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Abstract—Divide and conquer is an established algorithm
design paradigm that has proven itself to solve a variety of
problems efficiently. However, it is yet to be fully explored in
solving problems with a neural network, particularly the problem
of image super-resolution. In this work, we propose an approach
to divide the problem of image super-resolution into multiple
sub-problems and then solve/conquer them with the help of a
neural network. Unlike a typical deep neural network, we design
an alternate network architecture that is much wider (along with
being deeper) than existing networks and is specially designed to
implement the divide-and-conquer design paradigm with a neural
network. Additionally, a technique to calibrate the intensities of
feature map pixels is being introduced. Extensive experimentation
on five datasets reveals that our approach towards the problem
and the proposed architecture generate better and sharper results
than current state-of-the-art methods.

Index Terms—Image super-resolution, Image restoration, Wide
and deep network, WDN, Divide-and-conquer.

I. INTRODUCTION

IMAGE super-resolution is one of the challenging restora-

tion tasks that involves increasing the resolution of the

given image. Recent technological advances in the domain

of display devices (e.g. high/ultra-high-definition screens) and

enormous availability of low-resolution images (captured by

old cameras/mobile-phones) have made this problem to gar-

ner significant research attention from the Computer Vision

community. Virtual Super Resolution (VSR) technology from

AMD, Dynamic Super-Resolution (DSR) technology devel-

oped by Nvidia and the most recent Nvidia’s Deep Learning

Super Sampling (DLSS 2.0) technology are a few examples

that highlight the commercial importance and viability of the

super-resolution techniques.

Substantial progress has already been accomplished in solv-

ing the image super-resolution problem. Notably, the existing

techniques follow the general principle of ‘building deeper

networks and training them on large data’. For instance, the

residual channel attention network proposed by Zhang et al.

[1], multi-scale residual architecture proposed by Li et al.

[2], and second-order attention network proposed by Dai et

al. [3], among others still use this approach. However, we

observe that such techniques still have a significant scope left

for improvement, specifically in terms of improving the quality

of the upsampled results, that primarily lack the required

sharpness.

Both the authors are from Computer Vision Lab, Department of Com-
puter Science and Engineering, Indian Institute of Technology, Madras,
Chennai, 600036 India. The corresponding author is Vikram Singh, e-mail:
vsingh@cse.iitm.ac.in.

In this work, we attempt to improve upon the performance

of existing image super-resolution methods with the motivation

that the well-established approach of divide-and-conquer when

applied with a neural network for image super-resolution

might provide a performance gain. With this approach, we

divide the image super-resolution problem into multiple sub-

problems and solve them individually, thereby merging the

sub-solutions to generate the final solution/upsampled-image.

Unlike existing image super-resolution networks that are deep,

we build an alternate network architecture that is specifically

designed to work on the ‘divide and conquer’ design paradigm

and hence, is much wider along with being deeper.

A wide neural network that is designed to divide and

conquer the problem has the advantage of better learning and

faster processing. It can either execute on a single powerful

GPU or multiple smaller GPUs in parallel. As such, we can

divide the given complex problem into many simpler sub-

problems, and then multiple sub-networks that are connected

along the wide network’s width can be trained simultaneously

to solve those simpler sub-problems. This training will in-

crease the expertise of the sub-networks towards solving sub-

problem of a particular type and will ultimately improve the

overall network performance. We elaborate more on this point

in Section III after describing the functioning and architecture

of our network. Nevertheless, as our proposed network archi-

tecture has much more width than existing networks, we name

it WDN to represent its wide and deep design.

An arduous challenge that is encountered while solving the

image super-resolution problem is of predicting/upsampling

the image while maintaining its ‘sharpness’. The generation

of a sharp prediction requires precise prediction of the high-

frequency details in the image. These details are found in the

regions of the high spatial gradient, for instance, the object

edges. High-frequency prediction is challenging as these are

the details that suffer most of the losses in a low-resolution

image as compared to low-frequency details. Unless explicit

measures are not enforced to predict high-frequency details,

there is a high probability that the predicted image will lack

the required sharpness. Indeed, this is observed in most of the

current methods that do not enforce these measures explicitly.

To overcome this challenge and to generate sharper results, we

upsample the image in two parts by ‘separately predicting its

high-frequency and low-frequency channels’. The separately

predicted high-frequency and low-frequency channels are then

fused to generate the final output.

Apart from a wider design (based on divide-and-conquer)

and explicit measure for predicting high-frequency details, we

also introduce a method to calibrate the feature-map pixels that
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are generated inside the network. This method calibrates the

intensity of pixels using a self-learned pixel relevance value to

improve the overall network performance. We further elaborate

on this in Section III-C.

Before proceeding ahead, we mention that this work is an

expansion of our prior work1 The unique contributions of

this article over the conference version are: 1) Division of

problem based on scale factor (i.e. two 2× upsampling), 2)

Use of attention mechanism to better combine sub-solutions,

3) Weight sharing blocks to reduce the number of parameters,

4) Improved architecture that requires minimisation of only 12

losses as opposed to 49 losses of the network proposed in the

conference version, 5) Intermediate layer output visualisations

for better understanding of the network functioning, 6) Exten-

sive literature survey to cover a large set of existing works, 7)

Additional experiment on Manga109 dataset, 8) Analysis of

model complexity and execution time, 9) Discussion on the

choice of high-frequency extractor: Sobel, 10) Analysis of the

DAC based design, and 11) Evaluation of different training

procedures. We refer the reader to the conference version and

to the rest of this article for a better understanding of the stated

contributions. Next, we discuss some state-of-the-art methods

for image super-resolution.

II. PRIOR WORK

Methods described in [4]–[7] comprise the earlier approach

for image super-resolution that are mostly non-deep learned.

Glasner et al. [4] perform upsampling by using internal recur-

rence of image patches. Yang et al. [5] consider image patches

as sparse signal representations. Timofte et al. [6] reduce

the execution time of existing super-resolution techniques by

using sparse dictionaries and neighbourhood regression, while

Schulter et al. [7] upsample by coining a random forest-based

approach.

Ideas proposed in [8]–[12] attempt to establish a non-linear

connection between the high-resolution output and the cor-

responding low-resolution input using deep neural networks.

Though the performance of these works is decent, they also

have a large number of trainable parameters, and they lack

in predicting fine textures in images. Tai et al. [13] reduce

the parameters by recursive modelling, whereas [1], [14]–[16]

adopt residual learning to predict fine textures. Adversarially

trained networks (GANs) have also been deployed to increase

the sharpness of the prediction in [17]–[19]. These techniques

indirectly highlight the importance of predicting the high-

frequency details as without them the results become even

more blurred. However, none of these techniques take explicit

measures for their prediction to make the results sharper. High-

frequency details are responsible to bring-in sharpness as they

comprise the fine-textures of the predicted image. We have

designed WDN to predict the high-frequency details explicitly,

and thus the results that it generates are visually sharper than

the current state-of-the-art.

To adapt to high magnification factors, Dahl et al. [20]

propose a deep probabilistic network. Tai et al. [21] present a

1Singh et al., ”Going Much Wider with Deep Networks for Im-
age Super-Resolution,” IEEE/CVF WACV, 2020, pp. 2332-2343, DOI:
10.1109/WACV45572.2020.9093317.

memory block architecture to solve the long dependency prob-

lem (i.e. the influence of initial layers on the final prediction)

of deep networks. The work of Lim et al. [22] aims to reduce

the modules in conventional residual networks. Zheng et al.

[23] attempt to optimise the performance of the model using

pixel-level alignment. Hui et al. [24] give a deep yet compact

network that directly predicts high-resolution images from the

low-resolution input. Li et al. [25] have convolutional kernels

of multiple sizes to identify the image features on different

scales dynamically. Using wavelets, the model by Zhong et

al. [26] predict the high-resolution image with better textural

details. Though these methods perform sufficiently well with

the Bi-cubically downsampled low-resolution images, their

performance deteriorates when the input comes from a real

low-resolution camera. Bulat et al. [27] attempt to address

this with GANs, whereas Zhang et al. [28] design a model

for input with multiple and spatially variant degradations.

Our divide-and-conquer based approach of WDN towards the

super-resolution problem significantly differs from all the cited

works. WDN has been tested to work with the most commonly

used Bi-cubic downsampling for a fair comparison with the

state-of-the-art.

Some authors have built divide-and-conquer networks to

solve problems such as exclusive-or, clustering, manipulation,

locomotion, and super-resolution, among others. An earlier

(1993) network for exclusive-or by Romaniuk and Hall [29]

trains at the cellular level and unlike WDN, it has no back-

propagation or weight sharing. Nowak et al. [30] give a bi-

modular network for clustering. Unlike multi-modular WDN,

it recursively divides the problem to build a binary tree of

sub-problems. The approach of Ghosh et al. [31] for tasks

of manipulation and locomotion use divide-and-conquer with

reinforcement learning. Significantly different, WDN is a

divide-and-conquer based wide and deep learned network.

Lin et al. [32], Kim et al. [33], and Huang et al. [34]

propose divide-and-conquer based adversarially trained net-

works for generation, super-resolution, and enhancement of

images, respectively. The first generates an image by concate-

nating spatially-separated predicted patches. Second, divide

the upsampling problem into only three sub-problems of

reconstruction, detail restoration, and local contrast enhance-

ment. They train their network in a unified manner. Third,

divides the problem at three levels of perception, frequency

and dimension. As opposed to these works, the sub-solutions

predicted by WDN are not localised patches but they contain

pixels that are evenly distributed across the entire spatial

space of the model-prediction. WDN statically divides the 4×

upsampling problem (i.e. ground-truth) into 11 sub-problems

based on scale and frequency and the model input into 32 sub-

inputs. The frequency division of WDN is also different and

is performed with Sobel filters. Each level of WDN follows a

similar division pattern based on scale and frequency. WDN

does not take explicit measures for contrast-enhancement. We

show later that with these difference, WDN is able to generate

better and sharper results that state-of-the-art. The design of

WDN facilitates faster processing on a multi-GPU system.

We now discuss some of the recent methods image super-

resolution methods and compare WDN with them all-together
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at the end. The following techniques focus on varied aspects

of the super-resolution problem. For instance, the findings of

Han et al. [35] reveal that a single-state recurrent neural net-

work (RNN) could approximate many deep super-resolution

networks. The authors of [36]–[38] attempt to estimate the

unknown blur kernel for blind super-resolution. Qiu et al.

[39] work on texture super-resolution. He et al. [40] devises

an ODE-inspired scheme. Haris et al. [41] come up with

an iterative up-down sampling mechanism. Hu et al. [42]

introduce a flexible model that can accept a scale factor along

with the input to compute the network parameters according

to the scale factor dynamically. Li et al. [43] refine the low-

level representations with high-level information, Dai et al. [3]

propose a model that captures the long-distance dependencies

along with structural information by embedding non-local op-

erations in the network to account for the correlation between

features of different layers. Significantly different from these,

Shocher et al. [44] design an unsupervised approach to train

the network at test time with the test image itself.

Park et al. [45] suggest that deploying a GAN to predict fine

textures also amplifies the high-frequency noise. They address

this issue by using an additional discriminator that keeps a

check on the amplified noise. Zhang et al. [46] along with Rad

et al. [47] also deploy GANs that focus on the generator and

discriminator respectively. Some works are also focused on

reducing the model size for instance: the lightweight network

of Liu et al. [48] with progressive residual learning, residual

global context network of Liu et al. [49] that achieves a better

trade-off between the number of parameters & the upsampling

quality, and the discriminant information pruning criteria based

network of Hou et al. [50].

The most recent works on image super-resolution includes

the multi-path adaptive modulation network of Kim et al.

[51] that modulate the residual feature responses, Channel

splitting and fusion network of Zou et al. [52] that obtain

the respective contribution of each channel for predicting

the result. With a different focus from these, Wang et al.

[53] analyse multiple Gaussian degradations in an attempt to

reduce the reconstruction error in real-world data, Qin et al.

[54] combine the ideas of the channel, and spatial attention

for building a deep multilevel residual attention network and

lastly, Wu et al. [55] come up with a novel perceptual loss

for upsampling. Though most recent, however, none of these

techniques were able to cross the benchmark established by

an earlier but current state-of-the-art method [39].

To the best of our knowledge, WDN predominantly differs

from the above-cited methods in its approach towards solving

the image super-resolution problem. Notably, the significant

differences/contribution of our work are:

• Our work adopts an established algorithm design

paradigm ‘divide-and-conquer’ to solve the super-

resolution problem by dividing it into multiple sub-

problems.

• Our work proposes a much wider and deep network

architecture that can solve the sub-problems separately

and parallelly on one or more GPUs.

• Our work introduces a technique to calibrate the intensi-

ties of pixels in feature maps that subsequently improve

the upsampling results with deeper networks.

III. WIDE AND DEEP NETWORK (WDN)

In this paper, we propose the design of a wide and deep

network (WDN) that solves the problem of image super-

resolution by implementing the well-established paradigm of

‘divide-and-conquer’. Following this approach, our search for

a better solution begins with the division of a given single

problem into multiple sub-problems. The division that we

make to create sub-problems is primarily based on the: 1)

Frequency of the data and 2) Scaling factor.

In terms of frequency, the problem of predicting an up-

sampled image is divided into two sub-problems of separately

predicting the high-frequency and low-frequency channels. A

network that predicts high-frequency and low-frequency de-

tails together may become biased and drift towards predicting

low-frequency details with more accuracy at the cost of a lower

accuracy in predicting the high-frequency details resulting in

blurry predictions. This is because typically an image has

much more low-frequency details than high-frequency details.

By dividing the problem explicitly into two separate problems

of predicting high and low frequencies, the network can learn

to gain better expertise (conquer) in high-frequency prediction

(without low-frequency bias) subsequently generating sharper

predictions.

In terms of the scaling factor, the 4× upsampling problem is

divided into two successive sub-problems of 2× upsampling.

The scaling factor division divides the problem into multiple

sub-problems wherein multiple sub-networks can be deployed

to gain better expertise in solving a particular sub-problem

and generate better sub-solutions. Better sub-solutions can

generate better solutions when combined. Moreover, such a

division eases the training process by making the sub-networks

executable on multiple GPUs in parallel, facilitating faster

processing even with heavier sub-networks.

With the above motivations for using the divide-and-conquer

design paradigm, we combine the two criteria and divide the

problem of 4× upsampling into three sets of eleven sub-

problems as described in the next section.

A. Eleven sub-problems of 4× upsampling

A 4× upsampling problem consists of predicting a single

image with 4× the resolution of the given image. In super-

vised paradigm, the ground-truth image with 4× resolution is

available and the problem is to make the model prediction as

close as possible to it in terms of some performance metric,

e.g., PSNR [56] and SSIM [57]. Typically, neural networks

make this prediction directly. However, instead of solving the

problem of predicting the 4× image directly, we divide the

problem into three sets of 11 sub-problems, as shown in Fig.

1 and train our network WDN to solve/predict them set-by-

set. The first set of sub-problems consists of predicting four

high-frequency and four low-frequency channels at a scale of

two. To generate the ground-truths for the first set, Sobel filter

is applied on the given 4× model ground-truth by following

the procedure described in Section III-A1. The procedure

generates two 4× channels that contain the high-frequency and
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First set of eight sub-problems/images Second set of two sub-problems/images Third set of one sub-problem

High-frequency images Low-frequency images High-frequency image Low-frequency image Ground-truth image

Fig. 1: Visualisation of the three sets of 11 sub-problems for 4× upsampling. The first set consists of the images at a scale of

two, the second and the third set comprises of the images at a scale of four. Section III-A describes the procedure to generate

these sub-problems from the given ground-truth.

space-to-depth

depth-to-space

4 x 4 x 1
2 x 2 x 4

(a) Block size of two.

depth-to-space

space-to-depth

4 x 4 x 1 1 x 1 x 16

(b) Block size of four.

Fig. 2: Illustration of space-to-depth and depth-to-space opera-

tions with different block sizes. This figure is understandable

in colour only.

low-frequency details of the ground-truth image separately.

Next, Space-to-depth [58] operator (illustrated in Fig. 2a)

is applied on both the generated high-frequency and low-

frequency channels. In return, this operators gives four images

corresponding to each of the 4× high-frequency and 4× low-

frequency channels but on a scale factor of two. Together these

four high-frequency and four low-frequency channels at a scale

of two comprise the first set of sub-problems that are to be

initially predicted to solve the problem of 4× upsampling later.

The second set of sub-problems include prediction of the

high-frequency and low-frequency channels at a scale of four.

These channels have already been generated/extracted from

the given ground-truth while generating the sub-problems of

the first set (before application of space-to-depth), and lastly,

the third set contains a single problem of predicting the given

4× model ground-truth itself. Succinctly, the 4× upsampling

problem gets divided into three sets of 11 (8 + 2 + 1) sub-

problems that WDN is required to predict. Among these 11

sub-problems, five are exclusively for predicting the high-

frequency details that explicitly helps to generate a sharper

prediction, five are for predicting only the low-frequency

details, and the last sub-problem is of predicting the desired

outcome. Our empirical observations presented later in Section

IV reveal that this approach of subdividing the problem into

multiple sub-problems is constructive and help in generating

better and sharper results than the current state-of-the-art

methods.

1) Procedure to separate the frequency channels: Fre-

quency channels are separated from an image ‘I’ (scaled

between 0-1), by application of Sobel filters M and N . The

application generates Dm & Dn, that represent the derivative

approximations for horizontal and vertical changes respec-

tively.

M =





+1 0 −1
+2 0 −2
+1 0 −1



 , N =





+1 +2 +1
0 0 0
−1 −2 −1





Next, Dm & Dn are used to obtain the high-frequency and

low-frequency channels:

High-frequency Channel = S

(

√

D2
m + D2

n

)

Low-frequency Channel = I - High-frequency Channel

S scales the values in the range [0, 1]

(1)

Extraction of low-frequency channel by subtracting Sobel

extracted high-frequency channel from image ‘I’ guarantees

that the sum of low-frequency and high-frequency channels

will give back the image ‘I’. We further discuss our choice

of the channel extraction filter in Section IV-C7. With an

understanding of the decomposition of the 4× upsampling

problem into multiple sub-problems, we now elaborate the

functioning of WDN to solve these sub-problems.

B. Functioning of WDN

WDN has been designed to accept and upsample (4×) only

the Luminance (Y) channel in the YCbCr colour-space of

the image as human beings have high sensitivity towards a

change in the Luminance. Similar to the work of Shi et al.

[8], Kappeler et al. [59], and Liu et al. [60], the remaining

channels are upsampled using a simple bi-cubic interpolation.
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Fig. 3: Illustration of the functioning of WDN. The illustration is explained in Section III-B. The high-frequency and low-

frequency channels are in green-scale rather than grey-scale for better visualisation. This figure is better viewed on-screen after

zooming.

The functioning of WDN has been illustrated in Fig. 3.

It can be seen that WDN starts functioning with a low-

resolution input image. The first step consists of upsampling

(4×) the input using bi-cubic interpolation. In the second

step, WDN separates (Ref. Section III-A1) the upsampled

image into two different channels having high-frequency and

low-frequency detail, respectively. In the third step, pixels

of the separated channels are further divided into 16 low-

resolution channels, each by applying space-to-depth operator

with a block size of four as illustrated in Fig. 2b. The fourth

step consists of consuming the channels in groups of four

for predicting the solution of the first set of sub-problems,

i.e. prediction of four 2× upsampled high-frequency channels

and four 2× upsampled low-frequency channels. The fifth

step is similar to the fourth step in processing. WDN once

again consumes the 2× upsampled channels for predicting

the solution of the second set of sub-problems, i.e. prediction

of one 4× upsampled high-frequency channel and one 4×

upsampled low-frequency channel. Lastly, in the sixth step,

WDN consumes the two 4× upsampled high-frequency and

low-frequency channels for fusing and predicting the solution

of the third set of sub-problem, i.e. prediction of a single

4× image or the final model prediction. We now proceed to

describe the architecture of WDN that has been designed to

implement the described functionality.

C. Architecture of WDN

WDN has a wide and deep architecture with two non-

trainable operations followed by three trainable stages that

are connected in sequence as visualised in Fig. 4. These

stages have been designed to conquer/solve the sub-problems

formulated in Section III-A and implement the functionality

described in the previous section. The non-trainable operations

consist of the bicubic upsampling and the channel separation

procedure. The first two stages perform a 2× upsampling on

their respective inputs to eventually perform the required 4×

upsampling while the third stage generates the desired output

from the network.

In more detail, the first stage has a set of eight parallel

2× upsampling modules that each accepts and processes (in

parallel) four channels to generate a single channel of double

the input size. This design makes the first stage to have a width

built with 32 (8×4) deep networks connected in parallel that

processes 32 input channels (16 of high-frequency and 16 of

low-frequency) to generate eight output channels (four of high-

frequency and four of low-frequency). Similarly, the second

stage consists of two 2× upsampling modules that together

accept eight channels generated by Stage-1 to generate two

channels (one of high-frequency and one of low-frequency) of

double the input size.

The architecture of a single 2× upsampling module has

been visualised in Fig. 5. It consists of four processing and

four shared attention blocks that process the four inputs (in

parallel) that the module receives. Both the processing and

shared attention blocks have a similar architecture, as shown

in Fig. 6. The purpose of a processing block is to improve

the quality of its input features, and the purpose of the

shared attention block is to decide the relative importance

of the features that are generated from different processing

blocks. As the shared attention block has to consider all

the four inputs to decide their relative importance, the four

blocks share the same set of trainable parameters. A Softmax

activation is also applied to the outputs of all the four shared

attention blocks to normalise the relative importance of pixels

at the corresponding locations to one. The processing blocks

consider only their respective input, and hence each processing

block has its exclusive set of trainable parameters without any

sharing. Nevertheless, the output of the processing block gets

multiplied with the output of the corresponding attention block

and the processed-weighed output generated for the four inputs

of the 2× upsampling module are merged using the depth-to-

space operator (shown in Fig. 2a) to generate an upsampled

channel of double the input size. The generated channel is
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Fig. 4: Illustration showing the connectivity of the three stages in wide and deep architecture of the proposed super-resolution

network WDN. The architecture is described in Section III-C and the detailed architecture of a 2× upsampling module is

visualised in Fig. 5

convolved with a Gaussian kernel (size = 13×13, σ = 0.7) to

suppress any undesired noise that might appear. Though this

operation induces a little blur in the output, the rest of the

network is capable of easily recovering from the minor losses

to the high-frequency details caused due to this operation.

The third stage (Ref. Fig. 4) of WDN consists of an output

module, the detailed architecture of which is shown in Fig. 7.

The purpose of the output module is to fuse the upsampled

high-frequency and low-frequency channels that are generated

by Stage-2 to generate the final upsampled network prediction.

This stage accepts as input the two upsampled channels

(output of Stage-2) that carry the high-frequency and low-

frequency details of the image. First, the stage computes

two attention maps, one each for the input high-frequency

and low-frequency channels using a ‘shared attention block’

(shown in Fig. 6). Next, the attention maps are multiplied

with their corresponding high-frequency and low-frequency

channels. The resultant products are summed and finally the

resultant sum is processed by a ‘processing block’ (shown in

Fig. 6) to generate the single Luminance channel of the desired

output, i.e. the model prediction.

The motivation for the use of multiple, independent and

parallelly connected processing/shared-attention blocks in dif-

ferent stages of WDN is to make each of them expert in

solving a particular sub-problem. Moreover, considering that

a single processing/shared-attention block takes unit time,

the wider design of WDN can speed-up the computation up

to 64 times in Stage-1. Stage-1 has eight modules with 64

processing and shared-attention blocks that can process the

data in parallel. If these blocks are executed simultaneously on

a multi-GPU system, then the said speed-up may be observed

as compared to the same 64 blocks connected in sequence.

System-level overheads such as data loading and transfer to-

and-from GPU will reduce the maximum achievable speed-up.

Pixel calibration layer: As can be seen in the architectural

visualisations of our network, WDN often makes use of a

layer named pixel calibration. It is a self-learned complex-

layer (a layer with many layers) that introduces non-linearity

in the network. It replaces the activation function (for instance

ReLU) that are typically added after a convolutional layer.

Pixel calibration layer in place of this activation function.

This layer learns the relative importance of pixels and scales

them accordingly. It is a self-learned layer as the learning is

performed, from the pixels themselves.
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Fig. 5: Architecture of a 2× upsampling module that has been

used in WDN (as shown in Fig. 4). The detailed architecture

of processing and shared attention block is visualised in Fig.

6. The red dotted line represents parameter sharing between

blocks.

For calibration, a relevance value (between 0-1) is computed

for each pixel within a feature map with a Conv2D-Sigmoid

operation. Additionally, an irrelevance value is also computed

as the difference between relevance value and one. Lastly, pos-

itive pixel values are weighed with their respective relevance

value, and all the pixels are weighed with their respective

irrelevance value and summed up to produce the calibrated

output. These operations are shown in Eq. 2.

Calibrate(y) = (relu(y)× V ) + (y × (1.0− V ))

where V = sigmoid(conv2d(y))
(2)

where the stride of Conv2D is one, and its kernel size is three.

The number of output channels generated from Conv2D equals

the number of input channels in y. V is considered as the

relevance value.

This layer’s design takes its inspiration from Srivastava

et al. [61] but is also different. The work of Srivastava et

al.has the concept of ‘transform and carry’ gates to train

deep networks. The transform gate selects the Convoluted-

activated input that is allowed to pass through, and the carry

gate selects the actual input that is allowed to pass through the

layer. For super-resolution, we adapt the transform and carry

concept proposed by Srivastava et al. to represent relevance
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Fig. 6: Architecture of the processing block and shared at-

tention block as used in the 2× upsampling module (Fig. 5)

and in the output module (Fig. 7). The operations of Pixel

calibration layer are shown in Eq. 2
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Fig. 7: Architecture of the output module that has been used

in WDN and shown in Fig. 4. The detailed architecture of

the processing and shared attention block is visualised in Fig.

6. The red dotted line represents parameter sharing between

blocks.

and irrelevance values, respectively. In this adaptation, the

concept of ‘irrelevance/carry’ remains the same in WDN as

in the related work. However the ‘relevance/transform’ gets

changed, in place of transforming the convoluted input feature

map y after activation, we transform y after activation directly

without convoluting it, to control the relevance of pixels in

the feature map. In Eq. 2, the expression on the left of +
represents transform/relevance computation and the expression

on the right represents carry/irrelevance computation. Readers

are requested to refer Srivastava et al., to gain a better

understanding of transform and carry operations and the stated

difference. The performance improvement that is obtained by

the stated modification has been shown later in Table VIII.

D. Visualising the intermediate channels/images

To better understand and analyse the architecture of WDN,

we visualise all the intermediate channels/images that are

generated in Stage-2 and Stage-3 for a given input. As the

behaviour of Stage-1 is similar to that of Stage-2, we restrict

ourselves to the visualisation of the intermediate channels

generated in Stage-2 only.

Figs. 8 and 9 visualise the intermediate channels that are

generated in Stage-2 for high-frequency and low-frequency

inputs respectively, while, Fig. 10 visualises the intermediate

channels of Stage-3. It can be seen in the figures that each
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(a) Input - 1 (b) Processing
Block Output

(c) Attn. Block
Output (d) b     c

(e) Input - 2 (f) Processing
Block Output

(g) Attn. Block
Output (h) f     g

(i) Input - 3 (j) Processing
Block Output

(k) Attn. Block
Output (l)   j     k

(m) Input - 4 (n) Processing
Block Output

(o) Attn. Block
Output (p) n     o

(q) Depth-to-space output (r) After noise suppression

Fig. 8: Visualisation of intermediate channels generated in

Stage-2 for high-frequency input.

block that has been used in the architecture of WDN performs

its task as per its design objective. The processing blocks and

shared attention blocks jointly improve the quality of input

features, depth-to-space increases the resolution by two, and

the Gaussian noise suppressor suppresses the noise to generate

an upsampled channel of better quality.

E. Training losses and ground-truth

The procedure to generate the ground-truth for all the sub-

problems that WDN attempts to solve were described in

Section III-A. We now describe the losses that are to be

minimised to train WDN. The first and second stages of

WDN that comprise of 2× upsampling modules are trained by

minimising the Mean-Square-Error (MSE as shown in Eq. 3)

between the stage predictions and the corresponding ground-

truths.

Lossupsampling =

n
∑

i=1

(yi − y′i)
2

n
(3)

where n is a scalar having the value equivalent to the number

of pixels in the ground-truth, yi is the module ground-truth,

(a) Input - 1 (b) Processing
Block Output

(c) Attn. Block
Output (d) b     c

(e) Input - 2 (f) Processing
Block Output

(g) Attn. Block
Output (h) f     g

(i) Input - 3 (j) Processing
Block Output

(k) Attn. Block
Output (l)   j     k

(m) Input - 4 (n) Processing
Block Output

(o) Attn. Block
Output (p) n     o

(q) Depth-to-space output (r) After noise suppression

Fig. 9: Visualisation of intermediate channels generated in

Stage-2 for low-frequency input.

and y′i is the module prediction. Similarly, the third stage that

has an output module is trained by minimising the loss (shown

in Eq. 4) between the stage prediction and the corresponding

ground-truth:

Lossoutput = MSE(y, y′) + (1− SSIM(y, y′)) (4)

where y is the model ground-truth and y′ is the model pre-

diction. Mean-square-error minimisation maximises the PSNR

[56] metric while 1-SSIM (structural dissimilarity) minimisa-

tion maximises the SSIM [57] metric.

F. Training details

To sum up the training process, 32 inputs of Stage-1 are

generated by applying space-to-depth (block size: four) on

bicubically upsampled and frequency-separated given low-

resolution input. Eight inputs of Stage-2 are generated in the

form of Stage-1 output. The stage-loss for both Stage 1 and

2 is shown in Eq. 3. Two inputs of Stage-3 are generated in

the form of Stage-2 output, and the stage-loss is shown in

Eq. 4. Each stage requires separate training with inputs that
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TABLE I: Quantitative comparison (4×) with state-of-the-art methods. Evaluation procedure used to compute the values is

as used/described by Qiu et al. [39]. All values have been captured from the non-self-ensemble variant. Note: We plan to

release our codes upon acceptance of our work.

Set5 Set14 B100 Urban100 Manga109

Method Model PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic Bicubic 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866

Lim et al.(2017) [22] EDSR 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

Haris et al.(2018) [41] D-DBPN 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

Li et al.(2019) [43] SRFBN 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160

Zhang et al.(2018) [62] RDN 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

Lim et al.(2017) [22] MDSR 32.50 0.8973 28.72 0.7857 27.72 0.7418 26.67 0.8041 - -

He et al.(2019) [40] OISR-RK3 32.53 0.8992 28.86 0.7878 27.75 0.7428 26.79 0.8068 - -

Qin et al.(2020) [54] MRAN 32.61 0.8998 28.82 0.7875 27.73 0.7420 26.70 0.8051 30.92 0.9147

Zhang et al.(2018) [1] RCAN 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

Dai et al.(2019) [3] SAN 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169

Qiu et al.(2019) [39] EBRN 32.79 0.9032 29.01 0.7903 27.85 0.7464 27.03 0.8114 31.53 0.9198

Ours WDN 33.10 0.9092 29.21 0.7929 27.98 0.7519 27.51 0.8197 32.17 0.9247

(a) High-frequency
input

(b) Attention map for
high-frequency input  (c) a     b

(d) Low-frequency input (e) Attention map for
low-frequency input (f) d     e

(g) c     f in green-scale (h) c     f in gray-scale (i) Stage-output

Fig. 10: Visualisations of intermediate channels generated in

Stage-3.

are generated by the trained previous stage. The procedure

to generate ground-truths for training all the three stages has

been discussed in Section III-A.

All trainable weights are initialised with the default Glorot

initialisation [63]. Adam [64], with a fixed learning rate =

10−4, β1 = 0.9, β2 = 0.999, and ǫ = 1e-08, has been used to

optimise the training. All the stages have been trained one-

by-one after freezing the parameters of the previous stage.

Wherever required, reflective padding has been applied in the

appropriate dimensions of the input of all the Convolutional

layers. In order to make sure that the network does not over-

fit on the training data, standard countermeasures such as

data augmentation (random cropping, rotation and horizontal

flipping), regularisation and early stopping have been enforced.

Training of a stage is considered as complete when no sig-

nificant improvement reflects in the performance metric on

validation data for five consecutive epochs. The models have

been trained and tested on Google’s Tensor Processing Unit

(TPU) and V100 GPUs.

IV. EXPERIMENTS AND ANALYSIS

Extensive experiments have been performed on multiple

datasets to evaluate the efficacy of the ideas and architecture

proposed in this work. Typically, Peak Signal-to-Noise Ratio

(PSNR [56]), and Structural Similarity Index (SSIM [57]) are

the metrics that are used to quantify the performance of a

super-resolution technique and compare it with others. Hence,

the same have been used in this work also. We now describe

the datasets that have been used in the experiments to train,

validate and evaluate WDN.

Similar to the methods [1], [22], [28], [39], [62], WDN

is also trained on the DIV2K dataset by Timofte et al. [65].

DIV2K dataset contains 1000 images at 2K resolution, among

which 800 are for training, and 100 are for validation. The

evaluation procedure and other experimental settings (unless

stated explicitly) have been adopted from the current state-of-

the-art method by Qiu et al. [39]. The comparison of WDN

with the existing benchmarks has been made on five publicly

available datasets, namely Set5 [6], [66], Set14 [67], B100

[68], [69], Urban100 [70], and Manga109 [71].

A. Comparison with the state-of-the-art

Table I presents the quantitative results and Fig. 11 visu-

alises the upsampled images on a scale factor of four for

comparison with the state-of-the-art methods. It can be seen

that the results generated by WDN are numerically better,

visually sharper, and visually less noisy than the existing

techniques. For this improved performance of WDN, we

credit to the: 1) Divide-and-conquer design paradigm, 2) Wide

and deep network design, 3) Explicit high-frequency channel

prediction, and 4) Pixel calibration layer.

Performance on scaling factors of two and three: This

computation requires the following modification in WDN: For

a scale of two, we assume that the given input low-resolution

image already has the dimension 2h×2w×1, and hence we
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(a) [10] (b) [12] (c) [14] (d) [22] (e) [24]

(f) [25] (g) [39] (h) WDN (i) Ground truth
(j) GT full

(k) [10] (l) [12] (m) [14] (n) [22] (o) [24]

(p) [25] (q) [39] (r) WDN (s) Ground truth
(t) GT full

Fig. 11: Predicted image visualisation for qualitative comparison on two images from the Urban100 dataset [70] for 4×

super-resolution.

modify the bi-cubic upsampling (refer Fig. 4) to upsample

2× instead of 4×. Similarly, for a scale of three, the bicubic

upsampling is modified to upsample 3×. Rest of the network

architecture remains the same. The results obtained on the

upsampling scales of two and three are shown in Table III. It

can be seen that WDN performs better than the cited methods.

The possible reasons for this improvement are the same as

mentioned in the last paragraph.

B. Analysing the parameters and computation time

To further analyse the complexity of WDN, we show the

total number of parameters, floating-point operations (FLOPS)

and processing time of each stage of WDN in Table II. We

also compare the parameters and processing time of WDN

with a few state-of-the-art networks in Fig. 12.

It can be seen in Table II that 1) Stage-1 has the maximum

number of parameters; this is because it has to process 32

inputs, 2) Stage-2 has lesser parameters as it processes only

eight inputs, and 3) Stage-3 has the least number of parameters

as it processes only two input channels. The floating-point

operations show a similar trend as the number of parameters.

In terms of the processing time in each stage, it can be seen

TABLE II: Number of trainable parameters, floating-point

operations (FLOPS), and processing time of each stage in

WDN. Parameters and FLOPS are in millions. Time is in

seconds.

Stage → Preproc. 1 2 3 Total

Parameters - 31.07 7.77 1.55 40.39

FLOPS - 62.02 15.51 3.10 80.63

Time 0.0103 0.1421 0.2234 0.0722 0.4390

that Stage-2 is slightly slower than Stage-1 despite having a

lesser number of parameters. Unlike Stage-1, Stage-2 has to

process 2× upsampled channels that are generated by Stage-

1, and due to this, the processing time of Stage-2 becomes

slightly more than that of Stage-1. Stage-3 processes 4×

upsampled images; however, due to a lesser number of FLOPS,

this stage has the fastest processing time. The recent hardware

developments have resulted in GPUs/TPU with large memory

at a much cheaper cost, and so parametric heaviness should

not become an obstacle in the application of WDN when

accuracy has the priority over memory constraint. We also

mention that: 1) The total processing time of individual stages

is more than the processing time of the full network due to
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TABLE III: Quantitative comparison with state-of-the-art

methods on a scaling factors of two and three.

(a) Comparison on a scaling factor of two.

Dataset Metric SAN RCAN EBRN WDN

Set5
PSNR 38.31 38.27 38.35 38.41

SSIM 0.9620 0.9614 0.9620 0.9623

Set14
PSNR 34.07 34.12 34.24 34.37

SSIM 0.9213 0.9216 0.9226 0.9234

B100
PSNR 32.42 32.41 32.47 32.50

SSIM 0.9028 0.9027 0.9033 0.9039

Urban100
PSNR 33.10 33.34 33.52 33.71

SSIM 0.9370 0.9384 0.9402 0.9421

Manga109
PSNR 39.32 39.44 39.62 39.81

SSIM 0.9792 0.9786 0.9802 0.9811

(b) Comparison on a scaling factor of three.

Dataset Metric OISR-RK3 SAN RCAN WDN

Set5
PSNR 34.72 34.75 34.74 34.95

SSIM 0.9297 0.9300 0.9299 0.9331

Set14
PSNR 30.57 30.59 30.65 30.87

SSIM 0.8470 0.8476 0.8482 0.8502

B100
PSNR 29.29 29.33 29.32 29.41

SSIM 0.8103 0.8112 0.8111 0.8151

Urban100
PSNR 28.95 28.93 29.09 29.49

SSIM 0.8680 0.8671 0.8702 0.8761

Manga109
PSNR - 34.30 34.44 34.96

SSIM - 0.9494 0.9499 0.9531

system-level overheads involved in individually computing the

time for each stage. 2) The processing time has been evaluated

with maximum parallelism that can be attained using multiple

GPUs/TPU.

It can be seen in Fig. 12 that WDN is heavier in terms

of parameters than some state-of-the-art networks, but its pro-

cessing time is comparable to other networks. This is primarily

due to the wide design of WDN, that can take advantage of

the multiple GPUs/TPU for parallel processing. Nevertheless,

restoration tasks such as super-resolution are typically not

constrained with a real-time response requirement, and so

processing time or larger number of parameters should not

become a hurdle in the application of WDN when prediction

quality has the priority over the processing time. The time

measurements were obtained on an n1-standard-4 system with

Nvidia Tesla V100 GPU on GCP. An image of size 1980 ×

1080 was used for 4× upsampling. The parameter values have

been obtained from the respective publications, and the time

values have been computed. The actual time may vary due to

the library-specific optimisations; dynamic shared system load

and GPU thermal slowdown in place during the measurement.

C. Ablation Studies

1) Evaluating different training procedures: WDN has been

trained stage-by-stage with multiple losses. However, WDN

can also be trained by: 1) Minimising all the losses together

with no inter-stage gradient flow. 2) Allowing the inter-stage

gradient flow with existing losses, and 3) Allowing the inter-

stage gradient flow with losses after the last stage only, i.e.

end-to-end training.

Fig. 12: Graph showing the computation time vs the number

of trainable parameters in state-of-the-art networks and WDN.

TABLE IV: Results obtained on test datasets upon following

different training procedures (Proc.) as described in Section

IV-C1.

Dataset Metric Proc. 2 Proc. 3 Existing/Proc. 1

Set5
PSNR 32.54 30.51 33.10

SSIM 0.8995 0.8635 0.9092

Set14
PSNR 28.84 27.48 29.21

SSIM 0.7881 0.7509 0.7929

B100
PSNR 27.72 26.92 27.98

SSIM 0.7432 0.7097 0.7519

Urban100
PSNR 26.82 24.55 27.51

SSIM 0.8071 0.7227 0.8197

Manga109
PSNR 31.16 27.53 32.17

SSIM 0.9165 0.8549 0.9247

The first procedure is equivalent to the existing training

procedure, the only difference being that the entire model

stays in memory during training. Also, in this procedure, the

training of the latter stages start to show convergence when

the parameters of the previous stage stabilise. Without the

stabilisation of the previous stage parameters, the input to latter

stages frequently changes, thus delaying its convergence. Table

IV shows the results obtained on different test datasets after

following the latter two procedures.

It can be inferred from the Table that the second procedure

shows some drop in the performance. This might be due to

a trainable variable’s value getting disturbed/fluctuated due to

the influence of multiple losses on it simultaneously. Different

losses have different objectives, and they might influence a

variable for their respective minimisation. Though not always,

but in the current case, this has led the model to underperform.

Tuning the λs for different losses might be useful here.

However, allowing the inter-stage gradient flow would require

the whole model to fit in a single GPU and would prevent

parallel training.

The third procedure further deteriorated the results, possibly

as the wide and deep architecture of WDN has been designed
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TABLE V: Results obtained on test datasets with and without

division on frequencies as described in Section IV-C2

.

Dataset Metric Without Division With Division

Set5
PSNR 32.45 33.10

SSIM 0.8976 0.9092

Set14
PSNR 28.81 29.21

SSIM 0.7858 0.7929

B100
PSNR 27.73 27.98

SSIM 0.7417 0.7519

Urban100
PSNR 26.66 27.51

SSIM 0.8035 0.8197

Manga109
PSNR 31.02 32.17

SSIM 0.9146 0.9247

to work by dividing the problem into sub-problems effectively.

An altogether different architectural design might be fruitful

in this case where end-to-end training is a hard constraint.

2) Effectiveness of dividing the problem on frequency:

To facilitate an effective division of the problem into sub-

problems and to generate sharper upsampling results, WDN

divides the problem of predicting all the frequencies of the

upsampled image into the two problems of separately predict-

ing the high-frequency and low-frequency details respectively.

To verify the effectiveness of this division, we retrain and

test WDN without separating the high-frequency and low-

frequency details. Removal of the network components that

participate in the prediction of the high-frequency details will

result in the reduction of the number of trainable parameters.

This will subsequently lead to an unfair comparison, and the

numbers might not reflect the effect of frequency division.

Hence, to make sure that the number of trainable parameters

remains the same in this unified configuration, we first remove

the frequency separator from WDN’s architecture, as shown

in Fig. 4. Next, we replicate the input image and send it

into the parallel networks that were originally designed for

separately processing different frequencies. Ground-truths are

also changed appropriately, wherever required. The results

obtained with this configuration is shown in Table. V. It can

be inferred from the table that separately and specifically

modelling the high-frequency details is useful.

3) Effectiveness of dividing the problem on scale: To fur-

ther facilitate the effective division of the given problem into

sub-problems so as to make multiple sub-network (that can

execute in parallel) learn to solve specific sub-problems with

more expertise, WDN divides the problem of 4× upsampling

into two successive problems of 2× upsampling. To verify

the effectiveness of this division, we retrain and test WDN

as a single 4× upsampling problem rather than two 2×

upsampling problems. To conduct this experiment, we modify

the architecture of WDN as follows. Space-to-depth operator

(shown in Fig. 4) is set to a block size of two. Due to this

change, the space-to-depth operator generates four channels

of high-frequency and four channels of low-frequency rather

than 16, 16 channels. With only four channels, Stage-1 can be

removed from WDN, and WDN can directly predict one 4×

high-frequency channel and one 4× low-frequency channel

with the help of Stage-2. All other configurations and Stage-

3 remains the same as before. The results obtained with this

change are shown in Table VI.

TABLE VI: Results obtained on test datasets with and without

division on the scale as described in Section IV-C3

.

Dataset Metric
No scale division Two 2× division
3 sub-problems 11 sub-problems

Set5
PSNR 29.47 33.10

SSIM 0.8446 0.9092

Set14
PSNR 27.12 29.21

SSIM 0.7257 0.7929

B100
PSNR 26.49 27.98

SSIM 0.6993 0.7519

Urban100
PSNR 24.93 27.51

SSIM 0.7553 0.8197

Manga109
PSNR 27.77 32.17

SSIM 0.8689 0.9247

TABLE VII: Results obtained on test datasets with and without

the attention blocks.

Dataset Metric Without Attention With Attention

Set5
PSNR 32.31 33.10
SSIM 0.8973 0.9092

Set14
PSNR 28.86 29.21

SSIM 0.7892 0.7929

B100
PSNR 27.79 27.98

SSIM 0.7409 0.7519

Urban100
PSNR 26.59 27.51

SSIM 0.8014 0.8197

Manga109
PSNR 31.29 32.17

SSIM 0.9153 0.9247

It can be inferred from the table that the division of the

problem into 11 sub-problems is indeed effective as opposed

to division into three sub-problems (after removing eight sub-

problems of Stage-1). The results further strengthen our claim

that is dividing a problem into sub-problems and then solving

them with multiple sub-networks, make the sub-networks

gain more expertise in solving those sub-problems, eventually

generating better sub-solutions that ultimately leads to better

end solution.

4) Effectiveness of the attention mechanism: WDN has

extensively deployed shared attention blocks that evaluate the

relative importance of pixels (located at corresponding loca-

tions in two or more feature-maps/channels). The computed

relative importance help in weighing multiple sub-solutions

to generate a single solution. To analyse the effectiveness

of the attention blocks, we disable the attention mechanism

and retrain the network. Table VII records the results on test

datasets after making the said change.

It can be inferred from the table that the attention blocks

are pivotal in WDN, and without these blocks, a drop in the

performance is observed. A possible reason for this behaviour

might be that the network finds it hard to implicitly learn the

relative importance of pixels present in different sub-solutions

while combining them to generate a single solution.

5) Effectiveness of the divide-and-conquer based network

design: WDN is parametrically heavier network as compared

to the state-of-the-art. To ascertain that the performance im-

provement obtained by WDN over the state-of-the-art is indeed

due to the proposed divide-and-conquer based approach (i.e.

division based on frequency and division based on scale) and

not due to the parametric heaviness of WDN, we conduct

an additional experiment. In this experiment, we replace the

entire divide-and-conquer based network design of WDN with
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a much simpler linear design built with a series of (3×3)

Conv-2D layers followed by proposed pixel calibration. We

add a Conv2D-Transpose layer with Sigmoid activation at the

end to perform 4× upsampling. The network depth is set to

547 layers to make the number of parameters in the linear

network, comparable to that of WDN. We observe that the

linearly designed network does not converge, possibly due to

the increased depth and use of Sigmoid in the pixel calibration.

This experiment gives a clear indication that merely increasing

the number of parameters of a network is ineffective to bring

any performance improvement and that the parameters should

be arranged in an effectively designed and intelligently crafted

network such as WDN. We do mention that there can be

other network designs that might have lesser parameters than

WDN and that give comparable prediction quality. However,

the design of such networks is beyond the scope of this work.

6) Pixel calibration layer effectiveness: For this analysis,

we replace the proposed calibration layer with other typically

used alternatives: 1) ReLU, 2) ReLU + Batch Norm., and

3) Srivastava et al. [61] version. The network has been

retrained and retested after each change, and the results have

been recorded in Table VIII. The results indicate that the

model significantly underperforms with only ReLU. Some

improvement is observed with ReLU and Batch Normalisation.

Much more improvement is observed with the version of

Srivastava et al., and the highest results are obtained with our

proposed layer as compared to other alternatives. These results

reflect the effectiveness of the proposed calibration layer in the

identification of the pixel relevance for super-resolution.

7) High-frequency extractor choice: Sobel: We use Sobel

[72] proposed in the work of Duda et al. [73] for high-

frequency extraction. It is a first-order derivative filter with

2(3×3) kernels (i.e. two 3×3 kernels). It might not perform

better than the higher-order alternatives (e.g. LoG [74]), but is

computationally cheaper and has a lesser sensitivity to noise

than higher-order filters. Comparing it with other first-order

filters, Roberts [75] with 2(2×2) kernels is computationally

cheaper, but also performs lower than Sobel (as shown by

Pratt [76]). Prewitt [77] with 2(3×3) kernels provide better

results than Sobel, but only when the image is noiseless

and well contrasted, thus reducing its genericity as compared

to Sobel (ref. Adlakha et al. [78]). The filters of Kirsch

[79], Robinson [80], Frei-Chen [81], Nevatia-Babu [82], and

Canny [83], [84] might perform equally or slightly better than

Sobel, but all of them are computationally expensive due to

their 8(3×3), 8(3×3), 9(3×3), 12(5×5) kernels or algorithmic

formulation, respectively (ref. Acharjya et al. [85]). Based on

these studies, we selected Sobel for WDN. It might not be the

best but certainly is an optimal filter due to its performance

and simplicity.

V. SUMMARY AND FUTURE WORK

A wide and deep network (WDN) designed on the divide-

and-conquer design paradigm has been proposed in this work.

To solve the 4× image super-resolution problem, we divided

the problem into three disjoint sets of 11 sub-problems, with

each set having some simultaneously solvable subproblems.

TABLE VIII: Results after replacing the pixel calibration with:

1. ReLU, 2. ReLU + Batch normalisation, 3. Srivastava et al.

[61]. 4. represents the proposed Pixel calibration.

Dataset Config.→ 1 2 3 4

Set5
PSNR 31.37 32.45 32.59 33.10

SSIM 0.8833 0.8984 0.9002 0.9092

Set14
PSNR 27.95 28.74 28.84 29.21

SSIM 0.7667 0.7859 0.7877 0.7929

B100
PSNR 27.15 27.58 27.69 27.98

SSIM 0.7246 0.7401 0.7414 0.7519

Urban100
PSNR 25.15 26.63 26.72 27.51

SSIM 0.7532 0.8034 0.8054 0.8197

Manga109
PSNR 28.79 30.83 30.91 32.17

SSIM 0.8863 0.9131 0.9148 0.9247

The division into sub-problems has been primarily made based

on ‘Upsampling scale’ 4× upsampling gets divided into two

2× upsampling in sequence and ‘Frequency’ high-frequency,

and low-frequency channels have been predicted separately. A

wide and deep network abbreviated as WDN with pixel cali-

bration layer has been designed to solve these sub-problems.

We demonstrated that our approach towards solving the

super-resolution problem gives better results (qualitatively and

quantitatively) than state-of-the-arts on five publicly available

datasets. Extensive ablation studies, empirically support the

efficacy of all the components/ideas used in our work.

The idea of approaching a problem with divide-and-conquer

along with a wide and deep network can be applied to other

problems like video super-resolution, and deblurring, among

others. Our future plan includes work to solve these problems.
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