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A Decode and Forward Protocol for Two-Stage Gaussian Relay Networks
Bama Muthuramalingam, Srikrishna Bhashyam, and Andrew Thangaraj

Abstract—We propose a multihopping decode and forward
relaying protocol for two-stage Gaussian relay networks with
half-duplex nodes. We analytically show that the achievable rates
in suitably defined strong and weak interference regimes are close
to the cut-set bound.

Index Terms—Two-stage relay network, decode and forward
protocol, half-duplex relays.

I. INTRODUCTION

T |he diamond channel (DC) [1], where the source and
destination are connected by two relays, has been an

important example in the study of relay networks. DC with
practical constraints like half-duplex, non-cooperating, inter-
fering relays and finite SNR has been studied in [2]–[4]. In
these studies, decode and forward protocols have been shown
to be close to capacity in some channel regimes. In this paper,
we are concerned with extending ideas from DC to multistage
relay networks, where source and destination are connected
through multiple stages of relays.
Two-stage relay network: We consider the two-stage Gaussian
relay network shown in Fig. 1(a) with Node 1 as source (𝑆)
and Node 6 as destination (𝐷). Nodes 2, 3, 4, 5 are half-duplex,
interfering relays that enable communication from 𝑆 to 𝐷. A
link (𝑖, 𝑗) indicates that Nodes 𝑖 and 𝑗 are connected by an
additive white Gaussian noise (AWGN) channel with constant
gain denoted as ℎ𝑖𝑗 . Also ℎ𝑖𝑗 = ℎ𝑗𝑖. Every node has a power
constraint 𝑃 at the transmitter and a noise variance 𝜎2 at the
receiver.

The two-stage relay network studied by us is a natural
extension of the diamond channel. It is also partly motivated
by the multistage relaying example for 4G networks in [5],
[6]. Further, a three-hop network is chosen where transmission
by the second stage of relays will interfere with reception by
the first stage of relays. This is a crucial factor that affects
the capacity of the relay network, and cannot be observed in
two-hop networks that have been studied extensively in the
literature. Though we discuss a specific two-stage network in
this article, the proposed protocol can be generalized to an
arbitrary topology as long as there are two non-overlapping
paths from the source to destination using similar ideas.

We propose a multihopping decode and forward (MDF)
protocol that specifies the scheduling and coding strategies to
maximize the information flow in two-stage relay networks.
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Fig. 1. Two stage relay network.

The schedule decides the time-sharing between the states of
the half-duplex network. The coding strategy decides the rate
of information flow in each states. Comparison with the cut-
set bound shows that the performance of the proposed MDF
scheme is good for several channel conditions. Under suitably
defined strong and weak interference conditions, the achieved
rate by the proposed MDF protocol is shown to be close
to capacity. The specific contributions are as follows: (i) we
have used information-theoretic rate regions for interference
networks in the optimization of multistage relay communica-
tions, (ii) we propose a heuristic two path two state (2P2S)
schedule, (iii) we design a coding strategy within a state for
appropriate information flow in the 2P2S schedule using dirty
paper coding (DPC), superposition coding (SC) and successive
interference cancellation (SIC), (iv) we prove that the MDF
scheme has a gap to capacity of at most 0.5 bits in the low
rate regime, when the links satisfy certain strong and weak
interference conditions.
Related work and comparisons: Gaussian relay networks with
arbitrary topology have been studied in [7], [8]. The constant
gap to capacity in [7], [8] is proportional to the number of
nodes in a network and is not optimized for specific topologies
like the diamond channel or the two-stage relay network. The
authors of [7] have elaborated on the low rate regime in their
paper where they provide a closeness to cut-set bound result
based on orthogonalization, i.e., interference avoidance. We
operate in the low rate regime and our numerical results show
significant improvement over interference avoidance.

II. MULTIHOPPING DECODE AND FORWARD PROTOCOL

We are interested in maximizing the rate 𝑅𝑆→𝐷 relayed
from the source 𝑆 to the sink 𝐷. This relaying consists of two
aspects: (1) scheduling transmissions and receptions by nodes,
and (2) coding and decoding methods employed by nodes
during transmissions and receptions. Optimal scheduling is
known to be a hard problem in most scenarios. So, we
propose a heuristic schedule and coding methods suited to
the schedule.

0090-6778/12$31.00 c⃝ 2012 IEEE
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A. Two-path two-state (2P2S) schedule

We propose a simple heuristic schedule for information flow
in the network of Fig. 1(a). The heuristics used are as follows:
(1) 𝑆 always transmits and 𝐷 always receives, (2) information
is forwarded by relays over at least two node-disjoint shortest
paths. The shortest (three-hop) paths connecting 𝑆 and 𝐷 are:
(i) Path 𝑃1: 𝑆 → 2 → 4 → 𝐷, (ii) Path 𝑃2: 𝑆 → 3 → 5 → 𝐷,
(iii) Path 𝑃3: 𝑆 → 2 → 5 → 𝐷, and (iv) Path 𝑃4: 𝑆 → 3 →
4 → 𝐷. Among these four paths, there are only two pairs of
node-disjoint paths: (i) 𝑃1, 𝑃2 and (ii) 𝑃3, 𝑃4. We describe the
2P2S schedule for the choice 𝑃1, 𝑃2. A similar schedule for
𝑃3, 𝑃4 is also possible. First, we construct two states 𝑆1 and
𝑆2 that enable information forwarding along paths 𝑃1, 𝑃2. In
both states, 𝑆 will transmit and 𝐷 will receive. In state 𝑆1, we
activate the first link (𝑆, 2), and the third link (4, 𝐷) of path
𝑃1. This fixes Node 2 as a receiver and Node 4 as a transmitter.
We add link (3, 5) to state 𝑆1 for information forwarding along
path 𝑃2. Analogously, in state 𝑆2, we activate link (2, 4) of
path 𝑃1 and links (𝑆, 3), (4, 𝐷) of path 𝑃2. The states are:
(i) State 𝑆1: Nodes 𝑆, 3, 4 are transmitters, and Nodes 2, 5, 𝐷
are receivers and (ii) State 𝑆2: Nodes 𝑆, 2, 5 are transmitters,
and Nodes 3, 4, 𝐷 are receivers. These states are similar in
structure, and State 𝑆1 is shown in Fig. 1(b). In the proposed
MDF protocol, we use the 2P2S schedule.

B. Coding scheme

For a link (𝑖, 𝑗) in a state, let 𝑅𝑖𝑗 denote the rate of
information flow. We now describe a coding scheme for 𝑆1

that fixes the rate region i.e., the possible values for 𝑅𝑖𝑗 . For
computing the rate region, we assume Gaussian codebooks
at transmitters and successive interference cancellation (SIC)
decoders at receivers.
Encoding at 𝑆 (State 𝑆1): Source intends to send a message
to Node 2 in the presence of interfering signals from Nodes 3
and 4. Since source is the originator of all messages flowing
through the network, the messages from Nodes 3 and 4 are
assumed to be known to S. We propose that the source does
dirty paper coding (DPC) [9] to cancel the known interference
at receiver Node 2, assuming further that ℎ23 and ℎ24 are also
known at 𝑆. Under this coding, reliable transmission along
link (𝑆, 2) requires that the rate 𝑅𝑆2 must satisfy:

𝑅𝑆2 ≤ 𝐶
(
ℎ2
𝑆2𝑃/𝜎

2
)
, (1)

where 𝐶(𝑥) = 1
2 log2(1 + 𝑥).

Encoding at Node 3 (State 𝑆1): Transmitter 3 can reach
receivers 2 and 5. Since we use DPC at the source, we set
𝑅32 = 0. For reliable transmission along link (3, 5), rate 𝑅35

must satisfy:

𝑅35 ≤ 𝐶
(
ℎ2
35𝑃/𝜎

2
)
. (2)

Encoding at Node 4 (State 𝑆1): Transmitter 4 can reach
receivers 2, 5 and 𝐷. Since we use DPC at source, we set
𝑅42 = 0. We propose that Node 4 uses superposition coding
(SC) to send codewords x45 and x4𝐷 to receivers 5 and 𝐷 with
power sharing variables 𝛼45, 𝛼4𝐷 such that 𝛼45+𝛼4𝐷 = 1. For
real 𝑎, 𝑏, indicator function 𝕀𝑎>𝑏 = 1 if 𝑎 > 𝑏 else 𝕀𝑎>𝑏 = 0.

The achievable rates 𝑅45 and 𝑅4𝐷 satisfy [10]:

𝑅45 ≤ 𝐶

(
ℎ2
45𝛼45𝑃

𝜎2 + 𝕀∣ℎ45∣<∣ℎ4𝐷 ∣𝛼4𝐷ℎ2
45𝑃

)
, (3)

𝑅4𝐷 ≤ 𝐶

(
ℎ2
4𝐷𝛼4𝐷𝑃

𝜎2 + 𝕀∣ℎ45∣>∣ℎ4𝐷 ∣𝛼45ℎ2
4𝐷𝑃

)
. (4)

The indicator function is used to compactly express the bound
on the rates to the strong and weak receivers under SC.
In summary, State 𝑆1 is a 3 × 3 interference network with
4 messages, which is different from the standard 3 × 3
interference channel with 3 messages [11].
Decoding at Nodes 2 and 𝐷 (State 𝑆1): The DPC coded
message from 𝑆 is decoded at 2, while the superposition coded
message from Node 4 is decoded at 𝐷.
Decoding at Node 5 (State 𝑆1): The received signal at receiver
5 is

y5 = ℎ35x3 + ℎ45(x45 + x4𝐷) + w5,

where x3 is the signal from Node 3 and w5 is the noise. We
propose the following decoding depending on channel gains
ℎ45 and ℎ4𝐷: when ∣ℎ45∣ ≥ ∣ℎ4𝐷∣, Node 5 jointly decodes
codewords x̂3, x̂45, x̂4𝐷 . When ∣ℎ45∣ < ∣ℎ4𝐷∣, it decodes
only codewords x̂3, x̂45 treating x4𝐷 as noise. In either case,
decoding is same as SIC decoding in Gaussian multiple access
[10]. So, we have

∑
(𝑝,𝑞)∈𝐴

𝑅𝑝𝑞 ≤ 𝐶

( ∑
(𝑝,𝑞)∈𝐴 𝛼𝑝𝑞ℎ

2
𝑝5𝑃

𝜎2 + 𝕀∣ℎ45∣<∣ℎ4𝐷∣𝛼4𝐷ℎ2
45𝑃

)
, (5)

∀ 𝐴 ⊆ 𝒜. Here 𝛼35 = 1, and

𝒜 =

{
{(3, 5), (4, 5)} if ∣ℎ45∣ < ∣ℎ4𝐷∣,
{(3, 5), (4, 5), (4, 𝐷)} otherwise.

Rate region: The achievable rate region in State 𝑆1 under the
coding schemes described is

ℛ1 = {(𝑅𝑆2, 𝑅35, 𝑅45, 𝑅4𝐷) : satisfying (1) − (5)}. (6)

We call this scheme as DPC-SC coding. The cod-
ing scheme for state 𝑆2 is similar to that of state
𝑆1 with the links (𝑆, 2), (3, 5), (4, 5), (4, 𝐷) replaced by
(𝑆, 3), (2, 4), (5, 4), (5, 𝐷), respectively, with corresponding
channel gains and rates. The rate region ℛ2 in State 𝑆2 is:

ℛ2 = {(𝑅𝑆3, 𝑅24, 𝑅54, 𝑅5𝐷) : satisfying (1) − (5)

with respective variable changes}. (7)

C. Information flow and achievable S-D rate

Information flow from 𝑆 to 𝐷 happens by a time-sharing of
states 𝑆1 and 𝑆2 which are active for 𝜆1 and 𝜆2 fraction of the
time with 𝜆1+𝜆2 = 1. Fig. 2 illustrates the entire information
flow under 2P2S schedule and DPC-SC coding. Let 𝑧1, 𝑧2 be
the flow (in bits per unit time) along links (𝑆, 2) and (𝑆, 3),
respectively. To conserve flow in 2P2S schedule with DPC at
𝑆, the flows out of Nodes 2 and 3 are also equal to 𝑧1 and 𝑧2,
respectively. SC at Node 4 splits the flow from Node 2 into
𝑎𝑧1 units for receiver 5 and (1 − 𝑎)𝑧1 units for receiver 𝐷.
Node 5 also does SC to split the flow from Node 3 into 𝑏𝑧2 for
receiver 4 and (1−𝑏)𝑧2 units for receiver 𝐷. Therefore, Node
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Fig. 2. Information flow graph along with average flow rates.

4 receives a total flow of 𝑧1 + 𝑏𝑧2 from links (2, 4) and (5, 4).
It forwards a flow of 𝑎𝑧1 and (1−𝑎)𝑧1+𝑏𝑧2 along links (4, 5)
and (4, 𝐷), respectively, and conserves flow. Similarly, Node
5 also conserves the flow. This leads to an achievable rate of
𝑧1 + 𝑧2. The achievable rate 𝑅𝑆𝐷 from 𝑆 to 𝐷 is maximized
by solving the constrained flow problem described below:

max
0≤𝜆1,𝜆2,𝑎,𝑏≤1

𝑅𝑆𝐷 = 𝑧1 + 𝑧2, (8)

subject to:

𝑧1 ≤ 𝜆1𝑅𝑆2, 𝑧1 ≤ 𝜆2𝑅24, 𝑧2 ≤ 𝜆2𝑅𝑆3,

𝑧2 ≤ 𝜆1𝑅35, (1 − 𝑎)𝑧1 + 𝑏𝑧2 ≤ 𝜆1𝑅4𝐷,

0 ≤ 𝜆1 + 𝜆2 ≤ 1, (1 − 𝑏)𝑧2 + 𝑎𝑧2 ≤ 𝜆2𝑅5𝐷,

𝑎𝑧1 ≤ 𝜆1𝑅45, 𝑏𝑧2 ≤ 𝜆2𝑅54,

(𝑅𝑆2, 𝑅35, 𝑅45, 𝑅4𝐷) ∈ ℛ1,

(𝑅𝑆3, 𝑅24, 𝑅54, 𝑅5𝐷) ∈ ℛ2.

In the above optimization, the transmit powers have been set to
be equal at all nodes. However, the constraints can be readily
altered to allow for unequal transmit powers, if necessary.

Though the information flow graph of Fig. 2 is shown for
the specific two-stage network of Fig. 1(a), an extension to
any other network with two non-overlapping paths from the
source to the sink is readily possible. The 2P2S schedule and
the optimization framework can be extended to such relay
networks as well.

III. APPROACHING THE CUT-SET BOUND

A. Upper Bounds on Relaying Rate

In a relay network with source S and destination D, a subset
of the nodes Ω such that 𝑆 ∈ Ω and 𝐷 ∈ Ω𝑐 defines a cut with
the edges {(𝑢, 𝑣) : 𝑢 ∈ Ω, 𝑣 ∈ Ω𝑐} being the cut edges. The
cut edges define a Multiple-Input Multiple-Output (MIMO)
channel, whose sum capacity denoted 𝐶MIMO(Ω; Ω𝑐) is a full-
duplex cut-set upper bound on the rate 𝑅𝑆𝐷 from S to D
[10].

1) Half-duplex cut-set bound [12]: Suppose a half-duplex
relay network operates in 𝑀 states, 𝑆𝑘 = (𝐼𝑘, 𝐽𝑘), 1 ≤ 𝑘 ≤
𝑀 , where 𝐼𝑘 and 𝐽𝑘 denote the nodes in transmit and receive
mode in state 𝑘, respectively. Assuming state 𝑆𝑘 is active for
a fraction of time 𝜆𝑘, the rate 𝑅𝑆𝐷 is bounded as follows
[12]:

𝑅𝑆𝐷 ≤ sup
𝜆𝑘,

∑
𝜆𝑘=1

min
Ω

𝑀∑
𝑘=1

𝜆𝑘𝐶MIMO(Ω∩𝐼𝑘 ; Ω𝑐∩𝐽𝑘). (9)

This upper bound on the half-duplex cut-set bound is com-
puted by solving a linear program [4]. In computations, we
use the following upper bound for 𝐶MIMO(𝐼; 𝐽) as in [7], [8],
[13]:

𝐶MIMO(𝐼; 𝐽) ≤ 1

2
log2(det(I𝑛 + 𝑚𝑃ℍℍ

𝐻)), (10)

where 𝑚 = ∣𝐼∣, 𝑛 = ∣𝐽 ∣, I𝑛 is an 𝑛 × 𝑛 identity matrix,
matrix ℍ = [ℎ𝑖𝑗 ], 𝑖 ∈ 𝐽, 𝑗 ∈ 𝐼 and receiver noise variance is
normalized to 1.

2) A closed-form half-duplex cut-set bound: For the net-
work of Fig. 1(a), we consider the channel condition: ℎ𝑆2 =
ℎ𝑆3 = ℎ4𝐷 = ℎ5𝐷 = 𝛼, ℎ24 = ℎ35 = 𝛽, ℎ23 = ℎ25 =
ℎ34 = ℎ45 = 𝛾. We determine a closed form upper bound of
(9) by considering the three cuts: Ω1 = {𝑆}, Ω2 = {𝑆, 2, 3}
and Ω3 = {𝑆, 2, 3, 4, 5} representing the three stages in the
network of Fig. 1(a). Note that reducing the number of cuts
in the minimization in (9) still provides an upper bound. For
the maximization of (9), it turns out that the six states shown
in Table I are sufficient. In Table I, 𝐶𝑈𝑇𝑖 = 𝐶MIMO(Ω𝑖 ∩
𝐼𝑘; Ω𝑐

𝑖 ∩𝐽𝑘) and 𝐶0 = 𝐶
(
4𝑃 (𝛾2 + 𝛽2) + 4𝑃 2((𝛾2 − 𝛽2)2)

)
,

which is an upper bound on 𝐶MIMO(Ω2; Ω𝑐
2) obtained by using

(10). The six states 𝑆2 to 𝑆7 in Table I are sufficient because,
for any other state, the cut capacities [𝐶𝑈𝑇1, 𝐶𝑈𝑇2, 𝐶𝑈𝑇3]
are smaller or equal (coordinate-wise) to those for one of the
states 𝑆2 to 𝑆7. For example, for state 𝑆1 the cut capacities
are the same as for state 𝑆2. In this scenario, the half-duplex
cut-set bound is computed by the linear program (LP):

max c𝑇x = 𝑅, 𝑠.𝑡. 𝐴x ≤ b,x ≥ 0, (11)

where 𝐴 is the coefficient matrix defined in (12), x =
[𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝑅], c = [0, 0, 0, 0, 0, 0, 1], and b =
[0, 0, 0, 1]. To obtain a closed-form upper bound on the optimal
cut-set bound, we consider the dual

min b𝑇y = 𝑅̃, 𝑠.𝑡. 𝐴𝑇y ≥ c,y ≥ 0, (13)

where y = [𝜏1, 𝜏2, 𝜏3, 𝑅̃]. Note that any feasible point in the
dual (13) gives an upper bound to the optimal cut-set bound.
To find a feasible point in (13), we let 𝜏3 = 0 and 𝜏1+𝜏2 = 1.
With these choices for [𝜏1, 𝜏2, 𝜏3] and using 𝐶0 ≥ 𝐶((𝛽2 +
𝛾2)𝑃 ), 𝐴𝑇y ≥ c simplifies to:

𝑅̃ ≥ max{𝜏2𝐶0, 𝜏1𝐶(2𝛼2𝑃 ), (14)

𝜏1𝐶(𝛼2𝑃 ) + 𝜏2𝐶((𝛽2 + 𝛾2)𝑃 )}.
The lowest value of 𝑅̃ satisfying (14) can now be computed
to be the expression in (15). The 𝑅̃ in (15) is a closed-form
upper bound to the half-duplex cut-set bound for the network
of Fig. 1(a) under the chosen channel conditions.

B. Relaying rates of proposed MDF protocol

The optimal rates in (6) and (7) can be expressed in closed
form under suitable assumptions on flow in certain channel
regimes. For the analysis, we assume that in the MDF protocol
information flows only through the edges in Paths 𝑃1 and 𝑃2

and compute the rate achieved by it. All other edges have zero
flow and are processed as interference at the receivers. This
sets 𝑎 = 𝑏 = 0 in Fig. 2.
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TABLE I
STATES AND CUT CAPACITIES.

State 𝐼𝑘 𝐽𝑘 𝐶𝑈𝑇1 𝐶𝑈𝑇2 𝐶𝑈𝑇3

𝑆2 {𝑆, 2, 5} {3, 4,𝐷} 𝐶(𝛼2𝑃 ) 𝐶(𝛽2𝑃 ) 𝐶(𝛼2𝑃 )

𝑆3 {𝑆, 2, 3, 5} {4, 𝐷} 0 𝐶((𝛽 + 𝛾)2𝑃 ) 𝐶(𝛼2𝑃 )

𝑆4 {𝑆, 2, 3} {4, 5𝐷} 0 𝐶0 0

𝑆5 {𝑆, 2, 4} {3, 5,𝐷} 𝐶(𝛼2𝑃 ) 𝐶(𝛾2𝑃 ) 𝐶(𝛼2𝑃 )

𝑆6 {𝑆, 2} {3, 4, 5, 𝐷} 𝐶(𝛼2𝑃 ) 𝐶((𝛽2 + 𝛾2)𝑃 ) 0

𝑆7 {𝑆, 4, 5} {2, 3,𝐷} 𝐶(2𝛼2𝑃 ) 0 𝐶(4𝛼2𝑃 )

𝐴 =

⎡
⎢⎢⎣

−𝐶(𝛼2𝑃 ) 0 0 −𝐶(𝛼2𝑃 ) −𝐶(𝛼2𝑃 ) −𝐶(2𝛼2𝑃 ) 1
−𝐶(𝛽2𝑃 ) −𝐶((𝛽 + 𝛾)2𝑃 ) −𝐶0 −𝐶(𝛾2𝑃 ) −𝐶((𝛽2 + 𝛾2)𝑃 ) 0 1
−𝐶(𝛼2𝑃 ) −𝐶(𝛼2𝑃 ) 0 −𝐶(𝛼2𝑃 ) 0 −𝐶(4𝛼2𝑃 ) 1

1 1 1 1 1 1 0

⎤
⎥⎥⎦ (12)

𝑅̃ =

⎧⎨
⎩

𝐶(𝛼2𝑃 )𝐶0

𝐶(𝛼2𝑃 )+𝐶0−𝐶((𝛽2+𝛾2)𝑃 ) if 1 − 𝐶(𝛼2𝑃 )
𝐶(2𝛼2𝑃 ) <

𝐶((𝛽2+𝛾2)𝑃 )
𝐶0

and 𝛼2 > 𝛽2 + 𝛾2,
𝐶(2𝛼2𝑃 )𝐶((𝛽2+𝛾2)𝑃 )

𝐶(2𝛼2𝑃 )−𝐶(𝛼2𝑃 )+𝐶((𝛽2+𝛾2)𝑃 ) if 1 − 𝐶(𝛼2𝑃 )
𝐶(2𝛼2𝑃 ) <

𝐶((𝛽2+𝛾2)𝑃 )
𝐶0

and 𝛼2 ≤ 𝛽2 + 𝛾2,
𝐶0𝐶(2𝛼2𝑃 )
𝐶0+𝐶(2𝛼2𝑃 ) if 1 − 𝐶(𝛼2𝑃 )

𝐶(2𝛼2𝑃 ) ≥ 𝐶((𝛽2+𝛾2)𝑃 )
𝐶0

.

(15)

1) Strong interference condition: 1 We suppose that all
nodes in states 𝑆1 and 𝑆2 transmit at a common rate
𝑅1 ≤ 𝐶(ℎ2

𝑆2𝑃 ) and 𝑅2 ≤ 𝐶(ℎ2
𝑆3𝑃 ), respectively. Further,

information received by a node at rate 𝑅1 when state 𝑆1 is
operational is forwarded in state 𝑆2 by the same node at rate
𝑅2. For flow conservation, we require that 𝑅1𝜆1 = 𝑅2𝜆2.
Using 𝜆1 + 𝜆2 = 1, we have 𝜆1 = 𝑅2/(𝑅1 + 𝑅2) and
𝜆2 = 𝑅1/(𝑅1 + 𝑅2) and a total rate of 2𝑅1𝑅2/(𝑅1 + 𝑅2).
The question to be addressed is the condition for successful
decoding by receivers in each state. Receiver 5 in state 𝑆1

sees a two-user Gaussian MAC channel from transmitters 3
and 4 with respective channel gains ℎ35 and ℎ45 under a
transmit power constraint 𝑃 . The rate pair (𝑅1, 𝑅1) is feasible
at receiver 5 in State 𝑆1, if 𝑅1 ≤ 𝐶(ℎ2

35𝑃 ), 𝑅1 ≤ 𝐶(ℎ2
45𝑃 )

and the sum rate of this two-user MAC channel satisfies:
2𝑅1 ≤ 2𝐶(ℎ2

𝑆2𝑃 ) ≤ 𝐶((ℎ2
35 + ℎ2

45)𝑃 ). These conditions
simplify to min(∣ℎ35∣, ∣ℎ45∣) ≥ ∣ℎ𝑆2∣, and

∣ℎ45∣ ≥
√

(1 + ℎ2
𝑆2𝑃 )2 − 1 − ℎ2

35𝑃

𝑃
≜ ℎ1

Similarly to achieve (𝑅2, 𝑅2) at receiver 4 in State 𝑆2, the
channel gains should satisfy min(∣ℎ24∣, ∣ℎ54∣) ≥ ∣ℎ𝑆3∣, and

∣ℎ54∣ ≥
√

(1 + ℎ2
𝑆3𝑃 )2 − 1 − ℎ2

24𝑃

𝑃
≜ ℎ2.

Sink Node 𝐷 is interference free in both states. Hence
∣ℎ4𝐷∣ ≥ ∣ℎ𝑆2∣ and ∣ℎ5𝐷∣ ≥ ∣ℎ𝑆3∣ are sufficient to forward
information to 𝐷 at rates 𝑅1 and 𝑅2 in states 𝑆1 and 𝑆2,
respectively.

Remark 1: When the channel gains satisfy the following
strong interference conditions: min( ∣ℎ4𝐷∣, ∣ℎ35∣, ∣ℎ45∣) ≥
∣ℎ𝑆2∣, min(∣ℎ5𝐷∣, ∣ℎ24∣, ∣ℎ54∣) ≥ ∣ℎ𝑆3∣, and ∣ℎ54∣ = ∣ℎ45∣ ≥

1The terms “strong” and “weak” are used to merely describe conditions
satisfied by the relative strengths of network links. We do not imply that
capacity of the relay network is known in these regions.

max(ℎ1, ℎ2), the achievable rate under the proposed MDF
protocol in the two-stage relay network is

𝑅(ℎ𝑆2, ℎ𝑆3) ≜ 2𝐶(ℎ2
𝑆2𝑃 )𝐶(ℎ2

𝑆3𝑃 )

𝐶(ℎ2
𝑆2𝑃 ) + 𝐶(ℎ2

𝑆3𝑃 )
. (16)

(a) When ∣ℎ𝑆2∣ = ∣ℎ𝑆3∣ the achievable rate of the MDF pro-
tocol in the strong interference regime is 𝑅(ℎ𝑆2, ℎ𝑆3) =
𝐶(ℎ2

𝑆2𝑃 ) with the full-duplex source cut bound being
𝐶(2ℎ2

𝑆2𝑃 ). The gap to capacity is at most 𝐶(2ℎ2
𝑆2𝑃 ) −

𝐶(ℎ2
𝑆2𝑃 ) = 𝐶(

ℎ2
𝑆2𝑃

1+ℎ2
𝑆2𝑃

) ≤ 0.5 bits, ∀ℎ𝑆2.
(b) In the strong interference regime when ℎ𝑆2 = ℎ𝑆3 =

ℎ4𝐷 = ℎ5𝐷 = 𝛼, ℎ24 = ℎ35 = 𝛽 ≥ 𝛼, ℎ23 = ℎ25 =

ℎ34 = ℎ45 = 𝛾 ≥ 𝛼 and 𝛾 ≥
√

(1+𝛼2𝑃 )2−1−𝛽2𝑃
𝑃 ≥ 0,

the gap Δ𝑠 from the closed-form half-duplex bound (15)
is given by (17).

2) Weak interference condition: Suppose that receiver 5 in
state 𝑆1 decodes the data along link (3, 5) and treats inter-
ference along link (4, 5) as noise. Since we assume Gaussian
codebooks at all transmitters, a rate 𝑅1 is achievable whenever
𝑅1 = 𝐶(ℎ2

𝑆2𝑃 ) ≤ 𝐶
(

ℎ2
24𝑃

1+ℎ2
45𝑃

)
. The above condition reduces

to ∣ℎ45∣ ≤
(√

ℎ2
24

ℎ2
𝑆2𝑃

− 1
𝑃

)+
≜ ℎ3, where 𝑥+ = max(𝑥, 0).

Similarly, rate 𝑅2 is achievable at receiver 4 in state 𝑆2

whenever ∣ℎ54∣ ≤
(√

ℎ2
35

ℎ2
𝑆3𝑃

− 1
𝑃

)+
≜ ℎ4.

Remark 2: When the channel gains satisfy the following
weak interference conditions: min(∣ℎ24∣, ∣ℎ4𝐷∣) ≥ ∣ℎ𝑆2∣,
min(∣ℎ35∣, ∣ℎ5𝐷∣) ≥ ∣ℎ𝑆3∣, ∣ℎ54∣ = ∣ℎ45∣ ≤ min (ℎ3, ℎ4), the
achievable rate under the MDF protocol is 𝑅(ℎ𝑆2, ℎ𝑆3).
(a) In the weak interference regime, the achievable rate of the

MDF protocol is 𝑅(ℎ𝑆2, ℎ𝑆3) = 𝐶(ℎ2
𝑆2𝑃 ), when ∣ℎ𝑆2∣ =

∣ℎ𝑆3∣. So, the gap to capacity is at most 0.5 bits as seen
from the comparison with the full-duplex source cut-set
bound 𝐶(2ℎ2

𝑆2𝑃 ).
(b) Consider the weak interference regime with ℎ𝑆2 = ℎ𝑆3 =

ℎ5𝐷 = ℎ4𝐷 = 𝛼, ℎ24 = ℎ35 = 𝛽, ℎ23 = ℎ25 = ℎ45 =
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Δ𝑠 = lim
𝛼→∞

[
𝐶(2𝛼2𝑃 )𝐶((𝛽2 + 𝛾2)𝑃 )

𝐶(2𝛼2𝑃 ) − 𝐶(𝛼2𝑃 ) + 𝐶((𝛽2 + 𝛾2)𝑃 )
− 𝐶(𝛼2𝑃 )

]
= 0.25 bits. (17)

Δ𝑤 =

{
𝐶(2𝛼2𝑃 )𝐶(𝛽2𝑃 )

𝐶(2𝛼2𝑃 )−𝐶(𝛼2𝑃 )+𝐶(𝛽2𝑃 ) − 𝐶(𝛼2𝑃 ) if 1 − 𝐶(𝛼2𝑃 )
𝐶(2𝛼2𝑃 ) <

𝐶(𝛽2𝑃 )
2𝐶(2𝛽2𝑃 ) ,

2𝐶(2𝛽2𝑃 )𝐶(2𝛼2𝑃 )
2𝐶(2𝛽2𝑃 )+𝐶(2𝛼2𝑃 ) − 𝐶(𝛼2𝑃 ) if 1 − 𝐶(𝛼2𝑃 )

𝐶(2𝛼2𝑃 ) ≥ 𝐶(𝛽2𝑃 )
2𝐶(2𝛽2𝑃 ) .

(18)
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Fig. 3. Performance of the MDF protocol; Channel condition A: 𝛼 = 1, 𝛽 =
1, vary 𝛾.

ℎ34 = 𝛾, with 𝛼 ≤ 𝛽, and 𝛾 → 0. For these channel
conditions, we have 𝐶0 → 2𝐶(2𝛽2𝑃 ) and the gap Δ𝑤

to the closed-form half-duplex cut-set bound is given by
(18).

When 𝛼 = 𝛽, further simplification shows that the gap Δ𝑤

in (18) reduces to zero when 𝛼2𝑃 > 1+
√
5

2 , and otherwise to
2
3𝐶(2𝛼2𝑃 ) − 𝐶(𝛼2𝑃 ) ≤ 0.07 bits.

Though Remarks 1 and 2 are made for the specific two-stage
relay network of Fig. 1(a), extensions to any network with
two non-overlapping paths is possible as long as the on-path
gains are either strong or weak, when compared to the inter-
path gains. The coding ideas remain the same, but computing
the half-duplex cut-set bound will become more complicated.
However, the gap to the full-duplex cut-set bound will still
remain small in suitably defined strong and weak interference
channel gain regimes.

IV. NUMERICAL EVALUATION

In this section, we numerically evaluate the performance of
the proposed MDF protocol for the two-stage relay network
and verify the results of Section III. The achievable 𝑆-𝐷
rate is found by solving the optimization (8) in Section II-C
using standard optimization routines. We consider half-duplex
cut-set bound, the closed-form half-duplex bound described
in Section III-A and the interference avoidance (IA) scheme
for comparison. In the IA scheme, all states with only non-
interfering links are considered. We set 𝑃 = 3, 𝜎2 = 1 and
ℎ𝑆2 = ℎ𝑆3 = ℎ5𝐷 = ℎ4𝐷 = 𝛼, ℎ24 = ℎ35 = 𝛽, ℎ23 = ℎ25 =
ℎ45 = ℎ34 = 𝛾 for illustration.
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Fig. 4. Performance of the MDF protocol; Channel condition B: 𝛼 = 1, 𝛽 =
1.25, vary 𝛾.

In Fig. 3, 𝛼 = 𝛽 = 1 and 𝛾 is varied. In the strong (𝛾 ≥ 3.01
dB) and weak (𝛾 ≤ −14 dB) interference regimes, the rate
achieved by MDF protocol is 𝐶(𝛼2𝑃 ) = 1 as determined
in Remark 1(a). In the weak interference regime, capacity is
achieved following Remark 2(b). In the strong interference
regime, the gap from the half-duplex cut-set bound is at most
0.33 bits, as per (9) and (15).

In Fig. 4, 𝛼 = 1, 𝛽 = 1.25, and 𝛾 is varied. The MDF
protocol achieves a rate of 𝐶(𝛼2𝑃 ) = 1 for a larger range of
𝛾, i.e., strong interference regime (𝛾 ≥ 2.68 dB) and weak
interference regime (𝛾 ≤ −3.63 dB) according to Remarks 1
and 2. The gap from the HD cut-set bound in the weak and
strong interference regimes are 0.06 and 0.33 bits respectively,
as per (9) and (15).

Fig. 5 shows the performance of the MDF protocol with

varying 𝛼, with 𝛽 = 𝛼 and 𝛾 = 2
√

(1+𝛼2𝑃 )2−1−𝛽2𝑃
𝑃 in the

strong interference regime. We notice that the gap to the full-
duplex bound is at most 0.5 bits verifying Remark 1(a). The
gap between the achievable rate and the derived half-duplex
cut-set bound is only 0.25 bits as determined in Remark 1(b)
even when the rate achieved is large (for large 𝛼).

In Figs. 3, 4 and 5, we notice the proposed MDF protocol
performs significantly better than the interference avoidance
scheme in all three channel conditions. Overall, the numerical
results agree with the analytical results for strong and weak
interference regimes and for the half-duplex cut-set bound.
They show that the closed-form half-duplex bound is close
to the computed one and illustrate the good performance of
the proposed protocol in various channel conditions. Based
on Figs. 3, 4 and 5, we can conclude that more complicated
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Fig. 5. Performance gap of the MDF protocol; Channel condition C: 𝛽 = 𝛼,

𝛾 = 2

√
(1+𝛼2𝑃 )2−1−𝛽2𝑃

𝑃
, vary 𝛼.

coding schemes that exploit significant cooperation among the
nodes will only provide marginal or no gains in the strong and
weak interference regimes.

V. CONCLUSION

We have proposed and analyzed a multi-hopping decode
and forward (MDF) protocol for a two-stage Gaussian re-
lay network. The protocol is shown to perform well under
some practical assumptions such as half-duplex nodes, non-
cooperative decoding among relay nodes and finite SNR.
Through analysis, we show that the MDF protocol used with
a simple schedule and suitable coding can approach the cut-
set bound under strong and weak interference regimes of
channel gains. Extensions to use of finite constellations at
transmitters[14][15] and inclusion of fading in the channel
model[16][17] are possible considerations for future work in
the study of the proposed MDF protocol.
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