 conditions v58 = v7, v57 = v44⊕v29, v51 = 0, v52 = 0, v10 =
0, v32 = 0, v53 = 0 and 2 Type 2 conditions

C5 : v9 = k7 ⊕ k8 ⊕ k10 ⊕ k16 ⊕ k37 ⊕ k49 ⊕ k62 ⊕ v31
C6 : v8 = f3(K),

where f3(K) is a polynomial over Key of degree 15 and 1572 monomials,
z40 = z′40.

Thus we have a total of 34 Type 1 conditions and 6 Type 2 conditions
C1, . . . , C6. We can rewrite the Type 2 conditions as

C1 : v0 = K1 ⊕ v3 ⊕ v13 ⊕ v23 ⊕ v25 ⊕ v38 ⊕ v51,

C2 : v59 = K2,

C3 : v3 = K3,

C4 : v7 = K4 ⊕ v29,

C5 : v9 = K5 ⊕ v31,

C6 : v8 = K6,

where Kis are function of Key only for 1 ≤ i ≤ 6. Hence for fixed Key, Kis
are fixed.

Now since attacker does not know the values K1, . . . ,K6, he has to consider
all combinations. Let U = [K1,K2,K3,K4,K5,K6]. Then for each U ∈ {0, 1}6,
attacker chooses such that

{
v19 = v41 = 1, v46 = 0, v63 = 0, v14 = v24 ⊕ v39 ⊕ v52,

v13 = v23 ⊕ v38 ⊕ v51, v17 = v42, v43 = 0, v47 = 0, v38 = 0,

v4 = 0, v1 = 0, v5 = 0, v20 = 0, v21 = 0, v26 = 0, v27 = 0,

v37 = 0, v48 = 0, v49 = 1, v28 = 0, v6 = 0, v50 = 0,

v23 = v45, v51 = 0, v52 = 0, v10 = 0, v32 = 0, v53 = 0,

v0 = K1 ⊕ v3 ⊕ v13 ⊕ v23 ⊕ v25 ⊕ v38 ⊕ v51

v59 = K2, v3 = K3, v7 = K4 ⊕ v29, v9 = K5 ⊕ v31, v8 = K6

}
Hence for the correct choice ofK1, . . . ,K6, we have z16 = z′16, z34 = z′34, z37 = z′37
and z40 = z′40.

Note that due to Type 1 conditions, IV space is reduced to {0, 1}64−34 =
{0, 1}30. Corresponding to 6 Type 2 conditions, attacker divides this space

into 26 = 64 partitions. Here free IV variables are: v11, v12, v18, v22, v24, v25, v29,
v30, v31, v33, v34, v35, v36, v39, v40, v42, v44, v45, v54, v55, v56, v60, v61.

Since there are 6 expressions on the unknown key, the attacker chooses all 64
options. Among these 64 options, one must be correct. For each option, attacker
takes the dynamic variables v0, v59, v3, v7, v9, v8 accordingly. So for fixed key, we
have 64 values corresponds to the probability P (z106 = z′106) for each Type 2
condition. We use the idea as follows.

We consider only those probabilities for which P (z106 = z′106) > 0.5, and
we add all such probabilities. Let the sum of these probabilities be S. For the
random case, this sum will be

SR = 64× 1√
2πσ

∫ N

Np

e−
(x−µ)2

2σ2

(
x

N
− p
)
dx, (1)

where N is the size of sample space, µ = N
2 , σ

2 = N
4 and p = 0.5. For N = 223,

value of SR will be 0.0044.
From our experiment with 1000 random keys, we observe that for 63% situ-

ations, the sum in Equation (1) for Grain v1 is greater than 0.0044 when we are
using all 23 free IV variables. Thus we can distinguish Grain v1 from random
source up to 106 rounds with success probability 0.63.

We try similar idea for 107 rounds. But the algebraic expressions for 107
rounds are much more complicated. Hence getting constraints on Key and IV
i.e, Type 1 and Type 2 conditions would be very difficult for this case.

5 Conclusion

In this paper, we have first presented experimental results for all single bit differ-
ential on IV. From these experiments, it seems that one may find a distinguisher
on Grain v1 for 106 and 107 rounds. Then we have presented our result Grain v1
for 106 rounds. We have shown that it is possible to divide the search space into
64 partitions so that for one partition of IV values the differential of key stream
bits at certain positions will be zero. Experiments show that one can distinguish
Grain v1 for 106 rounds with 63% success probability.

From our experiments, it seems one may attack Grain v1 up to 107 rounds.
However, in this case the conditions are much more complicated. We leave this
as an open problem.

References

1. J.-P. Aumasson, I. Dinur, W. Meier and A. Shamir. Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In FSE 2009, LNCS, Vol. 5665, pp.
1–22, 2009.

2. J. P. Aumasson, I. Dinur, L. Henzen, W. Meier and A. Shamir. Efficient FPGA Im-
plementations of High-Dimensional Cube Testers on the Stream Cipher Grain-128.
In SHARCS - Special-purpose Hardware for Attacking Cryptographic Systems,
2009.

3. S. Banik. Some Insights into Differential Cryptanalysis of Grain v1. In ACISP
2014, LNCS, Vol. 8544, pp. 34–49, 2014.

4. S. Banik. A Dynamic Cube Attack on 105 round Grain v1. IACR Cryptology ePrint
Archive 2014: 652. Available at http://eprint.iacr.org/2014/652.

5. I. Ben-Aroya and E. Biham. Differtial Cryptanalysis of Lucifer. In Crypto 1993,
LNCS, Vol. 773, pp. 187–199, 1993.

6. C. Berbain, H. Gilbert and A. Maximov. Cryptanalysis of Grain. In FSE 2006,
LNCS, Vol. 4047, pp. 15–29, 2006.

7. T. E. Bjørstad. Cryptanalysis of Grain using Time/Memory/Data tradeoffs (v1.0
/ 2008-02-25). Available at http://www.ecrypt.eu.org/stream.

8. C. De Cannière, O. Küçük and B. Preneel. Analysis of Grain’s Initialization Algo-
rithm. In AFRICACRYPT 2008, LNCS, Vol. 5023, pp. 276–289, 2008.

9. J. Daemen, R. Govaerts and J. Vandewalle. Resynchronization weaknesses in syn-
chronous stream ciphers. In EUROCRYPT 1993. LNCS, vol. 765, pp. 159–167,
1993.

10. I. Dinur, T. Güneysu, C. Paar, A. Shamir and R. Zimmermann. An Experimentally
Verified Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware. In
Asiacrypt 2011, LNCS, Vol. 7073, pp. 327–343, 2011.

11. I. Dinur and A. Shamir. Cube Attacks on Tweakable Black Box Polynomials. In
EUROCRYPT 2009, LNCS, Vol. 5479, pp. 278-299, 2009.

12. I. Dinur and A. Shamir. Breaking Grain-128 with Dynamic Cube Attacks. In FSE
2011, LNCS, Vol. 6733, pp. 167–187, 2011.

13. The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers.
Revised on September 8, 2008.

14. H. Englund, T. Johansson and M. S. Turan. A framework for chosen IV statistical
analysis of stream ciphers. In INDOCRYPT 2007, LNCS, Vol. 4859, pp. 268–281,
2007.

15. S. Fischer, S. Khazaei and W. Meier. Chosen IV statistical analysis for key recovery
attacks on stream ciphers. In AFRICACRYPT 2008, LNCS, Vol. 5023, pp. 236–
245, 2008.

16. H. Fredricksen. A survey of full length nonlinear shift register cycle algorithms,
SIAM Rev., 24 (1982), pp. 195–221, 1982.

17. M. Hell, T. Johansson and W. Meier. Grain - A Stream Cipher for Constrained
Environments. ECRYPT Stream Cipher Project Report 2005/001, 2005. Available
at http://www.ecrypt.eu.org/stream.

18. C. De Cannière and B. Preneel. Trivium. Available at http://www.ecrypt.eu.

org/stream/p3ciphers/trivium/trivium_p3.pdf.
19. S. Khazaei, M. Hassanzadeh and M. Kiaei. Distinguishing Attack on Grain.

ECRYPT Stream Cipher Project Report 2005/071, 2005. Available at http:

//www.ecrypt.eu.org/stream

20. S. Knellwolf, W. Meier and M. Naya-Plasencia. Conditional Differential Crypt-
analysis of NLFSR-based Cryptosystems. In ASIACRYPT 2010, LNCS, Vol. 6477,
pp. 130–145, 2010.

21. S. Knellwolf, W. Meier and M. Naya-Plasencia. Conditional differential cryptanal-
ysis of Trivium and Katan. In SAC 2011, LNCS, Vol. 7118, pp. 200–212, 2011.

22. S. Knellwolf and W. Meier. High order differential attacks on stream ciphers. In
Cryptography and Communications, Vol. 4(3-4), pp. 203–215, 2012.

23. M. Lehmann and W. Meier. Conditional Differential Cryptanalysis of Grain-128a.
In CANS 2012, LNCS, Vol. 7712, pp. 1–11, 2012.

24. Y. Lee, K. Jeong, J. Sung and S. Hong. Related-Key Chosen IV Attacks on Grain-
v1 and Grain-128. In ACISP 2008, LNCS, Vol. 5107, pp. 321–335, 2008.

25. W. Stein. Sage Mathematics Software. Free Software Foundation, Inc., 2009. Avail-
able at http://www.sagemath.org. (Open source project initiated by W. Stein and
contributed by many).

26. P. Stankovski. Greedy Distinguishers and Nonrandomness Detectors. In IN-
DOCRYPT 2010, LNCS, Vol. 6498, pp. 210–226, 2010.

27. H. Zhang and X. Wang. Cryptanalysis of Stream Cipher Grain Family. IACR Cryp-
tology ePrint Archive 2009: 109. Available at http://eprint.iacr.org/2009/109.

Appendix A: Condition on key-stream for Different
Locations

Shaded conditions for 37 and 61 are previously explored by others [20, 4]. In this
paper, we consider the conditions for 62.

Table 1. Different KSA round numbers for different IV locations.

Location Rounds

0 16 17 34 35
1 17 18 35 36
2 19 34 35 36
3 0 20 35 36
4 1 21 36 37
5 2 22 37 38
6 3 23 38 39
7 4 24 39 40
8 5 25 40 41
9 6 26 41 42
10 7 27 42 43
11 8 28 43 44
12 9 29 44 45
13 10 16 30 34
14 11 17 31 35
15 12 32 34 35

Location Rounds

16 13 33 35 36
17 14 34 36 37
18 15 34 35 37
19 16 35 36 38
20 17 36 37 39
21 18 37 38 40
22 19 38 39 41
23 16 20 34 39
24 17 21 35 40
25 0 22 34 35
26 1 23 35 36
27 2 24 36 37
28 3 25 37 38
29 4 26 38 39
30 5 27 39 40
31 6 28 34 40

Location Rounds

32 7 29 35 41
33 8 30 36 42
34 9 31 37 43
35 10 32 38 44
36 11 33 39 45
37 12 34 40 46
38 13 16 34 35
39 14 17 35 36
40 15 34 35 36
41 16 34 35 36
42 17 35 36 37
43 18 36 37 38
44 19 37 38 39
45 20 38 39 40
46 0 21 39 40
47 1 22 40 41

Location Rounds

48 2 23 41 42
49 3 24 42 43
50 4 25 43 44
51 5 16 26 34
52 6 17 27 35
53 7 28 34 35
54 8 29 35 36
55 9 30 36 37
56 10 31 34 37
57 11 32 35 38
58 12 33 36 39
59 13 34 37 40
60 14 35 38 41
61 15 36 39 42
62 16 34 37 40
63 17 35 38 41

