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a b s t r a c t

Large strain finite element calculations of unit cells subjected to triaxial axisymmetric loadings are pre-

sented for plastically orthotropic materials containing a periodic distribution of aligned spheroidal voids.

The spatial distribution of voids and the plastic flow properties of the matrix are assumed to respect

transverse isotropy about the axis of symmetry of the imposed loading so that a two-dimensional axi-

symmetric analysis is adequate. The parameters varied pertain to load triaxiality, matrix anisotropy, ini-

tial porosity and initial void shape so as to include the limiting case of penny-shaped cracks. Attention is

focussed on comparing the individual and coupled effects of void shape and material anisotropy on the

effective stress–strain response and on the evolution of microstructural variables. In addition, the effect

of matrix anisotropy on the mode of plastic flow localization is discussed. From the results, two distinct

regimes of behavior are identified: (i) at high triaxialities, the effect of material anisotropy is found to be

persistent, unlike that of initial void shape and (ii) at moderate triaxialities the influence of void shape is

found to depend strongly on matrix anisotropy. The findings are interpreted in light of recent, microscop-

ically informed models of porous metal plasticity. Conversely, observations are made in relation to the

relevance of these results in the development and calibration of a broader set of continuum damage

mechanics models.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Ductile fracture in structural materials results from the nucle-

ation, growth and coalescence of micro-voids that initiate from sec-

ond phase particles and inclusions. Accurate modeling of void

growth and coalescence under arbitrary imposed loading condi-

tions is critical to the predictive modeling of ductile fracture.

Gurson (1977) derived an analytical model of void growth in an iso-

tropic medium based on analysis of a spherical representative vol-

ume element (RVE) made of an ideal plastic von Mises material

and containing a concentric spherical void. The somewhat idealized

choice of the RVE geometry was dictated by the complexity of the

analytical approach. Alternatively, finite element (FE) calculations

of appropriately chosen unit cells subjected to a remote triaxial

loading have been used to simulate periodic arrays of voids.

Needleman (1972) performed a two-dimensional plane-strain anal-

ysis of a periodic array of cylindrical voids in an isotropic matrix,

while a transverse isotropic distribution of spherical voids in an iso-

tropic matrix was analyzed by Tvergaard (1982) and later by Koplik

and Needleman (1988). The finite element results were used as

benchmarks to calibrate the Gurson model and heuristic correc-

tions were suggested to enhance the quantitative agreement be-

tween the model and the cell calculations (Tvergaard, 1982;

Tvergaard and Needleman, 1984). Subsequently, three-dimensional

investigations of cubic patterns of spherical voids (Hom and

McMeeking, 1989; Worswick and Pick, 1990) under triaxial load-

ings have evidenced good agreement with the axisymmetric calcu-

lations. In particular, these unit cell computations identified the

porosity and the loading triaxiality (the ratio of the mean to the

von Mises effective stress) as key parameters affecting void growth

and coalescence. More recent unit cell analyses of initially spherical

voids have also shown some influence of the third invariant of the

stress tensor, through the Lode parameter, on void growth and coa-

lescence (Benzerga and Besson, 2001; Zhang et al., 2001; Kim et al.,

2004; Gao and Kim, 2006; Barsoum and Faleskog, 2007). FE Cell

model studies have de facto become a major tool in understanding

material behavior at intermediate scales and were recently re-

viewed by Benzerga and Leblond (2010), including aspects pertain-

ing to the void nucleation stage.

In recent years, various extensions of the Gurson model have

been proposed which account for initial or deformation-induced

anisotropies (Gologanu et al., 1993, 1997; Benzerga and Besson,

2001; Monchiet et al., 2008; Keralavarma and Benzerga, 2008,

2010). The commonality among these models is that they are

based on micromechanical treatments, with homogenization and

limit analysis being the theoretical foundation (Benzerga and

Leblond, 2010). The performance of the model of Gologanu et al.

(1997) in predicting void shape effects has been assessed by

Sovik and Thaulow (1997), and more thoroughly by Pardoen and
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Hutchinson (2000), who used the unit cell model considering ini-

tially spheroidal voids in an isotropic matrix. Similarly, Benzerga

and Besson (2001) carried out a series of unit cell calculations for

initially spherical voids embedded in a transversely isotropic ma-

trix. They have shown that their extension of the Gurson model

to orthotropic matrices provided a good quantitative prediction

of the voided cell results for sufficiently high stress triaxialities.

However, the more general models that combine effects of void

shape and plastic anisotropy have not yet been assessed against

the voided cell model. Keralavarma and Benzerga (2010) presented

some preliminary results to motivate their development of a new

porous metal plasticity model. Also, their set of calculations fo-

cussed on pre-localization void growth. The objective of this paper

is to report on a large set of such calculations, probing the param-

eter space much beyond the report of Keralavarma and Benzerga

(2010). While we offer new findings by means of the voided cell

model, the present results can also serve as reference to calibrate

advanced models of ductile fracture. General conditions of trans-

verse isotropy are discussed and used, thus enabling a two-dimen-

sional axisymmetric analysis. Emphasis is laid on the combined

effects of void shape and matrix anisotropy on void growth and

micro-scale flow localization, the latter setting the stage for void

coalescence.

2. Problem formulation

The void distribution in the plane of transverse isotropy of the

matrix is an approximation of a hexagonal arrangement. Such a

microstructure may be constructed from an infinite repetition of

the unit cell sketched in Fig. 1a. The hatched bands in the figure

schematically represent the texture of the matrix. Fig. 1b shows

a planar cross section of the unit cell in Fig. 1a. A cylindrical unit

cell is taken to approximate this hexagonal arrangement and is

sketched in Fig. 1c (front view) and Fig. 1d (top view). The bound-

aries of the unit cell are constrained to remain straight from con-

siderations of periodicity, in the absence of shear loading, so that

the RVE retains its cylindrical shape during deformation. Exploiting

the symmetry of the problem, one only needs to mesh the shaded

region in Fig. 1b. Let (eL,eT,eS) denote the triad associated with the

orthotropy of the matrix (Fig. 1c). We also define a Cartesian coor-

dinate system (e1,e2,e3) as shown in Fig. 1d where e3 is aligned

Fig. 1. Idealized representation of the microstructure in the voided cell model: (a) hexagonal periodic unit and (b) cross-section in the plane of the paper. Cylindrical unit cell

used in the axisymmetric calculations: (c) front view and (d) top view.
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with the common axis of the voids. The latter is itself identified

with the axis of transverse isotropy of the matrix, i.e. e3 � eS, so

that the effective behavior of the unit cell is transversely isotropic,

and one may perform axisymmetric calculations.

Our finite element implementation of the voided cell model fol-

lows that of Benzerga and Besson (2001) using the object oriented

code ZeBuLoN (Besson and Foerch, 1997). The weak form of the

momentum balance for a body undergoing finite deformations in

the absence of body forces is generally written as
Z

V

S : dEdV ¼

Z

S

T � dudS ð1Þ

with

S ¼ JF�1 � r � F�T; E ¼
1

2
ðFT � F� IÞ; ð2Þ

where S is the symmetric second Piola–Kirchoff stress tensor, E is

the Green–Lagrange strain, F is the deformation gradient, J = det

(F), I is the second-order identity tensor, r is the Cauchy stress, T

is the surface traction in the reference configuration, u is the

displacement vector and V and S are respectively the volume and

surface of the body in the reference configuration. An updated

Lagrangian formulation is used (Ladeveze, 1980; Hughes and

Winget, 1980) which employs objective space frames with the ref-

erence configuration being chosen at the end of the increment so

that the stress measure S reduces to the Cauchy stress.

The material constitutive model is assumed to be that of a rate-

independent elastically isotropic and plastically anisotropic solid.

In the objective frame, the deformation rate tensor is written as

the sum of an elastic part, de, and a plastic part, dp. Assuming small

elastic strains and isotropic elasticity, a hypo-elastic law is ex-

pressed in terms of the rotated stress P

d
e
¼ C�1

: _P; P ¼ JRT � r � R; ð3Þ

where C is the rotated tensor of elastic modulii and R is the skew-

symmetric tensor obtained from the polar decomposition of the

deformation gradient, so that the Green–Naghdi rate of r is used.

The plastic part of the deformation rate dp is obtained by normality

from an orthotropic yield function of the Hill (1948) type, FðrÞ.

d
p
¼ K

@F

@r
; FðrÞ ¼

3

2
r : p : r� �r ¼

3

2
r

0
: h : r

0 � �r; ð4Þ

where K is the plastic multiplier, r0 ¼ r� 1
3
trðrÞI is the stress devi-

ator, p is the Hill (1948) anisotropy tensor, h is the anisotropy ten-

sor in the space of deviatoric stresses (related to p through

p ¼ J : h : J where J ¼ I� 1
3
I� I is the deviatoric projector, I being

the 4th order identity tensor; see (Benzerga and Besson, 2001)).

Also, �r is the flow stress in an arbitrarily chosen reference direction.

An isotropic power law hardening model is assumed, of the form

�rðpÞ ¼ rS
p

�0
þ 1

� �n

; �0 ¼
rS

E
; ð5Þ

where p is an effective measure of plastic strain defined to be work

conjugate to �r. p is obtained through p ¼
R t

0
_pdt with

_p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3
d
p
: p̂ : d

p

r

; ð6Þ

where p̂ is a formal inverse of Hill’s tensor p defined through

p : p̂ ¼ p̂ : p ¼ J. In (5) rS is the initial matrix yield stress in the axial

direction eS, n is the hardening exponent and E is Young’s modulus.

A fully implicit time integration procedure was used, based on an

iterative Newton–Raphson method, and the consistent tangent ma-

trix was obtained following Simo and Taylor (1985).

Traction-free boundary conditions are imposed on the surface

of the void while symmetry conditions are imposed on the bottom

and left boundaries of the cell quadrant (Fig. 1b). Special boundary

conditions are formulated whereby the displacement of the top

surface is incremented at a constant rate while the displacements

of the lateral boundary are iteratively adjusted to maintain a con-

stant stress triaxiality ratio at every step of the deformation. The

principal components of the macroscopic stress tensor, R, are ob-

tained by integrating the surface tractions along the external cell

boundary such that

R11 ¼R22 ¼
R0

RH

Z H0

0

T1½ �X2
1þX2

2¼R20
dX3; R33 ¼

2

R2

Z R0

0

T3½ �X3¼H0
X1dX1;

ð7Þ

where Xi are the components of the position vector X in the initial

configuration, R and H are respectively the radius and half the

height of the unit cell in the current configuration and R0 and H0

are the corresponding quantities in the initial configuration (see

Fig. 1c). The principal components of the macroscopic strain tensor,

E, for the unit cell are written as

E11 ¼ E22 ¼ log
R

R0

; E33 ¼ log
H

H0

: ð8Þ

We consider remote axisymmetric loadings of the typeR = R11(e1 �

e1 + e2 � e2) + R33e3 � e3. The stress triaxiality ratio, T, is related to

the ratio of radial to axial stresses, h, through

T �
Rm

Re

¼
1

3

2hþ 1

j1� hj
; h �

R11

R33

; ð9Þ

where Rm and Re denote the mean and von Mises effective macro-

scopic stresses, respectively given by

Rm ¼
1

3
trðRÞ ¼

2R11 þ R33

3
; Re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
R

0
: R

0

r

¼ jR33 � R11j: ð10Þ

Each value of T is generally associated with two distinct values of h

corresponding to a major axial stress (h < 1) and a major radial

stress (h > 1). In this study we restrict our attention to cases of

major axial stress (h < 1). Each calculation is carried out under con-

ditions of a constant imposed triaxiality (proportional loading

path). We investigate the material response under moderate

(T = 1) to high (T = 2,3) values of the stress triaxiality as are preva-

lent in notched bars or in the plastic zone ahead of a blunted crack

tip. An effective strain measure work conjugate to Re is given by

Ee ¼
2

3
jE33 � E11j: ð11Þ

The effective stress and strain measures defined above are used to

compare the stress–strain responses of the unit cells in all the re-

sults presented here.

In the frame of material orthotropy, the anisotropy tensor h in

(4) is represented thanks to Voigt’s reduction by a diagonal 6 � 6

matrix whose diagonal elements, designated hL, hT, hS, hTS, hSL,

hLT, completely characterize the orthotropy of the matrix. An

extensive tabulation of the available experimental data on the Hill

coefficients of structural metals was provided by Benzerga (2000).

Here, we restrict our attention to transversely isotropic materials

subjected to axisymmetric loading aligned with the axis of mate-

rial symmetry, taken to be eS. The requirement of transverse isot-

ropy about eS further entails that hL = hT = hLT and hTS = hSL since

the directions eL and eT are equivalent.

In this paper we investigate five different material categories,

including the isotropic case, Table 1. The Hill coefficients in Table 1

are chosen to span the experimental ranges of values tabulated in

(Benzerga, 2000) (see Annexe-A-V). Materials (ib) and (iib) are

variants of material categories (i) and (ii) previously employed

by Benzerga and Besson (2001) with lower values of the out-of-

plane ‘‘shear’’ Hill coefficients hTS = hSL. Material categories (i)
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and (ii) have relatively high values of the shear Hill coefficients

hTS(=hSL) compared to the isotropic case making them weaker un-

der shear than under tensile loading in the principal directions. The

opposite is true for material categories (iii) and (iv). In addition,

materials (ib) and (iii) have equal yield strengths in tension (EYT)

along the principal directions. This is not the case for the other

materials, which are assumed to have the same yield stresses as

the isotropic material along eL and eT while being softer (material

(iib)) or harder (material (iv)) in tension along eS. Material catego-

ries (ii) and (iv) are closer to realistic material parameters as tabu-

lated by Benzerga (2000). However, categories (i) and (iii) were

chosen for ease of interpretation of the results, as will be shown

below. In another set of calculations, the coefficient hTS(=hSL) is sys-

tematically varied in the case of material category (iii).

Besides the Hill anisotropy factors for the matrix, the micro-

structure in the cell model is completely specified by three dimen-

sionless parameters: the void volume fraction, f, the void aspect

ratio,w, representing the average void shape and the cell aspect ra-

tio, k, representing the anisotropy in void distribution. These are

defined by

f ¼ 1� ð1� f0Þ
R2
0H0

R2H
1þ

3ð1� 2mÞ
E

Rm

� �

; w ¼
h

r
; k ¼

H

R
;

ð12Þ

where f0 denotes the initial porosity, m is the Poisson’s ratio and r

and h respectively denote the radial and axial semi-axes of the void

in the current configuration (Fig. 1c). The expression for f is ob-

tained using the plastic incompressibility condition for the matrix

and the approximation of Koplik and Needleman (1988) for the

elastic dilation. The ranges of all the parameters being explored in

this study are tabulated in Table 2. Unlike the Hill coefficients, the

values of these microstructural variables evolve during deforma-

tion. A subscript 0 is used in the remainder of this paper to indicate

values in the undeformed configuration. The case w0 = 1/30 corre-

sponds to a penny-shaped crack and other values of 1/10 and 1/

20 were used in probing limit behavior. The value of the strain hard-

ening exponent n is taken to be 0.1 in all calculations.

Typical meshes employed in this study are shown in Fig. 2.

Since the meshes undergo significant elongation in the axial direc-

tion due to the influence of the major axial stress, initially flat ele-

ments are used in the expected necking zone (the ligament

separating the voids in the radial direction) using appropriate

grading of the edge nodes. In most calculations void coalescence

took place by strain localization along the radial ligament, for

which meshes of the type shown in Fig. 2 were used. However, cer-

tain types of material anisotropy were observed to promote strain

localization away from the radial direction. For materials that

exhibited this trend, we have used alternate (finer) meshes with

a uniform element density throughout the domain so as to capture

better the details of the localization band.

3. Results

3.1. Basic phenomenology

The deformation of the unit cell under axisymmetric loading

exhibits two distinct stages: (i) void growth aided by diffuse plastic

deformation in the matrix and (ii) void growth through localization

of plastic deformation in the inter-void ligament, leading to void

coalescence. These stages are illustrated in Fig. 3. The transition be-

tween them, which is indicated with the � mark, is referred to as

the onset of void coalescence. The latter is a continuous process

occurring over a narrow strain window but rather large windows

of stress and porosity. Fig. 3a shows the effective stress–strain

response for a unit cell containing an initially spherical void in

an isotropic matrix, subjected to a stress triaxiality ratio T = 2.

Here, and in all subsequent stress–strain plots, the effective stress

is normalized by rS; see Eq. (5). The onset of coalescence is accom-

panied by a rapid drop in the stress carrying capacity of the unit

cell. As discussed by Koplik and Needleman (1988), the transition

from the void growth to the coalescence stage may be discerned

by a transition from a triaxial to a uniaxial mode of deformation

for the cell, i.e. the cell deforms uniaxially in the e3 direction while

plasticity localizes to the intervoid ligament along the radial direc-

tion. This behavior is clearly seen in Fig. 3d. The stage of micro-

scale localization (past the � mark) is also accompanied by an

accelerated growth of porosity (Fig. 3b) and a rapid drop in the void

aspect ratio (Fig. 3c) due to the lateral void expansion during liga-

ment necking. The void volume fraction (or porosity f) is accurately

estimated from the overall volumetric expansion of the cell using

the plastic incompressibility property of the matrix. However,

the void aspect ratio w, as defined in (12) and shown in Fig. 3c

and subsequent figures, describes the actual void shape only

approximately. Under certain circumstances, such as in the post-

localization stage, the void shape may substantially deviate from

a spheroid so that w alone no longer characterizes the true void

shape accurately.

In what follows, the effective strain to coalescence, E(c), and the

void volume fraction at the onset of coalescence, f(c), are defined as

the values taken by Ee and f at the onset of micro-scale localization.

These measures will be used to compare the various cases as we

explore the parameter space.

3.2. Regime of high triaxiality

We first consider the high triaxiality case due to its importance

in crack growth studies. The stress triaxiality prevailing in the

Table 1

The five matrix material categories and corresponding anisotropy parameters used in the unit cell calculations. Coefficients hi (i = L,T,S,TS,SL,LT) represent the diagonal elements

of the Voigt representation of anisotropy tensor h, expressed in the frame of material orthotropy, and h is a scalar invariant of h defined in Eq. (14). Wider ranges of variation of hTS
were also reported in the literature.

hL hT hS hTS hSL hLT Notes h

Isotropic 1.000 1.000 1.000 1.000 1.000 1.000 Reference EYT 2.000

Material (ib) 1.000 1.000 1.000 2.333 2.333 1.000 Weak in shear EYT 1.757

Material (iib) 0.667 0.667 1.167 1.750 1.750 0.667 Weak in shear S-soft 2.028

Material (iii) 1.000 1.000 1.000 0.500 0.500 1.000 Shear resistant EYT 2.366

Material (iv) 2.333 2.333 0.333 1.000 1.000 2.333 Shear resistant S-hard 1.757

Table 2

Ranges of initial microstructural and loading parameters consid-

ered in the unit cell calculations.

Parameter Values used

f0 0.0001, 0.001

w0 1/30⁄, 1/6, 1/2, 1, 2, 6

k0 1

T 1, 2, 3

⁄ Requires special choice of porosity as discussed in Section 3.4.

S.M. Keralavarma et al. / International Journal of Solids and Structures 48 (2011) 1696–1710 1699



crack tip plastic zones of thick specimens is typically in the range

2–3. A highly triaxial stress state significantly enhances void

growth since the rate of porosity growth has a well known expo-

nential dependence on the mean normal stress prior to localiza-

tion. Fig. 4 shows results for T = 2 and three EYT matrix

materials: isotropic, material (ib) and material (iii) from Table 1.

EYT materials have equal yield stresses in the three principal direc-

tions of orthotropy, and this leads to roughly similar values for the

effective yield stresses (see Fig. 4a). This is desirable in drawing

comparisons, since the porosity rate has an exponential depen-

dence on the mean stress. In particular, any differences in the

porosity rates between the three materials (at least in the initial

hardening regime) would result from differences in void shapes

and Hill anisotropy parameters and not from the different stress

levels. Materials (ib) and (iii) are differentiated only by the values

of the ‘‘shear’’ Hill coefficients hTS = hSL with material (ib) having a

lower yield stress under shear in the T-S plane than the isotropic

material and material (iii) having a higher shear yield stress than

the isotropic material. For each material, three different initial void

shapes, w0 = 2 (prolate), w0 = 1 (spherical) and w0 = 1/2 (oblate) are

compared. The stress–strain response of the dense matrix (f � 0) is

also shown as a reference. All calculations were continued beyond

the onset of coalescence (Fig. 4d).

The results in Fig. 4 clearly indicate a strong effect of matrix

material anisotropy on void growth and coalescence thus affecting

the gradual loss of stress bearing capacity of the porous material.

Fig. 2. FE meshes used in some calculations corresponding to f0 = 0.0001, k0 = 1 and (a) w0 = 2, (b) w0 = 1, (c) w0 = 1/2.

Fig. 3. A typical emergent behavior in a cell model calculation for an initially spherical void in an isotropic matrix using f0 = 0.0001, k0 = 1 and T = 2. (a) Effective stress–strain

response. (b) Evolution of porosity. (c) Evolution of void aspect ratio. (d) Radial strain E11 versus axial strain E33. The � mark on each curve indicates the onset of coalescence.
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On the other hand, the initial void shape has a minor effect at the

triaxiality level considered here. Further, unit cells made of mate-

rial (ib) are seen to have the highest rates of void growth and low-

est ductility (Fig. 4b) along with an accelerated void growth in the

lateral direction (note the faster drop in w with increasing Ee in

Fig. 4c). On the other hand, material (iii) exhibits the slowest rate

of void growth and the highest ductility.

Similar trends are shown in Fig. 5 for a loading triaxiality T = 3

with the effect of void shape becoming even less noticeable, espe-

cially for materials (ib) and the isotropic matrix. Notice that the

effective strain to coalescence is much lower at T = 3 as compared

to T = 2 for each material, due to the accelerated void growth

resulting from the higher mean normal stresses. Fig. 6a-c show

the contours of the matrix effective plastic strain, p, for the three

materials at the same unit cell effective strain. Material (ib) shows

the maximum void enlargement, consistent with the results in

Fig. 5b. Note that the voids develop into oblate shapes although

the major load is axial. This typically nonlinear effect is visible

for the isotropic material and is more clear for material (ib). In fact

the void configuration in the case of material (ib) is very close to

the critical configuration for the onset of coalescence while mate-

rial (iii) shows the least void growth. Finally, we note that in all the

calculations at high T (TP 2) coalescence occurred by necking of

the inter-void ligament in the radial direction.

Fig. 7 summarizes our results for EYT materials in the range of

triaxiality T = 1 to T = 3 and for an initial porosity f0 = 0.0001.

Fig. 7a shows the effective strain to coalescence, E(c), for initially

spherical voids as a function of the loading triaxiality. Material

(iii) systematically exhibits higher coalescence strains as compared

to an isotropic material while material (ib) exhibits lower ductility

Fig. 4. Effect of matrix material anisotropy on the cell model response for f0 = 0.0001, k0 = 1, T = 2 and three values of w0. Case of EYT (equal yield in tension) materials

(Table 1). (a) Effective stress–strain response, (b) evolution of porosity, (c) evolution of the void aspect ratio and (d) radial strain E11 vs. axial strain E33.

Fig. 5. Effect of matrix material anisotropy on the cell model response for f0 = 0.0001, k0 = 1, T = 3 and three values of w0. Case of EYT (equal yield in tension) materials

(Table 1). (a) Effective stress–strain response, and (b) evolution of porosity.
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than the isotropic material for all values of T considered. While

there is an apparent reduction in the ductility difference between

the three materials at higher triaxialities, the relative differences

are nevertheless significant, as already shown in Figs. 4 and 5.

To quantify the effect of the initial void shape for a given matrix

material, we define an ad hoc void shape sensitivity parameter,

DE(c), by

DEðcÞ � E
ðcÞ
w0¼2 � E

ðcÞ
w0¼1=2; ð13Þ

i.e. the difference in the void coalescence strains between the ini-

tially prolate and oblate voids with aspect ratios 2 and 1/2 respec-

tively. Fig. 7b shows the variation of DE(c) as a function of T for each

EYT material considered. In all cases, DE(c) approaches zero at TP 2

indicating a reduced sensitivity for the ductility to the initial void

shape at high triaxialities. On the other hand, at T = 1, the isotropic

material and material (ib) show a high sensitivity to the initial void

shape while material (iii) shows a low void shape sensitivity.

One conclusion that already emerges from this work is that

while the effect of void shape vanishes at high stress triaxiality,

that of material anisotropy persists. Another emergent behavior

is that certain forms of matrix material anisotropy (namely

shear-resistant materials of category (iii)) seem to render the effect

of void shape less relevant, even at moderate triaxiality. This indi-

cates a strong coupling between void shape effects and material

anisotropy. This issue is examined in greater detail in the following

section.

3.3. Regime of moderate triaxiality

The effect of void shape on the unit cell response at T = 1 and in

the case of an isotropic matrix is illustrated in Fig. 8. In this section,

k0 = 1 as above and, unless otherwise noted, the initial porosity is

f0 = 0.001. Unlike at high triaxialities, the initial void shape has a

clear effect on both the evolution of porosity and the strains to coa-

lescence. This is in keeping with the trends seen in previous inves-

tigations focused on isotropic materials (Pardoen and Hutchinson,

2000).

At the same moderate triaxiality (T = 1), the effect of matrix

material anisotropy is illustrated in Fig. 9 for initially spherical

voids. As above, focus is restricted to EYT materials, Table 1. The

Fig. 6. Contours of effective plastic strain p in the current configuration at a unit cell effective strain Ee = 0.07 for initially spherical voids with f0 = 0.0001, k0 = 1 and T = 3: (a)

material (ib), (b) isotropic material, and (c) material (iii).

Fig. 7. Variation of (a) the effective strain to coalescence, E(c), for spherical voids, and (b) the void shape sensitivity parameter DE(c) as a function of triaxiality T.

1702 S.M. Keralavarma et al. / International Journal of Solids and Structures 48 (2011) 1696–1710



conditions are identical to those previously analyzed by Benzerga

and Besson (2001) except that the present calculations were pur-

sued beyond the onset of void coalescence. Just like at high triaxi-

alities, material anisotropy significantly affects both the flow stress

and the strains to coalescence. Comparison of the two sets of re-

sults above shows that, in an isotropic matrix, the effective strains

to coalescence range from 0.7 to 0.9 for initially oblate and prolate

voids, respectively, (Fig. 8) while the range is from 0.6 to 1.2 for the

three anisotropic materials considered in Fig. 9. This indicates that

at moderate triaxialities both void shape effects and material

anisotropy can significantly influence the material response.

In the above analyses, either the initial void shape or the matrix

was isotropic. Interestingly, analysis of the combined effect of void

shape andmaterial anisotropy at T = 1 yields the results depicted in

Fig. 10. Four sets of curves are shown which correspond to the

cases of initially prolate (w0 = 2) and oblate (w0 = 1/2) voids in unit

cells made of EYT materials (ib) and (iii). In the case of material

(ib), material anisotropy appears to enhance the effect of initial

void shape, while the effect of void shape is completely masked

in the case of material (iii) (at least in the range of void shapes con-

sidered here). This result is not intuitive from inspection of the

individual effects of void shape and material anisotropy in Figs. 8

Fig. 8. Effect of initial void aspect ratio on the effective response of porous unit cells for an isotropic matrix, f0 = 0.001, k0 = 1 and T = 1: (a) effective stress–strain response, (b)

evolution of porosity.

Fig. 9. Effect of matrix plastic anisotropy on the effective response of porous unit cells for EYT materials and spherical voids with f0 = 0.001, k0 = 1 and T = 1: (a) effective

stress–strain response, and (b) evolution of porosity.

Fig. 10. Combined effect of void shape andmatrix plastic anisotropy on the effective response of porous unit cells for EYT materials with f0 = 0.001, k0 = 1, T = 1 and two values

of the void aspect ratio: (a) effective stress–strain response, and (b) evolution of porosity.
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and 9, respectively, and indicates a non-trivial coupling between

the two. This effect is obviously not restricted to the particular con-

ditions chosen here. A similar trend was reported in Fig. 7b for a

much lower initial porosity f0 = 0.0001.

In order to further illustrate the subtle coupling between void

shape and plastic anisotropy, we examined contours of effective

plastic strain in the matrix at a unit cell effective strain Ee = 0.5

for initially prolate voids (w0 = 2) in all three EYT materials,

Fig. 11. Conclusions from previous investigations of void shape ef-

fects (Pardoen and Hutchinson, 2000) had indicated that materials

with more elongated voids consistently show higher ductility

(slower growth of porosity with effective strain). However, further

investigation reveals that the evolution of the void aspect ratio for

the three unit cells in Fig. 11 (not shown) is roughly similar up to

Ee = 0.5, as can be seen from the void shapes in Fig. 11. Despite this

fact, material (ib) shows greater void growth than the isotropic

matrix while material (iii) shows the least void growth at equal

macroscopic strain levels. Also, the distribution of plastic strains

in the matrix is different for the three materials with material

(ib) showing a greater tendency for shear localization along an in-

clined band, due to its lower yield stresses in shear compared to

the other materials.

In materials with enhanced shear-resistance (category (iii)), the

effect of initial void shape is found to be negligible within the range

w0 = 1/2 to 2 (see Fig. 10 above). We have conducted additional cal-

culations to explore a broader range of void shapes from w0 = 1/6

to 6. The corresponding results are shown in Fig. 12 for two values

of the initial porosity. The results show that the strains to coales-

cence E(c) are not significantly changed for larger values of w0

(>2), while flatter voids (w0 = 1/6) lead to a reduction in ductility,

although not to the extent expected for isotropic materials.

Next, for the same category of materials (iii) with enhanced

shear resistance, we examine the conditions on the anisotropy

parameters that lead to the non-trivial coupling between void

Fig. 11. Contours of effective plastic strain p at Ee = 0.5 for initially prolate voids with f = 0.001, w0 = 2 and T = 1: (a) material (ib), (b) isotropic matrix, and (c) material (iii).

Fig. 12. An elaboration on the results of Fig. 10 for material (iii) over a wider window of initial void aspect ratios w0 for two values of initial porosity, k0 = 1 and T = 1: (a)

effective stress–strain response, and (b) evolution of porosity.
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shape and matrix flow anisotropy. The difference between an iso-

tropic matrix and material (iii) lies in the values of the shear Hill

coefficients, with hTS = hSL = 0.5 for material (iii) as opposed to

unity for the isotropic material (see Table 1). In Fig. 13, we contin-

uously vary the values of hTS between 0.25 and 1 to observe the ef-

fect on the void shape sensitivity for the coalescence strains and

the growth rate of porosity. Two values of initial void shapes,

w0 = 1 and w0 = 1/2, are compared. One can see that a transition

occurs approximately at hTS = 0.5 below which the difference

between the curves corresponding to the two initial void shapes

is negligible. Fig. 14 shows the variation of the void shape sensitiv-

ity parameter DE(c), defined in Eq. (13), as a function of the Hill

coefficients hTS. The void shape sensitivity is seen to increase with

increasing hTS with an inflexion point around the isotropic value of

hTS = 1. The void shape sensitivity approaches zero for hTS < 0.5

(materials of type (iii)) whereas the void shape sensitivity is seen

to be high for hTS > 2 (materials of type (i)).

3.4. Case of penny shaped cracks

The limiting case of highly oblate voids or penny shaped cracks

is an important one in practice. Such cracks were observed to ini-

tiate in brittle phases in multi-phase materials (Pineau and Joly,

1991; Bugat et al., 2001) or simply due to cracking of second phase

particles; see the review by Benzerga and Leblond (2010). Lassance

et al. (2006) carried out a series of cell model studies of penny

shaped voids embedded in an isotropic matrix. In this section,

we explore amendments to their conclusions when matrix anisot-

ropy is taken into account. Attention is restricted to the same EYT

materials investigated above. One issue with using the cell model

of Fig. 1 for particle–matrix systems is that it ignores the effect

of particles. A useful result in this respect from Lassance et al.’s

(2006) investigation is that particle shielding is weak for particle

volume fractions below 1% or so. We shall rely on this finding to

justify the relevance of the voided cell model to particle–matrix

material systems, in addition to multi-phase ones.

Three realizations of the penny-shaped crack were investigated

using w0 = 1/30, w0 = 1/20 and w0 = 1/10 keeping the same radial

void size to void spacing ratio (v0 = 0.247). Such initial configura-

tions correspond to different values of the initial porosity but share

the same value of the equivalent porosity f e0 ¼ 0:01. Here, f e0 is de-

fined as the volume fraction of a spherical void having a radius

equal to that of the ‘‘crack’’. The actual porosity f0 ¼ w0f
e
0 is there-

fore much smaller. It was found that the response of the unit cell is

weakly dependent upon the specific choice of w0 in the range con-

sidered, irrespective of the type of material anisotropy. Thus, we

will only present results for w0 = 1/20 focussing on the effect of

matrix anisotropy.

Fig. 15 shows the results obtained for a loading triaxiality of

T = 1 (solid lines). These results clearly indicate that the effect of

matrix anisotropy is as significant in this limit case of penny

shaped cracks as it is for other void shapes. For instance the effec-

tive strain to coalescence for material (iii) is about twice as much

as for material (ib). This effect was qualitatively expected because

the crack quickly blunts in the matrix and opens up into a void

with a roughly equiaxed shape.

To interpret further these results, a set of reference calculations

were carried out for the equivalent microstructure, i.e., for spheri-

cal voids with f0 ¼ 0:01 ¼ f e0 . The corresponding results are also in-

cluded in Fig. 15 (dashed lines). An interesting finding in the case of

material (iii) is that the response for penny shaped cracks is very

different from that obtained for the equivalent spherical voids. This

puts into question the very notion of ‘‘equivalence’’. On the other

hand, it is noted that the responses for the equivalent and actual

microstructures are indeed close to each other in the case of the

isotropic matrix and material (ib). It is possible to explain why this

equivalence works well for isotropic matrices. In fact, it results

from the competing effects of extremely oblate shape (negative

for ductility) and low initial porosity (positive). When the two ef-

fects cancel out ‘‘equivalence’’ works. However, deviations from

that behavior are conceivable in the presence of large deformation

Fig. 13. Transition from a material (i) type behavior to a material (iii) type behavior. Effect of varying the out-of-plane ‘‘shear’’ Hill coefficient, hTS, on the effective response of

porous unit cells with f0 = 0.001, k0 = 1 and T = 1: (a) effective stress–strain response, and (b) evolution of porosity.
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Fig. 14. Variation of the void shape sensitivity parameter DE(c) for a wide range of

EYT materials described by the out-of-plane shear Hill coefficient hTS. Matrix

materials with hTS < 1 are shear-resistance (type (iii)) and matrices with hTS > 1 are

weak in shear (type (i)).
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induced microstructure evolution. Such deviations are realized in

materials of type (iii) as shown in Fig. 15.

3.5. Materials with unequal principal yield strengths

The material anisotropy parameters used in the set of results

presented thus far were chosen such that the materials have the

same nominal yield stresses in the three principal directions of

orthotropy (hL = hT = hS = 1). As a consequence, for all such EYT

materials the unit cell effective and mean normal stresses are ini-

tially equal. Since the evolution of porosity has an exponential

dependence on the mean stress, the choice of EYT materials en-

abled us to apportion the effects of material anisotropy and void

shape. However, the case of hL, hT, hS– 1 is more general and com-

monly observed experimentally (Benzerga et al., 2004a). In this

section, we present a set of results for categories of materials with

hL = hT– 1 and hS– 1.

Fig. 16a shows the comparison of stress–strain responses for

unit cells made of an isotropic matrix, material (iib) and material

(iv) from Table 1. Material (iib) is similar to material (ib) from

the previous set of calculations in the sense that they both have

relatively high values of the shear Hill coefficients hTS(=hSL) com-

pared to the isotropic case making them weaker under shear load-

ing. On the other hand, material (iv) is weaker under tension along

the principal directions similar to material (iii) used previously.

Three different values of w0 (=1/2,1 and 2) are compared and all

the unit cells had f0 = 0.001 and k0 = 1. Each of these materials

has the same yield strengths rL = rT in the radial direction but

Fig. 15. Effect of matrix plastic anisotropy on the effective response of porous unit cells containing initially penny shaped cracks (w0 = 1/20) with and effective porosity

f e0 ¼ 0:01 (solid lines) and spherical voids with f0 = 0.01 (dashed lines), under axisymmetric loading with T = 1: (a) effective stress–strain response, and (b) evolution of

porosity.

Fig. 16. Effect of matrix material anisotropy on the cell model response for f0 = 0.001, k0 = 1, T = 1 and three values of w0. Case of non EYT materials (Table 1). (a) Effective

stress–strain response, (b) evolution of porosity, (c) evolution of the void aspect ratio w; and (d) evolution of w for initially prolate cavities with w0 = 2. The anisotropic

materials being compared have different yield stresses in uniaxial tension along eS.
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the axial yield strength rS varies for each material. For comparison

purposes, the effective stresses in Fig. 16a are normalized by the

initial yield stress, riso, of the isotropic matrix. This avoids normal-

ization by a variable quantity.

One can see from Fig. 16a that material (iv) has the highest

effective strength while material (iib) has the lowest strength.

Clearly, the effect of the overall stress level reflects in the evolution

of the porosity shown in Fig. 16b, where material (iv) consistently

shows faster void growth compared to material (iib). Nevertheless,

some qualitative features of the effect of the shear Hill coefficients

hTS = hSL observed in the previous calculations are retained. For in-

stance, the effect of the initial void shape is seen to be negligible for

material (iv) while the effect is magnified for material (iib) (in

comparison to the case of the isotropic matrix). These trends are

identical to those observed for material (iii) and material (ib),

respectively, in the previous sections. One common feature of

these results is that orthotropic materials that are weaker under

shear in one of their principal planes compared to an isotropic

material (i.e. hTS = hSL > 1 in the transverse isotropic case) appears

to exhibit higher sensitivity to the initial void shape, while materi-

als that have a high resistance to yielding under shear exhibit low-

er void shape sensitivity.

Fig. 16c shows the evolution of the void aspect ratio w and

Fig. 16d shows the evolution of w in the w0 = 2 case with an ex-

panded range for the ordinate. The interesting observation from

Fig. 16d is that the mode of coalescence in the case of material

(iib) appears to be different from the case of the other materials.

Although the cell exhibits a transition to the uniaxial straining

mode, this is not accompanied by a corresponding drop in w asso-

ciated with the rapid lateral expansion of the voids. In fact, exam-

ination of the contours of effective plastic strain in the deformed

configuration of the unit cell (Fig. 17) reveals that significant plas-

tic strain has accumulated along an inclined band in the case of

material (iib). This eventually leads to significant deviations from

a spheroidal shape for the cavity. As a result, coalescence takes

place in a plane parallel to the equatorial plane, by necking of

the smallest deformed ligament. A more thorough investigation

of the conditions under which these alternate modes of coales-

cence are favored under axisymmetric loading will be provided

in a forthcoming companion paper.

4. Discussion

The primary motivation for pursuing cell model studies of the

type presented in this paper is to analyze the influence of matrix

material anisotropy on void growth and coalescence. Previous fi-

nite element cell studies have focussed on the separate effects of

void shape (Sovik and Thaulow, 1997; Pardoen and Hutchinson,

2000; Gao and Kim, 2006) and plastic flow anisotropy in single

crystals (Yerra et al., 2010) or textured polycrystals (Benzerga

and Besson, 2001). The aim of this paper has been to assess the rel-

ative importance of void shape and plastic anisotropy effects on

ductile fracture under a variety of triaxial proportional loading

conditions. The results of the present study also provide bench-

marks for calibrating continuum models of ductile fracture in

anisotropic materials. These include extensions of the Gurson

model to incorporate additional microstructural information, such

as void shape and material texture (Gologanu et al., 1997;

Benzerga and Besson, 2001; Monchiet et al., 2008; Keralavarma

and Benzerga, 2008; Keralavarma and Benzerga, 2010), as well as

alternative porous metal plasticity models accounting for texture

effects in polycrystalline materials (Lebensohn et al., 2004).

Furthermore, once appropriately extended to account for plastic

anisotropy, the void coalescence models that were independently

developed by Gologanu et al. (2001), Pardoen and Hutchinson

(2000) and Benzerga (2002) can also be assessed using the present

findings from cell model calculations.

The voided cell model is a powerful tool for investigating ductile

failure mechanisms at intermediate scales. Three kinds of parame-

ters enter the model, which relate to the applied loading, the

microstructure (i.e., void population attributes) and the plastic

Fig. 17. Contours of effective plastic strain p at Ee = 0.45 for non EYT materials and initially spherical voids with f = 0.001 and T = 1: (a) material (iib), (b) isotropic matrix, and

(c) material (iv).
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flow in the matrix. When the present results are added to the rich

literature on this subject (Benzerga and Leblond, 2010), it becomes

evident that the effect of matrix anisotropy is most important

among all matrix related parameters, including strain hardening.

To illustrate this, the E(c) measure of failure strain decreases by

more than 0.7 when Hill coefficient hTS varies between 0.5 and

2.33 for an initial porosity of f0 = 0.001. For reference, the relative

change in failure strain is about 0.7 for the same f0 when the stress

triaxiality ratio varies between 1 and 3. The effect of matrix anisot-

ropy is thus comparable to the exponential effect of triaxiality.

To understand the effect of matrix anisotropy, consider the fol-

lowing combination of Hill’s coefficients

h ¼ 2
2

5

hL þ hT þ hS

hLh T þ hThS þ hShL

þ
1

5

1

hTS

þ
1

hSL

þ
1

hLT

� �� �1
2

: ð14Þ

For an isotropic material h = 2. This scalar is an invariant of the

fourth order tensor h, expressed in axes pointing toward the princi-

pal directions of matrix orthotropy. It has emerged in all previous

analytical treatments of the problem at hand, or variants thereof,

by means of homogenization theory (Benzerga and Besson, 2001;

Monchiet et al., 2008; Keralavarma and Benzerga, 2010). According

to these theoretical models, the growth rate of porosity may be

written as

_f / sinh j
Rh

�r

� �

; ð15Þ

where Rh is a weighted mean of the normal stresses, �r is the matrix

flow stress and j is a factor that depends on both void shape and

matrix anisotropy. Interestingly, j has a 1/h dependence and is ex-

actly 3/h for spherical voids. The essence of the effect of matrix

anisotropy on void growth is rooted in the way invariant h changes

from one material category to another. The values taken by h, as re-

ported in Table 1, correlate with the trends observed for all materi-

als investigated. In particular, the exponential dependence of void

growth upon stress triaxiality (through Rh) and matrix anisotropy

(through h) clarifies the comparable effects of T and anisotropy

pointed out above. Yerra et al. (2010) have also pointed out the use-

fulness of Eq. (14) as a rationale for their results on void growth in

single crystals.

Our results show that the effect of matrix anisotropy is both

persistent and subtle. The persistent effect, including at extreme

stress triaxialities or void shapes, is essentially explained by an

average resistance to void growth represented by invariant h. On

the other hand, the effect can be subtle due to varying stress levels

(such as in materials with unequal yield strengths) or to strong

coupling with void shape effects. In fact, the factor j in (15) may

depend on other transversely isotropic invariants of tensor h, as in-

ferred from the theoretical analysis of Keralavarma and Benzerga

(2010). Such subtleties may also explain some trends discussed

by Yerra et al. (2010).

We emphasize that the average resistance introduced through h

arises irrespective of the major load direction. Evidently, some

additional dependence upon load direction will manifest in any

anisotropic material. The analysis of any such dependence would

require fully 3D calculations. The key finding is that any given

material is characterized by a factor h, which sets its average resis-

tance to void growth.

Among the obtained trends some findings merit further discus-

sion. At high levels of remote load triaxiality (TP 2), the effect of

material plastic anisotropy is a predominant factor affecting the

overall ductility, unlike the effect of void shape (Figs. 4–6). A con-

tinuum model for plastically orthotropic porous materials has pre-

viously been developed by Benzerga and Besson (2001) following a

micromechanics based approach similar to that of Gurson (1977).

It was demonstrated that this model captured well the effect of

material anisotropy on the effective response of the porous med-

ium, as evidenced by comparisons of the model with unit cell cal-

culations of the type presented here using initially spherical voids.

Since at high T, void shape evolution has a negligible effect for ini-

tially spherical cavities, the model of Benzerga and Besson (2001)

neglecting void shape effects is an adequate extension of the

Gurson model to plastically anisotropic materials.

The behavior at moderate stress triaxialities (2/3 6 T 6 1.5) pre-

vailing in notched bars can be quite different. As is now widely

documented in the literature, void shape effects are important in

this regime. This effect is best quantified using a void shape sensi-

tivity parameter, DEc, defined as the difference between strains to

coalescence for initially prolate and oblate voids.1 At high triaxial-

ity, DE(c) � 0 whereas at T = 1 the difference in ductilities is already

above 0.25. This figure increases further upon decreasing the triaxi-

ality down to T > 1/3. For T = 1/3, void coalescence does not take

place for f0 6 0.001, irrespective of the initial void shape (Pardoen

and Hutchinson, 2000). In the regime of moderate triaxialities, the

cell model studies reported on here show that the sensitivity to ini-

tial void shape is influenced by matrix material anisotropy. This

influence is so strong that it may either nullify the effect of void

shape (e.g. material (iii) in Fig. 10) or exacerbate it, as is the case

of materials (ib) and (iib) in Figs. 10 and 16, respectively. Typical

trends can be summarized using the above notion of void shape sen-

sitivity parameter DE(c), as shown in Fig. 7b. In this regard, Benzerga

et al. (2004b) used a heuristic combination of the models by

Benzerga and Besson (2001) and Gologanu et al. (1997) in their

modeling of anisotropic fracture. For weak coupling between void

shape and matrix anisotropy effects, their heuristic combination is

acceptable but the present results indicate the extent to which such

heuristics is valid.

This study does not deal with the conditions under which voids

nucleate in real materials. Any predictions made on the basis of the

results reported here would need to be augmented with detailed

nucleation analyses. Yet, voids are reported to nucleate at rather

lowmacroscopic strain levels in various material systems (e.g., sul-

fides in steels and cracks in brittle phases). In addition, when void

nucleation occurs due to brittle particle cracking, penny-shaped

cracks form and blunt into the plastically flowing matrix.

Our findings for penny-shaped voids confirm that the influence

of plastic anisotropy in ductile fracture is paramount. This was

illustrated for EYT materials at a moderate triaxiality of 1 and

the same behavior is expected at higher triaxialities which pro-

mote faster evolution of voids into equiaxed shapes. For all EYT

materials that were considered, the cell model response was found

to be independent of the specific choice of the ‘‘crack’’ aspect ratio

so long as w0 6 1/10. This is in agreement with the conclusions of

Lassance et al. (2006) who studied the case of isotropic matrices. As

noted there, the ductility of isotropic materials containing penny-

shaped cracks is controlled by the relative void spacing. Since the

latter was kept fixed in our investigation, we conclude that matrix

anisotropy is another important microstructural parameter along

with the relative void spacing. With respect to approximating pen-

ny-shaped cracks with equivalent spherical voids, our findings for

some materials support the proposition made long ago by Pineau

and Joly (1991) who introduced the notion of an equivalent poros-

ity f e0 . Lassance et al. (2006) established one limitation of such an

approximation, namely the case of large particle/void volume frac-

tions. The present investigation establishes another limit for mate-

rials endowed with a higher resistance in shear than their isotropic

counterpart (Fig. 15). This limitation of the equivalent microstruc-

ture applies at all porosity levels.

1 The values chosen in the text for w0, i.e., 1/2 and 2, are arbitrary. However, DEc

can be defined more objectively as the difference between infinitely long voids

(cylinders) and infinitely flat voids (penny-shaped cracks).
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Part of the effect of plastic anisotropy is associated with void

growth. The other part can be associated with the way in which

anisotropy affects the shift to the uniaxial straining mode, i.e.,

the onset and progress of void coalescence. It is not straightforward

to apportion the two contributions from the cell model calcula-

tions alone. In the absence of an analytical quantitative model of

void coalescence in anisotropic materials, one can document the

values of the void volume fraction at incipient coalescence, i.e., at

the onset of micro-scale localization. Fig. 18 illustrates the trends

in terms of this ‘‘critical’’ porosity, designated f(c), versus stress tri-

axiality for three EYT materials. In all the cases shown, void coales-

cence took place by internal necking of the inter-void ligament.

Fig. 18 illustrates that f(c) is significantly affected by the plastic

anisotropy of the material and may vary as a function of the load-

ing triaxiality even for an isotropic material. This finding empha-

sizes a point already made in the literature, e.g., (Benzerga et al.,

1999; Pardoen and Hutchinson, 2000; Gao and Kim, 2006), that

the use of a constant f(c) in the phenomenological approach to void

coalescence is, in general, not adequate. At the rates of void growth

preceding localization, a difference of half a percent in f(c) can lead

to significant variations in the strain to coalescence E(c). What is

important in Fig. 18 is that plastic anisotropy can lead to variations

in f(c) that are stronger than those caused by the triaxiality alone.

Capturing these effects requires micromechanics based models of

void coalescence that take into account the cumulative effect of

the deformation history in determining the critical conditions for

the onset of coalescence.

The computations presented here were limited to transversely

isotropic materials. Experimentally measured material anisotro-

pies can be more general, and therefore the material properties

used in this study are approximate axisymmetric representations

of the range of material anisotropies observed experimentally.

Yet, the effects of material anisotropy evidenced in this work are

quite prominent. This suggests that even stronger effects may be

expected in more realistic cases. The analysis of the latter would

however require fully three-dimensional calculations. What is of

particular practical importance is that plastic anisotropy effects

are significant, unavoidable (e.g., due to processing) and some-

times beneficial. As such, they may prompt material designers to

engineer anisotropy of certain types instead of limiting it. With this

prospect in mind, this and other concurrent modeling efforts may

help lay the theoretical foundations for such rational material

design.

5. Conclusions

The effect of matrix material anisotropy on void growth and

coalescence was investigated under a variety of axisymmetric

loading conditions and for various initial microstructures repre-

sentative of periodic void aggregates. The plastic anisotropy mod-

eled here is a representation of material texture and grain

elongation effects in polycrystalline materials. It can also represent

the anisotropy of plastic flow in single crystals. The conclusions

drawn from our results may be summarized as follows:

	 The effect of plastic anisotropy of the matrix material appears to

be a dominant factor in the mechanics of porous plastic solids,

at all stress triaxiality levels. Unlike the effect of void shape,

its effect does not vanish at high levels of triaxiality. In addition,

at low stress triaxiality, plastic anisotropy sets the extent to

which the initial void shape affects the effective behavior of

the porous material.

	 The critical porosity for the onset of coalescence f(c), which gen-

erally depends on the stress triaxiality ratio, is found to depend

strongly on the plastic anisotropy of the matrix.

	 Since void growth and coalescence are but expressions of plastic

distortion of the matrix material, the above effects of plastic

anisotropy are qualitatively expected. However, the magnitude

manifested by these effects is far more significant than has been

appreciated in the literature.

	 The computational results clearly illustrate the need for a

fundamental coupling between plastic anisotropy and void

shape effects for accurate modeling of ductile fracture in struc-

tural materials. In this context, there is a need for better exper-

imental characterization of the plastic flow anisotropy of

wrought structural materials under fully three-dimensional

conditions.
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