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Abstract In many sequential decision-making problems we may want to manage risk by

minimizing some measure of variability in rewards in addition to maximizing a standard

criterion. Variance related risk measures are among the most common risk-sensitive criteria

in finance and operations research. However, optimizing many such criteria is known to be a

hard problem. In this paper, we consider both discounted and average reward Markov decision

processes. For each formulation, we first define a measure of variability for a policy, which

in turn gives us a set of risk-sensitive criteria to optimize. For each of these criteria, we derive

a formula for computing its gradient. We then devise actor-critic algorithms that operate

on three timescales—a TD critic on the fastest timescale, a policy gradient (actor) on the

intermediate timescale, and a dual ascent for Lagrange multipliers on the slowest timescale.

In the discounted setting, we point out the difficulty in estimating the gradient of the variance

of the return and incorporate simultaneous perturbation approaches to alleviate this. The

average setting, on the other hand, allows for an actor update using compatible features to

estimate the gradient of the variance. We establish the convergence of our algorithms to locally

risk-sensitive optimal policies. Finally, we demonstrate the usefulness of our algorithms in a

traffic signal control application.
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1 Introduction

The usual optimization criteria for an infinite horizon Markov decision process (MDP) are

the expected sum of discounted rewards and the average reward (Puterman 1994; Bertsekas

1995). Many algorithms have been developed to maximize these criteria both when the

model of the system is known (planning) and unknown (learning) (Bertsekas and Tsitsiklis

1996; Sutton and Barto 1998). These algorithms can be categorized to value function-based

methods that are mainly based on the two celebrated dynamic programming algorithms value

iteration and policy iteration; and policy gradient methods that are based on updating the

policy parameters in the direction of the gradient of a performance measure, i.e., the value

function of the initial state or the average reward. Policy gradient methods estimate the

gradient of the performance measure either without using an explicit representation of the

value function (e.g., Williams 1992; Marbach 1998; Baxter and Bartlett 2001) or using such

a representation in which case they are referred to as actor-critic algorithms (e.g., Sutton

et al. 2000; Konda and Tsitsiklis 2000; Peters et al. 2005; Bhatnagar et al. 2007, 2009a).

Using an explicit representation for value function (e.g., linear function approximation) by

actor-critic algorithms reduces the variance of the gradient estimate with the cost of adding

it a bias.

Actor-critic methods were among the earliest to be investigated in RL (Barto et al. 1983;

Sutton 1984). They comprise a family of reinforcement learning (RL) methods that maintain

two distinct algorithmic components: An Actor, whose role is to maintain and update an

action-selection policy; and a Critic, whose role is to estimate the value function associated

with the actor’s policy. Thus, the critic addresses a problem of prediction, whereas the actor

is concerned with control. A common practice is to update the policy parameters using

stochastic gradient ascent, and to estimate the value-function using some form of temporal

difference (TD) learning (Sutton 1988).

However in many applications, we may prefer to minimize some measure of risk as well as

maximizing a usual optimization criterion. In such cases, we would like to use a criterion that

incorporates a penalty for the variability induced by a given policy. This variability can be

due to two types of uncertainties: (i) uncertainties in the model parameters, which is the topic

of robust MDPs (e.g., Nilim and Ghaoui 2005; Delage and Mannor 2010; Xu and Mannor

2012), and (ii) the inherent uncertainty related to the stochastic nature of the system, which

is the topic of risk-sensitive MDPs (e.g., Howard and Matheson 1972; Sobel 1982; Filar et al.

1989).

In risk-sensitive sequential decision-making, the objective is to maximize a risk-sensitive

criterion such as the expected exponential utility (Howard and Matheson 1972), a variance

related measure (Sobel 1982; Filar et al. 1989), the percentile performance (Filar et al. 1995),

or conditional value-at-risk (CVaR) (Ruszczyński 2010; Shen et al. 2013). Unfortunately,

when we include a measure of risk in our optimality criteria, the corresponding optimal

policy is usually no longer Markovian stationary (e.g., Filar et al. 1989) and/or computing it

is not tractable (e.g., Filar et al. 1989; Mannor and Tsitsiklis 2011). In particular, (i) In Sobel

(1982), the author analyzed variance constraints in the context of a discounted reward MDP

and showed the existence of a Bellman equation for the variance of the return. However, it

was established there that the operator underlying the aforementioned Bellman equation is
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not necessarily monotone. The latter is a crucial requirement for employing popular dynamic

programming procedures for solving MDPs. (ii) In Mannor and Tsitsiklis (2013), the authors

provide hardness results for variance constrained MDPs and in particular show that finding

a globally mean–variance optimal policy in a discounted MDP is NP-hard, even when the

underlying transition dynamics are known. (iii) In Filar et al. (1989), the authors established

hardness results for average reward MDP, with a variance constraint that differs significantly

from its counterpart in the discounted setting. Nevertheless, the variance constraint is well

motivated considering the objective is to optimize a long-run average reward. However, the

mathematical difficulties in finding a globally mean variance optimal policy remains, even

with this altered variance constraint.

Although risk-sensitive sequential decision-making has a long history in operations

research and finance, it has only recently grabbed attention in the machine learning com-

munity. Most of the work on this topic (including those mentioned above) has been in the

context of MDPs (when the model of the system is known) and much less work has been

done within the reinforcement learning (RL) framework (when the model is unknown and

all the information about the system is obtained from the samples resulted from the agent’s

interaction with the environment). In risk-sensitive RL, we can mention the work by Borkar

(2001, 2002, 2010) and Basu et al. (2008) who considered the expected exponential util-

ity, the one by Mihatsch and Neuneier (2002) that formulated a new risk-sensitive control

framework based on transforming the temporal difference errors that occur during learning,

and the one by Tamar et al. (2012) on several variance related measures. Tamar et al. (2012)

study stochastic shortest path problems, and in this context, propose a policy gradient algo-

rithm [and in a more recent work (Tamar and Mannor 2013) an actor-critic algorithm] for

maximizing several risk-sensitive criteria that involve both the expectation and variance of

the return random variable (defined as the sum of the rewards that the agent obtains in an

episode).

In this paper,1 we develop actor-critic algorithms for optimizing variance-related risk

measures in both discounted and average reward MDPs. In the following, we first summarize

our contributions in the discounted reward setting and follow it with those in average reward

setting.

Discounted reward setting Here we define the measure of variability as the variance of the

return [similar to Tamar et al. (2012)]. We formulate the following constrained optimization

problem with the aim of maximizing the mean of the return subject to its variance being

bounded from above: For a given α > 0,

max
θ

V θ (x0) subject to Λθ (x0) ≤ α.

In the above, V θ (x0) is the mean of the return, starting in state x0 for a policy identified by its

parameter θ , while Λθ (x0) is the variance of the return (see Sect. 3 for precise definitions).

A standard approach to solve the above problem is to employ the Lagrangian relaxation

procedure (Bertsekas 1999) and solve the following unconstrained problem:

max
λ

min
θ

(
L(θ, λ)

△= −V θ (x0) + λ
(
Λθ (x0) − α

))
,

where λ is the Lagrange multiplier. For solving the above problem, it is required to derive a

formula for the gradient of the Lagrangian L(θ, λ), both w.r.t. θ and λ. While the gradient

1 This paper is an extension of an earlier work by the authors (Prashanth and Ghavamzadeh 2013) and includes

novel second order methods in the discounted setting, detailed proofs of all proposed algorithms, and additional

experimental results.
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w.r.t. λ is particularly simple since it is the constraint value, the other gradient, i.e., w.r.t. θ

is complicated. We derive this formula in Lemma 1 and show that ∇θ L(θ, λ) requires the

gradient of the value function at every state of the MDP (see the discussion in Sects. 3, 4).

Note that we operate in a simulation optimization setting, i.e., we have access to reward

samples from the underlying MDP. Thus, it is required to estimate the mean and variance of the

return (we use a TD-critic for this purpose) and then use these estimates to compute gradient

of the Lagrangian. The latter is used then used to descend in the policy parameter. We estimate

the gradient of the Lagrangian using two simultaneous perturbation methods: simultaneous

perturbation stochastic approximation (SPSA) (Spall 1992) and smoothed functional (SF)

(Katkovnik and Kulchitsky 1972), resulting in two separate discounted reward actor-critic

algorithms. In addition, we also propose second-order algorithms with a Newton step, using

both SPSA and SF.

Simultaneous perturbation methods have been popular in the field of stochastic optimiza-

tion and the reader is referred to Bhatnagar et al. (2013) for a textbook introduction. First

introduced in Spall (1992), the idea of SPSA is to perturb each coordinate of a parameter

vector uniformly using a Rademacher random variable, in the quest for finding the minimum

of a function that is only observable via simulation. Traditional gradient schemes require

2κ1 evaluations of the function, where κ1 is the parameter dimension. On the other hand,

SPSA requires only two evaluations irrespective of the parameter dimension and hence is

an efficient scheme, especially useful in high-dimensional settings. While a one-simulation

variant of SPSA was proposed in Spall (1997), the original two-simulation SPSA algorithm

is preferred as it is more efficient and also seen to work better than its one-simulation variant.

Later enhancements to the original SPSA scheme include using deterministic perturbation

using certain Hadamard matrices (Bhatnagar et al. 2003) and second-order methods that esti-

mate Hessian using SPSA (Spall 2000; Bhatnagar 2005). The SF schemes are another class

of simultaneous perturbation methods, which again perturb each coordinate of the parameter

vector uniformly. However, unlike SPSA, Gaussian random variables are used here for the

perturbation. Originally proposed in Katkovnik and Kulchitsky (1972), the SF schemes have

been studied and enhanced in later works such as Styblinski and Opalski (1986) and Bhat-

nagar (2007). Further, Bhatnagar et al. (2011) proposes both SPSA and SF like schemes for

constrained optimization.

Average reward setting Here we first define the measure of variability as the long-run vari-

ance of a policy as follows:

Λ(θ) = lim
T →∞

1

T
E

[
T −1∑

n=0

(
Rn − ρ(μ)

)2
∣∣∣∣∣ θ
]

,

where ρ(θ) is the average reward under policy identified by its parameter θ (see Sect. 5 for

precise definitions). The aim here is to solve the following constrained optimization problem:

max
θ

ρ(θ) subject to Λ(θ) ≤ α.

As in the discounted setting. we derive an expression for the gradient of the Lagrangian

(see Lemma 3). Unlike the discounted setting, we do not require sophisticated simulation

optimizations schemes, as the gradient expressions in Lemma 3 suggest a simpler alterna-

tive that employs compatible features (Sutton et al. 2000; Peters et al. 2005). Compatible

features for linearly approximating the action-value function of policy θ are of the form

∇ log μ(a|x). These features are well-defined if the policy is differentiable w.r.t. its parame-

ters θ . Sutton et al. (2000) showed the advantages of using these features in approximating the
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action-value function in actor-critic algorithms. In Bhatnagar et al. (2009a), the authors use

compatible features to develop actor-critic algorithms for a risk-neutral setting. We extend

this to variance-constrained setting and establish that the square value function itself serves

as a good baseline level when calculating the gradient of the average square reward (see

the discussion surrounding Lemma 4). This facilitates the usage of compatible features for

obtaining unbiased estimates of both average reward as well as square reward. We then

develop an actor-critic algorithm that employ these compatible features in order to descend

in the policy parameter θ and also identify the bias that arises due to function approximation

(see Lemma 5).

Proof of convergence Using the ordinary differential equations (ODE) approach, we establish

the asymptotic convergence of our algorithms to locally risk-sensitive optimal policies and

in the light of hardness results from Mannor and Tsitsiklis (2013), this is the best one can

hope to achieve. Our algorithms employ multi-timescale stochastic approximation, in both

settings. The convergence proof proceeds by analysing each timescale separately. In essence,

the iterates on a faster timescale view those on a slower timescale as quasi-static, while the

slower timescale iterate views that on a faster timescale as equilibrated. Using this principle,

we show that TD critic (on the fastest timescale in all the algorithms) converge to fixed

points of the Bellman operator, for any fixed policy θ and Lagrange multiplier λ. Next, for

any given λ, the policy update tracks in the asymptotic limit and converges to the equilibria

of the corresponding ODE. Finally, λ updates on slowest timescale converge and the overall

convergence is to a local saddle point of the Lagrangian. Moreover, the limiting point is

feasible for the constrained optimization problem mentioned above, i.e., the policy obtained

upon convergence satisfies the constraint that the variance is upper-bounded by α.

Simulation experiments We demonstrate the usefulness of our discounted and average reward

risk-sensitive actor-critic algorithms in a traffic signal control application. On this high-

dimensional system with state space ≈1032, the objective in our formulation is to minimize

the total number of vehicles in the system, which indirectly minimizes the delay experienced

by the system. The motivation behind using a risk-sensitive control strategy is to reduce the

variations in the delay experienced by road users. From the results, we observe that the risk-

sensitive algorithms proposed in this paper result in a long-term (discounted or average) cost

that is higher than their risk-neutral variants. However, from the empirical variance of the cost

(both discounted as well as average) perspective, the risk-sensitive algorithms outperform

their risk-neutral variants. Moreover, the experiments in the discounted setting also show

that our SPSA based actor-critic scheme outperforms the policy gradient algorithm proposed

in Tamar et al. (2012), both from a mean–variance as well as gradient estimation standpoints.

This observation justifies using the actor-critic approach for solving risk-sensitive MDPs, as

it reduces the variance of the gradient estimated by the policy gradient approach with the

cost of introducing a bias induced by the value function representation.

Remark 1 It is important to note that both our discounted and average reward algorithms can

be easily extended to other variance related risk criteria such as the Sharpe ratio, which is

popular in financial decision-making (Sharpe 1966) (see Remarks 3, 7 for more details).

Remark 2 Another important point is that the expected exponential utility risk measure can

be also considered as an approximation of the mean–variance tradeoff due to the following

Taylor expansion [see e.g., Eq. 11 in Mihatsch and Neuneier (2002)]

− 1

β
log E[e−β X ] = E[X ] − β

2
Var[X ] + O(β2),
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and we know that it is much easier to design actor-critic or other reinforcement learning

algorithms (Borkar 2001, 2002; Basu et al. 2008; Borkar 2010) for this risk measure than

those that will be presented in this paper. However, this formulation is limited in the sense

that it requires knowing the ideal tradeoff between the mean and variance, since it takes β

as an input. On the other hand, the mean–variance formulations considered in this paper are

more general because

(i) we optimize for the Lagrange multiplier λ, which plays a similar role to β, as a tradeoff

between the mean and variance, and

(ii) it is usually more natural to know an upper-bound on the variance (as in the mean–

variance formulations considered in this paper) than knowing the ideal tradeoff between

the mean and variance (as considered in the expected exponential utility formulation).

Despite all these, we should not consider these formulations as replacement for each other

or try to find a formulation that is the best for all problems, but instead should consider them

as different formulations that each might be the right fit for a specific problem.

Closely related works In comparison to Tamar et al. (2012) and Tamar and Mannor (2013),

which are the most closely related contributions, we would like to point out the following:

(i) The authors develop policy gradient and actor-critic methods for stochastic shortest path

problems in Tamar et al. (2012) and Tamar and Mannor (2013), respectively. On the

other hand, we devise actor-critic algorithms for both discounted and average reward

MDP settings; and

(ii) More importantly, we note the difficulty in the discounted formulation that requires to

estimate the gradient of the value function at every state of the MDP and also sample

from two different distributions. This precludes us from using compatible features—a

method that has been employed successfully in actor-critic algorithms in a risk-neutral

setting (cf. Bhatnagar et al. 2009a) as well as more recently in Tamar and Mannor (2013)

for a risk-sensitive stochastic shortest path setting. We alleviate the above mentioned

problems for the discounted setting by employing simultaneous perturbation based

schemes for estimating the gradient in the first order methods and Hessian in the second

order methods, that we propose.

(iii) Unlike (Tamar et al. 2012; Tamar and Mannor 2013) who consider a fixed λ in their

constrained formulations, we perform dual ascent using sample variance constraints and

optimize the Lagrange multiplier λ. In rigorous terms, λn in our algorithms is shown

to converge to a local maxima of ∇λL(θλ, λ) (here θλ is the limit of the θ recursion for

a given value of λ) and the limit λ∗ is such that the variance constraint is satisfied for

the corresponding policy θλ∗
.

Organization of the paper The rest of the paper is organized as follows: In Sect. 2, we

describe the RL setting. In Sect. 3, we describe the risk-sensitive MDP in the discounted

setting and propose actor-critic algorithms for this setting in Sect. 4. In Sect. 5, we present

the risk measure for the average setting and propose an actor-critic algorithm that optimizes

this risk measure in Sect. 6. In Sects. 7 and 8, we present the convergence proofs for the

algorithms in discounted and average reward settings, respectively. In Sect. 9, we describe

the experimental setup and present the results in both average and discounted cost settings.

Finally, in Sect. 10, we provide the concluding remarks and outline a few future research

directions.
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2 Preliminaries

We consider sequential decision-making tasks that can be formulated as a reinforcement

learning (RL) problem. In RL, an agent interacts with a dynamic, stochastic, and incompletely

known environment, with the goal of optimizing some measure of its long-term performance.

This interaction is often modeled as a Markov decision process (MDP). A MDP is a tuple

(X , A, R, P, x0) where X and A are the state and action spaces; R(x, a), x ∈ X , a ∈ A is

the reward random variable whose expectation is denoted by r(x, a) = E
[
R(x, a)

]
; P(·|x, a)

is the transition probability distribution; and x0 ∈ X is the initial state.2 We assume that both

state and action spaces are finite.

The rule according to which the agent acts in its environment (selects action at each state)

is called a policy. A Markovian stationary policy μ(·|x) is a probability distribution over

actions, conditioned on the current state x . The goal in a RL problem is to find a policy

that optimizes the long-term performance measure of interest, e.g., maximizes the expected

discounted sum of rewards or the average reward.

In policy gradient and actor-critic methods, we define a class of parameterized stochastic

policies
{
μ(·|x; θ), x ∈ X , θ ∈ Θ ⊆ R

κ1
}
, estimate the gradient of the performance measure

w.r.t. the policy parameters θ from the observed system trajectories, and then improve the pol-

icy by adjusting its parameters in the direction of the gradient. Here Θ denotes a compact and

convex subset of R
κ1 . Our algorithms projects the iterates onto Θ , which ensures stability—a

crucial requirement necessary for establishing convergence. Since in this setting a policy μ

is represented by its κ1-dimensional parameter vector θ , policy dependent functions can be

written as a function of θ in place of μ. So, we use μ and θ interchangeably in the paper.

We make the following assumptions on the policy, parameterized by θ :

(A1) For any state-action pair (x, a) ∈ X × A, the policy μ(a|x; θ) is continuously

differentiable in the parameter θ .

(A2) The Markov chain induced by any policy θ is irreducible.

The above assumptions are standard requirements in policy gradient and actor-critic meth-

ods.

Finally, we denote by dμ(x) and πμ(x, a) = dμ(x)μ(a|x), the stationary distribution of

state x and state-action pair (x, a) under policy μ, respectively. The stationary distributions

can be seen to exist because we consider a finite state-action space setting and irreducibility

here implies positive recurrence. Similarly in the discounted formulation, we define the

γ -discounted visiting distribution of state x and state-action pair (x, a) under policy μ as

d
μ
γ (x |x0) = (1 − γ )

∑∞
n=0 γ n Pr(xn = x |x0 = x0;μ) and π

μ
γ (x, a|x0) = d

μ
γ (x |x0)μ(a|x).

3 Discounted reward setting

For a given policy μ, we define the return of a state x (state-action pair (x, a)) as the sum

of discounted rewards encountered by the agent when it starts at state x (state-action pair

(x, a)) and then follows policy μ, i.e.,

Dμ(x) =
∞∑

n=0

γ n R(xn, an) | x0 = x, μ,

2 Our algorithms can be easily extended to a setting where the initial state is determined by a distribution.
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Dμ(x, a) =
∞∑

n=0

γ n R(xn, an) | x0 = x, a0 = a, μ.

The expected value of these two random variables are the value and action-value functions

of policy μ, i.e.,

V μ(x) = E
[
Dμ(x)

]
and Qμ(x, a) = E

[
Dμ(x, a)

]
.

The goal in the standard (risk-neutral) discounted reward formulation is to find an optimal

policy μ∗ = arg maxμV μ(x0), where x0 is the initial state of the system.

The most common measure of the variability in the stream of rewards is the variance of

the return, defined by

Λμ(x)
△= E
[
Dμ(x)2

]
− V μ(x)2 = Uμ(x) − V μ(x)2. (1)

The above measure was first introduced by Sobel (1982). Note that

Uμ(x)
△= E

[
Dμ(x)2

]

is the square reward value function of state x under policy μ. On similar lines, we define the

square reward action-value function of state-action pair (x, a) under policy μ as

W μ(x, a)
△= E

[
Dμ(x, a)2

]
.

From the Bellman equation of Λμ(x), proposed by Sobel (1982), it is straightforward to

derive the following Bellman equations for Uμ(x) and W μ(x, a):

Uμ(x) =
∑

a

μ(a|x)r(x, a)2 + γ 2
∑

a,x ′
μ(a|x)P(x ′|x, a)Uμ(x ′)

+ 2γ
∑

a,x ′
μ(a|x)P(x ′|x, a)r(x, a)V μ(x ′),

W μ(x, a) = r(x, a)2 + γ 2
∑

x ′
P(x ′|x, a)Uμ(x ′) + 2γ r(x, a)

∑

x ′
P(x ′|x, a)V μ(x ′). (2)

Although Λμ of (1) satisfies a Bellman equation, unfortunately, it lacks the monotonicity

property of dynamic programming (DP), and thus, it is not clear how the related risk measures

can be optimized by standard DP algorithms (Sobel 1982). Policy gradient and actor-critic

algorithms are good candidates to deal with this risk measure.

We consider the following risk-sensitive measure for discounted MDPs: For a given α > 0,

max
θ

V θ (x0) subject to Λθ (x0) ≤ α. (3)

Assuming that there is at least one policy (in the class of parameterized policies that we

consider) that satisfies the variance constraint above, it can be inferred from Theorem 3.8 of

Altman (1999) that there exists an optimal policy that uses at most one randomization.

It is important to note that the algorithms proposed in this paper can be used for any

risk-sensitive measure that is based on the variance of the return such as

1. minθ Λθ (x0) subject to V θ (x0) ≥ α,

2. maxθ V θ (x0) − α
√

Λθ (x0),

3. Maximizing the Sharpe ratio, i.e., maxθ V θ (x0)/
√

Λθ (x0). Sharpe ratio (SR) is a popu-

lar risk measure in financial decision-making Sharpe (1966). Sect. 3 presents extensions

of our proposed discounted reward algorithms to optimize the Sharpe ration.
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To solve (3), we employ the Lagrangian relaxation procedure (Bertsekas 1999) to convert it

to the following unconstrained problem:

max
λ

min
θ

(
L(θ, λ)

△= −V θ (x0) + λ
(
Λθ (x0) − α

))
, (4)

where λ is the Lagrange multiplier. The goal here is to find the saddle point of L(θ, λ), i.e., a

point (θ∗, λ∗) that satisfies

L(θ, λ∗) ≥ L(θ∗, λ∗) ≥ L(θ∗, λ),∀θ ∈ Θ,∀λ > 0.

For a standard convex optimization problem where the objective L(θ, λ) is convex in θ and

concave in λ, one can ensure the existence of a unique saddle point under mild regularity

conditions (cf. Sion 1958). Further, convergence to this point can be achieved by descending

in θ and ascending in λ using ∇θ L(θ, λ) and ∇λL(θ, λ), respectively.

However, in our setting, the Lagrangian L(θ, λ) is not necessarily convex in θ , which

implies there may not be an unique saddle point. The problem is further complicated by the

fact that we operate in a simulation optimization setting, i.e., only sample estimates of the

Lagrangian are obtained. Hence, performing primal descent and dual ascent, one can only

get to a local saddle point, i.e., a tuple (θ∗, λ∗) which is a local minima w.r.t. θ and local

maxima w.r.t λ of the Lagrangian. As an aside, global mean–variance optimization of MDPs

have been shown to be NP-hard in Mannor and Tsitsiklis (2013) and the best one can hope

is to find a approximately optimal policy.

In our setting, the necessary gradients of the Lagrangian are as follows:

∇θ L(θ, λ) = −∇θ V θ (x0) + λ∇θΛ
θ (x0) and ∇λL(θ, λ) = Λθ (x0) − α.

Since ∇θΛ
θ (x0) = ∇θU θ (x0)−2V θ (x0)∇θ V θ (x0), in order to compute ∇θΛ

θ (x0) it would

be enough to calculate ∇θ V θ (x0) and ∇θU θ (x0). Using the above definitions, we are now

ready to derive the expressions for the gradient of V θ (x0) and U θ (x0), which in turn constitute

the main ingredients in calculating ∇θ L(θ, λ).3

Lemma 1 Under (A1) and (A2), we have

(1 − γ )∇V θ (x0) =
∑

x,a

πθ
γ (x, a|x0)∇ log μ(a|x; θ)Qθ (x, a),

(1 − γ 2)∇U θ (x0) =
∑

x,a

π̃θ
γ (x, a|x0)∇ log μ(a|x; θ)W θ (x, a)

+ 2γ
∑

x,a,x ′
π̃θ

γ (x, a|x0)P(x ′|x, a)r(x, a)∇V θ (x ′),

where d̃θ
γ (x |x0) and π̃θ

γ (x, a|x0) are the γ 2-discounted visiting distributions of state x and

state-action pair (x, a) under policy μ, respectively, and are defined as

d̃θ
γ (x |x0) = (1 − γ 2)

∞∑

n=0

γ 2n Pr(xn = x |x0 = x0; θ),

π̃θ
γ (x, a|x0) = d̃θ

γ (x |x0)μ(a|x).

3 Henceforth, we shall drop the subscript θ and use ∇L(θ, λ) to denote the derivative w.r.t. θ .

123



376 Mach Learn (2016) 105:367–417

Proof The proof of ∇V θ (x0) is standard and can be found, for instance, in Peters et al. (2005).

To prove ∇U θ (x0), we start by the fact that from (2) we have U (x) =
∑

a μ(x |a)W (x, a).

If we take the derivative w.r.t. θ from both sides of this equation and obtain

∇U (x0) =
∑

a

∇μ(a|x0)W (x0, a) +
∑

a

μ(a|x0)∇W (x0, a)

=
∑

a

∇μ(a|x0)W (x0, a) +
∑

a

μ(a|x0)∇
[
r(x0, a)2 + γ 2

∑

x ′
P(x ′|x0, a)U (x ′)

+ 2γ r(x0, a)
∑

x ′
P(x ′|x0, a)V (x ′)

]

=
∑

a

∇μ(a|x0)W (x0, a) + 2γ
∑

a,x ′
μ(a|x0)r(x0, a)P(x ′|x0, a)∇V (x ′)

︸ ︷︷ ︸
h(x0)

+ γ 2
∑

a,x ′
μ(a|x0)P(x ′|x0, a)∇U (x ′)

= h(x0) + γ 2
∑

a,x ′
μ(a|x0)P(x ′|x0, a)∇U (x ′)

= h(x0) + γ 2
∑

a,x ′
μ(a|x0)P(x ′|x0, a)∇

[
h(x ′)

+ γ 2
∑

a′,x ′′
μ(a′|x ′)P(x ′′|x ′, a′)∇U (x ′′)

]
. (5)

By unrolling the last equation using the definition of ∇U (x) from (5), we obtain

∇U (x0) =
∞∑

n=0

γ 2n
∑

x

Pr(xn = x |x0 = x0)h(x) = 1

1 − γ 2

∑

x

d̃γ (x |x0)h(x)

= 1

1 − γ 2

[∑

x,a

d̃γ (x |x0)μ(a|x)∇ log μ(a|x)W (x, a)

+ 2γ
∑

x,a,x ′
d̃γ (x |x0)μ(a|x)r(x, a)P(x ′|x, a)∇V (x ′)

]

= 1

1 − γ 2

[∑

x,a

π̃γ (x, a|x0)∇ log μ(a|x)W (x, a)

+ 2γ
∑

x,a,x ′
π̃γ (x, a|x0)r(x, a)P(x ′|x, a)∇V (x ′)

]
.

⊓⊔
In Sutton et al. (1999), a policy gradient result analogous to Lemma 1 is provided for the

value function in the case of full-state representations. In the average reward setting, a similar

result helps in extension to incorporate function approximation—see the actor-critic algo-

rithms in Bhatnagar et al. (2009a).4 However, a similar approach is not viable for discounted

setting and this motivates the use of stochastic optimization techniques like SPSA/SF (cf.

Bhatnagar 2010). The problem is further complicated in the variance-constrained setting that

we consider because:

4 We extend this to the case of variance-constrained MDP in Sect. 6.
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1. two different sampling distributions, πθ
γ and π̃θ

γ , are used for ∇V θ (x0) and ∇U θ (x0),

and

2. ∇V θ (x ′) appears in the second sum of ∇U θ (x0) equation, which implies that we need

to estimate the gradient of the value function V θ at every state of the MDP, and not just

at the initial state x0.

To alleviate the above mentioned problems, we borrow the principle of simultaneous per-

turbation for estimating the gradient ∇L(θ, λ) and develop novel risk-sensitive actor-critic

algorithms in the following section.

4 Discounted reward risk-sensitive actor-critic algorithms

In this section, we present actor-critic algorithms for optimizing the risk-sensitive measure (3).

These algorithms are based on two simultaneous perturbation methods: simultaneous per-

turbation stochastic approximation (SPSA) and smoothed functional (SF).

4.1 Algorithm structure

For the purpose of finding an optimal risk-sensitive policy, a standard procedure would update

the policy parameter θ and Lagrange multiplier λ in two nested loops as follows:

• An inner loop that descends in θ using the gradient of the Lagrangian L(θ, λ) w.r.t. θ ,

and

• An outer loop that ascends in λ using the gradient of the Lagrangian L(θ, λ) w.r.t. λ.

Using two-timescale stochastic approximation (Chapter 6, Borkar 2008), the two loops

above can run in parallel, as follows:

θn+1 =Γ
[
θn − ζ2(n)A−1

n ∇L(θn, λn)
]
, (6)

λn+1 =Γλ

[
λn + ζ1(n)∇λL(θn, λn)

]
, (7)

In the above,

– An is a positive definite matrix that fixes the order of the algorithm. For the first order

methods, An = I (I is the identity matrix), while for the second order methods An →
∇2

θ L(θn, λn) as n → ∞.

– Γ is a projection operator that keeps the iterate θn stable by projecting onto a com-

pact and convex set Θ :=
∏κ1

i=1[θ
(i)
min, θ

(i)
max]. In particular, for any θ ∈ R

κ
1 , Γ (θ) =

(Γ (1)(θ (1)), . . . , Γ (κ1)(θ (κ1)))T , with Γ (i)(θ (i)) := min(max(θ
(i)
min, θ

(i)), θ
(i)
max).

– Γλ is a projection operator that keeps the Lagrange multiplier λn within the interval

[0, λmax], for some large positive constant λmax < ∞ and can be defined in an analogous

fashion as Γ .

– ζ1(n), ζ2(n) are step-sizes selected such that θ update is on the faster and λ update is on

the slower timescale. Note that another timescale ζ3(n) that is the fastest is used for the

TD-critic, which provides the estimate of the Lagrangian for a given (θ, λ).

Simulation optimization We operate in a setting where we only observe simulated rewards

of the underlying MDP. Thus, it is required to estimate the mean and variance of the return

(we use a TD-critic for this purpose) and then use these estimates to compute gradient of

the Lagrangian. The gradient ∇λL(θ, λ) has a particularly simple form of (Λθ (x0) − α),
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suggesting the usage of sample variance constraints to perform the dual ascent for Lagrange

multiplier λ. On the other hand, the expression for gradient of L(θ, λ) w.r.t. θ is compli-

cated (see Lemma 1) and warrants the usage of a simulation optimization that can provide

gradient estimates from sample observation. We employ simultaneous perturbation schemes

for estimating the gradient (and in the case of second order methods, the Hessian) of the

Lagrangian L(θ, λ). The idea in these methods is to estimate the gradients ∇V θ (x0) and

∇U θ (x0) [needed for estimating the gradient ∇L(θ, λ)] using two simulated trajectories of

the system corresponding to policies with parameters θn and θ+
n = θn + pn . Here pn is a

perturbation vector that is specific to the algorithm.

Based on the order, our algorithms can be classified as:

1. First order This corresponds to An = I in (6). The proposed algorithms here include

RS-SPSA-G and RS-SF-G, where the former estimates the gradient using SPSA, while

the latter uses SF. These algorithms use the following choice for the perturbation vector:

pn = βnΔn . Here βn > 0 is a positive constant and Δn is a perturbation random

variable, i.e., a κ1-vector of independent Rademacher (for SPSA) and Gaussian N (0, 1)

(for SF) random variables.

2. Second order This corresponds to An which converges to ∇2 L(θn, λn) as n → ∞. The

proposed algorithms here include RS-SPSA-N and RS-SF-N, where the former uses

SPSA for gradient/Hessian estimates and the latter employs SF for the same. These

algorithms use the following choice for perturbation vector: For RS-SPSA-N, pn =
βnΔn +βnΔ̂n , βn > 0 is a positive constant and Δn and Δ̂n are perturbation parameters

that are κ1-vectors of independent Rademacher random variables, respectively. For RS-

SF-N, pn = βnΔn , where Δn is a κ1 vector of Gaussian N (0, 1) random variables.

Algorithm 1 Template of the Risk-Sensitive Discounted Reward Actor-Critic Algorithms

Input: parameterized policy μ(·|·; θ) and value function feature vectors φv(·) and φu(·)
Initialization: policy parameter θ = θ0; value function weight vectors v = v0 and v+ = v+

0 ; square value

function weight vectors u = u0 and u+ = u+
0 ; initial state x0 ∼ P0(x)

for n = 0, 1, 2, . . . do

for m = 0, 1, 2, . . . , mn do

Draw action am ∼ μ(·|xm ; θn), observe next state xm+1 and reward R(xm , am )

Draw action a+
m ∼ μ(·|x+

m ; θ+
n ), observe next state x+

m+1 and reward R(x+
m , a+

m )

Critic Update: see (13) and (15) in the text

end for

Actor Update: Algorithm-Specific

Lagrange Multiplier Update: see (21) in the text

end for

return policy and value function parameters θ, λ, v, u

The overall flow of our proposed actor-critic algorithms is illustrated in Fig. 1 and Algo-

rithm 1. The overall operation involves the following two loops: At each time instant n,

Inner loop (critic update) For a fixed policy (given as θn), simulate two system trajectories,

each of length mn , as follows:

(1) Unperturbed simulation For m = 0, 1, . . . , mn , take action am ∼ μ(·|xm; θn), observe

the reward R(xm, am), and the next state xm+1 in the first trajectory.

(2) Perturbed simulation For m = 0, 1, . . . , mn , take action a+
m ∼ μ(·|x+

m ; θ+
n ), observe

the reward R(x+
m , a+

m ), and the next state x+
m+1 in the second trajectory.
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θt

+

β∆t

a+
t

∼ µ(·|x+
t
; θ+

t
)

r+
t

at ∼ µ(·|xt; θt)
rt

δ+
t

, +
t
, v+

t
, u+

t

Critic

δt, t, vt, ut

θt+1

Actor

Update

using

θt

(8) 

or  (9)π

π

η

Algorithm 
Specific  

(see the text)

θn
θn+1

pn

θ+
n

generate a trajectory of size          and update

                                     along the trajectory

mn

δ+
m

, +
m

, v+
m

, u+
m

generate a trajectory of size          and update

                                     along the trajectory

mn

δm, m, vm, um

vmn
, umn

v+
mn

, u+
mn

θn

Fig. 1 The overall flow of our simultaneous perturbation based actor-critic algorithms

Using the method of temporal differences (TD) (Sutton 1984), estimate the value functions

V̂ θn (x0) and V̂ θ+
n (x0), and square value functions Û θn (x0) and Û θ+

n (x0), corresponding to

the policy parameter θn and θ+
n .

Outer loop (actor update) Estimate the gradient/Hessian of V̂ θ (x0) and Û θ (x0), and hence

the gradient/Hessian of Lagrangian L(θ, λ), using either SPSA (17) or SF (18) methods.

Using these estimates, update the policy parameter θ in the descent direction using either a

gradient or a Newton decrement, and the Lagrange multiplier λ in the ascent direction.

In the next section, we describe the TD-critic and subsequently, in Sects. 4.3 and 4.4,

present the first and second order actor critic algorithms, respectively.

4.2 TD-critic

In our actor-critic algorithms, the critic uses linear approximation for the value and square

value functions, i.e., V̂ (x) ≈ vTφv(x) and Û (x) ≈ uTφu(x), where the features φv(·) and

φu(·) are from low-dimensional spaces R
κ2 and R

κ3 , respectively. Let Φv and Φu denote

|X | × κ2 and |X | × κ3 dimensional matrices, whose i th columns are φ
(i)
v =

(
φ

(i)
v (x), x ∈

X
)

T

, i = 1, . . . , κ2 and φ
(i)
u =

(
φ

(i)
u (x), x ∈ X

)
T

, i = 1, . . . , κ3. Let Sv := {Φvv | v ∈
R

κ
2} and Su := {Φuu | u ∈ R

κ
3}, denote the subspaces within which we approximate the value

and square value functions. We make the following standard assumption as in Bhatnagar et al.

(2009a):

(A3) The basis functions {φ(i)
v }κ2

i=1 and {φ(i)
u }κ3

i=1 are linearly independent. In particular,

κ2, κ3 ≪ n and Φv and Φu are full rank. Moreover, for every v ∈ R
κ2 and u ∈ R

κ3 ,

Φvv �= e and Φuu �= e, where e is the n-dimensional vector with all entries equal to

one.

Let Πu and Πv be operators that project onto Sv and Su , respectively and as a consequence

of the above assumption, can be defined as follows:

Πv = Φv(Φ
T

v D
θΦv)

−1ΦT

v D
θ and Πu = Φu(ΦT

u D
θΦu)−1ΦT

u D
θ , (8)

where D
θ is a diagonal |X | × |X | matrix with entries dθ (x), for each x ∈ X . Recall that

dθ (·) denotes the stationary distribution of the Markov chain underlying policy θ .

Let T θ = [T θ
v ; T θ

u ], where T θ
v and T θ

u denote the Bellman operators for value and square

value functions of the policy governed by parameter θ , respectively. These operators are

defined as: For any y ∈ R
2|X |, let yv and yu denote the first and last |X | entries, respectively.

Then

T θ y =[T θ
v y; T θ

u y], where (9)

T θ
v y = r

θ + γ P
θ yv, (10)

T θ
u y = R

θ
r
θ + 2γ R

θ
P

θ yv + γ 2
P

θ yu, (11)
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where r
θ and P

θ are the reward vector and the transition probability matrix of policy θ , and

R
θ = diag(r

θ ).

Let Π =
(

Πv 0

0 Πu

)
. Also, for any y ∈ R

2|X |, define its ν-weighted norm as

‖y‖ν = ν‖yv‖D
θ + (1 − ν)‖yu‖

D
θ ,

where ‖z‖
D

θ =
√∑|X |

i=1 dθ (i)z2
i for any z ∈ R

|X |.
We now claim that the projected Bellman operator ΠT is a contraction mapping w.r.t

ν-weighted norm, for any policy θ .

Lemma 2 Under (A2) and (A3), there exists a ν ∈ (0, 1) and γ̄ < 1 such that

‖ΠT y − ΠT ȳ‖ν ≤ γ̄ ‖y − ȳ‖ν ,∀y, ȳ ∈ R
2|X |.

Proof See Sect. 7.1. ⊓⊔

Let [Φv v̄;Φu ū] denote the unique fixed-point of the projected Bellman operator ΠT , i.e.,

Φv v̄ = Πv

(
Tv(Φv v̄)

)
, and Φu ū = Πu

(
Tu(Φu ū)

)
, (12)

where Πv and Πu project into the linear spaces spanned by the columns of Φv and Φu ,

respectively.

We now describe the TD algorithm that updates the critic parameters corresponding to

the value and square value functions (Note that we require critic estimates for both the

unperturbed as well as the perturbed policy parameters). This algorithm is an extension of the

algorithm proposed by Tamar et al. (2013b) to the discounted setting. Recall from Algorithm 1

that, at any instant n, the TD-critic runs two mn length trajectories corresponding to policy

parameters θn and θn + δΔn .

Critic update Calculate the temporal difference (TD)-errors δm, δ+
m for the value and ǫm, ǫ+

m

for the square value functions using (15), and update the critic parameters vm, v+
m for the

value and um, u+
m for the square value functions as follows:

Unperturbed:

vm+1 = vm + ζ3(m)δmφv(xm), um+1 = um + ζ3(m)ǫmφu(xm), (13)

Perturbed:

v+
m+1 = v+

m + ζ3(m)δ+
m φv(x+

m ), u+
m+1 = u+

m + ζ3(m)ǫ+
m φu(x+

m ), (14)

where the TD-errors δm, δ+
m , ǫm, ǫ+

m in (13) are computed as

Unperturbed:

δm = R(xm, am) + γ vT

mφv(xm+1) − vT

mφv(xm),

ǫm = R(xm, am)2 + 2γ R(xm, am)vT

mφv(xm+1) + γ 2uT

mφu(xm+1) − uT

mφu(xm), (15)

Perturbed:

δ+
m = R(x+

m , a+
m ) + γ v+⊤

m φv(x+
m+1) − v+⊤

m φv(x+
m ),

ǫ+
m = R(x+

m , a+
m )2 + 2γ R(x+

m , a+
m )v+⊤

m φv(x+
m+1) + γ 2u+⊤

m φu(x+
m+1)

− u+⊤
m φu(x+

m ). (16)

Note that the TD-error ǫ for the square value function U comes directly from its Bellman

Eq. (2). Theorem 2 in Sect. 7 establishes that the critic parameters (vn, un) governed by (13)

converge to the solutions (v̄, ū) of the fixed point Eq. (12).
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4.2.1 Convergence rate

Let νmin = min(νv, νu), where νv and νu are minimum eigenvalues of ΦT

v D
θΦv and

ΦT

u D
θΦu , respectively. Recall that D

θ denotes the stationary distribution of the underly-

ing policy θ . From (A2), (A3) and the fact that we consider finite state-spaces, we have that

νmin > 0.

From recent results in Korda and Prashanth (2015) that provide non-asymptotic bounds

for TD(0) with function approximation, we know that the canonical O(m−1/2) rate can be

achieved under the appropriate choice of the step-size ζ3(m). The following rate result is

crucial in setting the trajectory lengths mn and relating them to perturbation constants βn

[see (A4) in the next section]:

Theorem 1 Under (A2)–(A3), choosing ζ3(m) = c0c
(c+m)

, with c0 < νmin(1−γ )/(2(1+γ )2)

and c such that νmin(1 − γ )c0c > 1, we have,

E ‖vm − v̄‖2 ≤ K1(m)√
m + c

and E ‖um − ū‖2 ≤ K2(m)√
m + c

,

where K1(m) and K2(m) are O(1).

Proof The first claim follows directly from Theorem 1 in Korda and Prashanth (2015), while

the second claim can be proven in an analogous manner as the first. ⊓⊔

The above rate result holds only if the step-size is set using νmin and the latter quantity is

unknown in a typical RL setting. However, a standard trick to overcome this dependence while

obtaining the same convergence rate is to employ iterate averaging, proposed independently

by Polyak and Juditsky (1992) and Ruppert (1991). The latter approach involves using a

larger step-size Θ(1/nς1) with ς1 ∈ (1/2, 1) and couple this with averaging of iterates. An

iterate averaged variant of Theorem 1 can be claimed and we refer the reader to Theorem 2

of Korda and Prashanth (2015) for further details.

4.3 First-order algorithms: RS-SPSA-G and RS-SF-G

SPSA-based estimate for ∇V θ (x0), and similarly for ∇U θ (x0), is given by

∇i V̂ θn (x0) ≈ V̂ θn+βnΔn (x0) − V̂ θn (x0)

βnΔ(i)
, i = 1, . . . , κ1, (17)

where βn are perturbation constants that vanish asymptotically [see (A4) at the end of this

section] and Δn is a vector of independent Rademacher random variables, for all n = 1, 2, . . ..

The advantage of this estimator is that it perturbs all directions at the same time (the numerator

is identical in all κ1 components). So, the number of function measurements needed for

this estimator is always two, independent of the dimension κ1. However, unlike the SPSA

estimates in Spall (1992) that use two-sided balanced estimates (simulations with parameters

θn − βnΔn and θ + βΔ), our gradient estimates are one-sided (simulations with parameters

θn and θn + βnΔn) and resemble those in Chen et al. (1999). The use of one-sided estimates

is primarily because the updates of the Lagrangian parameter require a simulation with the

running parameter θn . Using a balanced gradient estimate would therefore come at the cost

of an additional simulation (the resulting procedure would then require three simulations),

which we avoid by using one-sided gradient estimates.

123



382 Mach Learn (2016) 105:367–417

SF-based method estimates not the gradient of a function H(θn) itself, but rather the convo-

lution of ∇ H(θn) with the Gaussian density function N (0, β2
n I), i.e.,

Cβn H(θn) =
∫

Gβn (θn − z)∇z H(z)dz =
∫

∇zGβn (z)H(θn − z)dz

= 1

βn

∫
−z′G1(z

′)H(θn − βnz′)dz′,

where Gβn is the κ1-dimensional Gaussian p.d.f. The first equality above follows by using

integration by parts and the second one by using the fact that ∇zGβn (z) = −z
β2

n
Gβn (z) and by

substituting z′ = z/βn . As βn → 0, it can be seen that Cβn H(θn) converges to ∇ H(θn) [see

Chapter 6 of Bhatnagar et al. (2013)]. Thus, a one-sided SF estimate of ∇V θn (x0) is given

by

∇i V̂ θn (x0) ≈ Δ
(i)
n

βn

(
V̂ θn+βnΔn (x0) − V̂ θn (x0)

)
, i = 1, . . . , κ1, (18)

where Δn is a vector of independent Gaussian N (0, 1) random variables. The reasons for

using the one-sided estimate in (18) are as follows: (i) the estimate in (18) has lower bias

when compared to a one simulation estimate that does not use V̂ θn (x0) and (ii) for updating

the Lagrange multiplier λ, we require a trajectory of the MDP corresponding to policy θn

and this trajectory can be used to estimate V̂ θn (x0).

Actor update Estimate the gradients ∇V θ (x0) and ∇U θ (x0) using SPSA (17) or SF (18)

and update the policy parameter θ as follows5: For i = 1, . . . , κ1,

RS-SPSA-G:

θ
(i)
n+1 = Γi

[
θ (i)

n + ζ2(n)

βnΔ
(i)
n

((
1 + 2λnvT

nφv(x0)
)
(v+

n − vn)Tφv(x0)

− λn(u+
n − un)Tφu(x0)

)]
, (19)

RS-SF-G:

θ
(i)
n+1 = Γi

[
θ (i)

n + ζ2(n)Δ
(i)
n

βn

((
1 + 2λnvT

nφv(x0)
)
(v+

n − vn)Tφv(x0)

− λn(u+
n − un)Tφu(x0)

)]
. (20)

For both SPSA and SF variants, the Lagrange multiplier λ is updated as follows:

λn+1 = Γλ

[
λn + ζ1(n)

(
uT

nφu(x0) −
(
vT

nφv(x0)
)2 − α

)]
. (21)

In the above, note the following:

(i) βn ≥ 0 and vanish asymptotically [see (A4) below for the precise condition];

(ii) Δ
(i)
n ’s are independent Rademacher and Gaussian N (0, 1) random variables in SPSA

and SF updates, respectively;

(iii) Γ and Γλ are projection operators that keep the iterates (θn, λn) stable and were defined

in Sect. 4.1. These projection operators are necessary to keep the iterates stable and

hence, ensure convergence of the algorithms.

5 By an abuse of notation, we use vn (resp. v+
n , un , u+

n ) to denote the critic parameter vmn (resp.

v+
mn , umn , u+

mn ) obtained at the end of a mn length trajectory.
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4.3.1 Choosing trajectory length mn , perturbation constants βn and step-sizes

ζ3(n), ζ2(n), ζ1(n)

We make the following assumption on the step-size schedules:

(A4) The step size schedules {ζ2(n)}, and {ζ1(n)} satisfy

ζ2(n), βn → 0,
1

√
mnβn

→ 0, (22)

∑

n

ζ1(n) =
∑

n

ζ2(n) = ∞, (23)

∑

n

ζ1(n)2,
∑

n

ζ2(n)2

β2
n

, < ∞, (24)

ζ1(n) = o
(
ζ2(n)

)
. (25)

Equations (23) and (24) are standard step-size conditions in stochastic approximation algo-

rithms, and Equation (25) ensures that the policy parameter update is on the faster time-scale

{ζ2(n)}, and the Lagrange multiplier update is on the slower time-scale {ζ1(n)}.
Equation (22) is motivated by a similar condition in Prashanth et al. (2016) and ensures that

the bias from a finite length (mn) trajectory run of TD-critic can be ignored. A simple setting

that ensures (22) is to have mn = C1nς2 and βn = C2n−ς3 , where C1, C2 are constants and

ς2, ς3 > 0 with ς3 > ς2/2. This ensures that the trajectories increase in length as a function

of outer loop index n, at a rate that is sufficient to cancel the bias induced by the TD-critic.

See Lemma 6 in Sect. 7 makes this claim precise, in particular justifying the need for (22) in

(A4).

We provide a proof of convergence of the first-order SPSA and SF algorithms to a

tuple (θλ∗
, λ∗), which is a (local) saddle point of the risk-sensitive objective function

L̂(θ, λ)
△= −V̂ θ (x0) + λ(Λ̂θ (x0) − α), where V̂ θ (x0) = v̄Tφv(x0) and Λ̂θ (x0) =

ūTφu(x0) − (v̄Tφv(x0))2 with v̄ and ū defined by (12). Further, the limit θλ∗
satisfies the

variance constraint, i.e., Λ̂θλ∗
(x0) ≤ α. See Theorems 3, 4, 5 and Proposition 1 in Sect. 7

for details.

Remark 3 (Extension to Sharpe ratio optimization) The gradient of Sharpe ratio (SR),

S(θ), in the discounted setting is given by

∇S(θ) = 1√
Λθ (x0)

(
∇V θ (x0) − V θ (x0)

2Λθ (x0)
∇Λθ (x0)

)
.

The actor recursions for the variants of the RS-SPSA-G and RS-SF-G algorithms that optimize

the SR objective are as follows:

RS-SPSA-G

θ
(i)
n+1 =Γi

⎛
⎝θ (i)

n + ζ2(n)√
uT

nφu(x0) −
(
vT

nφv(x0)
)2

βnΔ
(i)
n

⎛
⎝(v+

n − vn)Tφv(x0)

−
vT

nφv(x0)
(
(u+

n − un)Tφu(x0) − 2vT

nφv(x0)(v+
n − vn)Tφv(x0)

)

2
(

uT

nφu(x0) −
(
vT

nφv(x0)
)2)

⎞
⎠
⎞
⎠ . (26)
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RS-SF-G

θ
(i)
n+1 =Γi

⎛
⎝θ (i)

n + ζ2(n)Δ
(i)
n

βn

√
uT

nφu(x0) −
(
vT

nφv(x0)
)2

⎛
⎝(v+

n − vn)Tφv(x0)

−
vT

nφv(x0)
(
(u+

n − un)Tφu(x0) − 2vT

nφv(x0)(v+
n − vn)Tφv(x0)

)

2
(

uT

nφu(x0) −
(
vT

nφv(x0)
)2)

⎞
⎠
⎞
⎠ . (27)

Note that only the actor recursion changes for SR optimization, while the rest of the

updates that include the critic recursions for nominal and perturbed parameters remain the

same as before in the SPSA and SF based algorithms. Further, SR optimization does not

involve the Lagrange parameter λ, and thus, the proposed actor-critic algorithms are two time-

scale (instead of three time-scale as in the described algorithms) stochastic approximation

algorithms in this case.

Remark 4 (One-simulation SR variant) For the SR objective, the proposed algorithms

can be modified to work with only one simulated trajectory of the system. This is because

in the SR case, we do not require the Lagrange multiplier λ, and thus, the simulated

trajectory corresponding to the nominal policy parameter θ is not necessary. In this imple-

mentation, the gradient is estimated as ∇i S(θ) ≈ S(θ + βΔ)/βΔ(i) for SPSA and as

∇i S(θ) ≈ (Δ(i)/β)S(θ + βΔ) for SF.

Remark 5 (Monte-Carlo critic) In the above algorithms, the critic uses a TD method to

evaluate the policies. These algorithms can be implemented with a Monte-Carlo critic that at

each time instant n computes a sample average of the total discounted rewards corresponding

to the nominal θn and perturbed θn + βΔn policy parameter. This implementation would be

similar to that in Tamar et al. (2012), except here we use simultaneous perturbation methods

to estimate the gradient.

4.4 Second-order algorithms: RS-SPSA-N and RS-SF-N

Recall from Sect. 4.1 that a second-order scheme updates the policy parameter in the following

manner:

θn+1 =Γ
[
θn − ζ2(n)∇2

θ L(θ, λ)−1∇L(θ, λ)
]
. (28)

From the above, it is evident that for any second-order method, an estimate of the Hessian

∇2
θ L(θ, λ) of the Lagrangian is necessary, in addition to an estimate of the gradient ∇L(θ, λ).

As in the case of the gradient based schemes outlined earlier, we employ the simultaneous

perturbation technique to develop these estimates. The first algorithm, henceforth referred to

as RS-SPSA-N, uses SPSA for the gradient/Hessian estimates. On the other hand, the second

algorithm, henceforth referred to as RS-SF-N, uses a smoothed functional (SF) approach for

the gradient/Hessian estimates. As confirmed by our numerical experiments, second order

methods are in general more accurate, though at the cost of inverting the Hessian matrix in

each step.

4.4.1 RS-SPSA-N algorithm

The Hessian w.r.t. θ of L(θ, λ) can be written as follows:

∇2
θ L(θ, λ) = −∇2

θ V θ (x0) + λ∇2
θ Λθ (x0)
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= − ∇2V θ (x0) + λ
(
∇2U θ (x0) − 2V θ (x0)∇2V θ (x0) − 2∇V θ (x0)∇V θ (x0)T

)
. (29)

Critic update As in the case of the gradient based schemes, we run two simulations. However,

perturbed simulation here corresponds to the policy parameter θn +βn(Δn + Δ̂n), where Δn

and Δ̂n represent vectors of independent κ1-dimensional Rademacher random variables. The

critic parameters vn, un from unperturbed simulation and v+
n , u+

n from perturbed simulation

are updated as described earlier in Sect. 4.2.

Gradient and Hessian estimates Using an SPSA-based estimation technique [see Chapter

7 of Bhatnagar et al. (2013)], the gradient and Hessian of the value function V , and similarly

of the square value function U , are estimated as follows: For i = 1, . . . , κ1,

∇i V̂ θ (x0) ≈ V̂ θ+βn(Δ+Δ̂)(x0) − V̂ θ (x0)

βnΔ(i)
= (v+

n − vn)Tφv(x0)

βnΔ(i)
,

∇2
i, j V̂ θ (x0) ≈ V̂ θ+βn(Δ+Δ̂)(x0) − V̂ θ (x0)

β2
nΔ(i)Δ̂( j)

= (v+
n − vn)Tφv(x0)

β2
nΔ(i)Δ̂( j)

.

As in the case of the first order algorithms, the TD-critic trajectory lengths are chosen such

that there is no bias in the value estimates, when viewed from the actor-recursion. Next,

using suitable Taylor expansions and observe that the bias terms vanish as Δn, Δ̂n , being

Rademacher, are zero-mean—see Lemma 7 in Sect. 7 for details. As in the case of RS-

SPSA, this is an one-sided estimate with the unperturbed simulation required for updating

the Lagrange multiplier.

Hessian update Using the critic values from the two simulations, we estimate the Hessian

∇2
θ L(θ, λ) as follows: Let H

(i, j)
n denote the nth estimate of the (i, j)th element of the Hessian.

Then, for i, j = 1, . . . , κ1, with i ≤ j , the update is

H
(i, j)
n+1 = H

(i, j)
n + ζ ′

2(n)

[(
1 + λn(vn + v+

n )Tφv(x0)
)
(vn − v+

n )Tφv(x0)

β2
nΔ

(i)
n Δ̂

( j)
n

+ λn(u+
n − un)Tφu(x0)

β2
nΔ

(i)
n Δ̂

( j)
n

− H
(i, j)
n

]
, (30)

and for i > j , we simply set H
(i, j)
n+1 = H

( j,i)
n+1 . In the above, the step-size ζ ′

2(n) satisfies

∑

n

ζ ′
2(n) = ∞;

∑

n

ζ ′
2

2
(n) < ∞,

ζ2(n)

ζ ′
2(n)

→ 0 as n → ∞.

The last condition above ensures that the Hessian update proceeds on a faster timescale in

comparison to the θ -recursion [see (31) below]. Finally, we set Hn+1 = Υ
(
[H

(i, j)
n+1 ]|κ1|

i, j=1

)
,

where Υ (·) denotes an operator that projects a square matrix onto the set of symmetric and

positive definite matrices. This projection is a standard requirement to ensure convergence of

Hn to the Hessian ∇2
θ L(θ, λ) and we state the following standard assumption (cf. Bhatnagar

et al. 2013, Chapter 7) on this operator:

(A5) For any sequence of matrices {An} and {Bn} inRκ1×κ1 such that lim
n→∞

‖ An − Bn ‖
= 0, the Υ operator satisfies lim

n→∞
‖ Υ (An) − Υ (Bn) ‖= 0. Further, for any sequence

of matrices {Cn} in Rκ1×κ1 , we have

sup
n

‖ Cn ‖ < ∞ ⇒ sup
n

‖ Υ (Cn) ‖< ∞ and sup
n

‖ {Υ (Cn)}−1 ‖< ∞.
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As suggested in Gill et al. (1981), a possible definition of Υ is to perform an eigen-

decomposition of Hn and then make all eigenvalues positive. This avoids singularity of Hn

and also satisfies the above assumption. In our experiments, we use this scheme for projecting

Hn .

Actor update Let Mn
△= H−1

n denote the inverse of the the Hessian estimate Hn . We

incorporate a Newton decrement to update the policy parameter θ as follows:

θ
(i)
n+1 =Γi

[
θ (i)

n + ζ2(n)

κ1∑

j=1

M
(i, j)
n

((1 + 2λnvT

nφv(x0)
)
(v+

n − vn)Tφv(x0)

βnΔ
( j)
n

− λn(u+
n − un)Tφu(x0)

βnΔ
( j)
n

)]
. (31)

In the long run, Mn converges to ∇2
θ L(θ, λ)−1, while the last term in the brackets in (31)

converges to ∇L(θ, λ) and hence, the update (31) can be seen to descend in θ using a Newton

decrement. Note that the Lagrange multiplier update here is the same as that in RS-SPSA-G.

4.4.2 RS-SF-N algorithm

Gradient and Hessian Estimates While the gradient estimate here is the same as that in the

RS-SF-G algorithm, the Hessian is estimated as follows: Recall that Δn =
(
Δ

(1)
n , . . . , Δ

(κ1)
n

)
T

is a vector of mutually independent N (0, 1) random variables. Let H̄(Δn) be a κ1 ×κ1 matrix

defined as

H̄(Δn)
△=

⎡
⎢⎢⎢⎣

(
Δ

(1)2

n − 1
)

Δ
(1)
n Δ

(2)
n · · · Δ

(1)
n Δ

(κ1)
n

Δ
(2)
n Δ

(1)
n

(
Δ

(2)2

n − 1
)

· · · Δ
(2)
n Δ

(κ1)
n

· · · · · · · · · · · ·
Δ

(κ1)
n Δ

(1)
n Δ

(κ1)
n Δ

(2)
n · · ·

(
Δ

(κ1)
2

n − 1
)

⎤
⎥⎥⎥⎦ . (32)

Then, the Hessian ∇2
θ L(θ, λ) is approximated as

∇2
θ L(θ, λ) ≈ 1

β2
n

[
H̄(Δ)

(
L(θ + βΔ, λ) − L(θ, λ)

)]
. (33)

The correctness of the above estimate in the limit as βn → 0 can be seen from Lemma 8

in the Appendix. The main idea involves convolving the Hessian with a Gaussian density

function (similar to RS-SF) and then performing integration by parts twice.

Critic update As in the case of the RS-SF-G algorithm, we run two simulations with unper-

turbed and perturbed policy parameters, respectively. Recall that the perturbed simulation

corresponds to the policy parameter θn +βnΔn , where Δn represent a vector of independent

κ1-dimensional Gaussian N (0, 1) random variables. The critic parameters for both these

simulations are updated as described earlier in Sect. 4.2.

Hessian update As in RS-SPSA-N, let H
(i, j)
n denote the (i, j)th element of the Hessian

estimate Hn at time step t . Using (33), we devise the following update rule for the Hessian

estimate Hn : For i, j, k = 1, . . . , κ1, j < k, the update is

H
(i,i)
t+1 = H (i,i)

n + ζ ′
2(n)

[(
Δ

(i)2

n − 1
)

β2
n

((
1 + λn(vn + v+

n )Tφv(x0)
)
(vn − v+

n )Tφv(x0)

+ λn(u+
n − un)Tφu(x0)

)
− H (i,i)

n

]
, (34)
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H
( j,k)
t+1 = H

( j,k)
n + ζ ′

2(n)

[
Δ

( j)
n Δ

(k)
n

β2
n

((
1 + λn(vn + v+

n )Tφv(x0)
)
(vn − v+

n )Tφv(x0)

+ λn(u+
n − un)Tφu(x0)

)
− H

( j,k)
n

]
, (35)

and for j > k, we set H
( j,k)
n+1 = H

(k, j)
n+1 . The step-size ζ ′

2(n) is as in RS-SPSA-N. Further,

as in the latter algorithm, we set Hn+1 = Υ
(
[H

(i, j)
n+1 ]|κ1|

i, j=1

)
and let Mn+1

△= H−1
n+1 denote its

inverse.

Actor update Using the gradient and Hessian estimates from the above, we update the policy

parameter θ as follows:

θ
(i)
n+1 =Γi

[
θ (i)

n + ζ2(n)

κ1∑

j=1

M
(i, j)
n

Δ
( j)
n

βn

((
1 + 2λnvT

nφv(x0)
)
(v+

n − vn)Tφv(x0)

− λn(u+
n − un)Tφu(x0)

)]
. (36)

As in the case of RS-SPSA-N, it can be seen that the above update rule is equivalent to

descent with a Newton decrement, since Mn converges to ∇2
θ L(θ, λ)−1, and the last term

in the brackets in (36) converges to ∇L(θ, λ). The Lagrange multiplier λ update here is the

same as that in RS-SF-G.

Remark 6 The second-order variants of the algorithms for SR optimization can be worked

out along similar lines as outlined in Sect. 4.4 and the details are omitted here.

5 Average reward setting

The average reward under policy μ is defined as

ρ(μ) = lim
T →∞

1

T
E

[
T −1∑

n=0

Rn | μ

]
=
∑

x,a

dμ(x)μ(a|x)r(x, a) =
∑

x,a

πμ(x, a)r(x, a),

where dμ and πμ are the stationary distributions of policy μ over states and state-action pairs,

respectively (see Sect. 2). The goal in the standard (risk-neutral) average reward formulation

is to find an average optimal policy, i.e., μ∗ = arg maxμρ(μ). For all states x ∈ X and actions

a ∈ A, the differential action-value and value functions of policy μ are defined respectively

as

Qμ(x, a) =
∞∑

n=0

E
[
Rn − ρ(μ) | x0 = x, a0 = a, μ

]
,

V μ(x) =
∑

a

μ(a|x)Qμ(x, a).

These functions satisfy the following Poisson equations (Puterman 1994)

ρ(μ) + V μ(x) =
∑

a

μ(a|x)
[
r(x, a) +

∑

x ′
P(x ′|x, a)V μ(x ′)

]
, (37)

ρ(μ) + Qμ(x, a) = r(x, a) +
∑

x ′
P(x ′|x, a)V μ(x ′). (38)
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In the context of risk-sensitive MDPs, different criteria have been proposed to define a

measure of variability in the average reward setting, among which we consider the long-run

variance of μ (Filar et al. 1989) defined as

Λ(μ) =
∑

x,a

πμ(x, a)
[
r(x, a) − ρ(μ)

]2 = lim
T →∞

1

T
E

[
T −1∑

n=0

(
Rn − ρ(μ)

)2∣∣∣μ
]

. (39)

This notion of variability is based on the observation that it is the frequency of occurrence of

state-action pairs that determine the variability in the average reward. It is easy to show that

Λ(μ) = η(μ) − ρ(μ)2, where η(μ) =
∑

x,a

πμ(x, a)r(x, a)2.

We consider the following risk-sensitive measure for average reward MDPs in this paper:

max
θ

ρ(θ) subject to Λ(θ) ≤ α, (40)

for a given α > 0.6 As in the discounted setting, we employ the Lagrangian relaxation

procedure to convert (40) to the unconstrained problem

max
λ

min
θ

(
L(θ, λ)

△= −ρ(θ) + λ
(
Λ(θ) − α

))
.

As in the discounted setting, we descend in θ using ∇L(θ, λ) = −∇ρ(θ) + λ∇Λ(θ) and

ascend in λ using ∇λL(θ, λ) = Λ(θ)−α, to find the saddle point of L(θ, λ). Since ∇Λ(θ) =
∇η(θ)−2ρ(θ)∇ρ(θ), in order to compute ∇Λ(θ) it would be enough to calculate ∇ρ(θ) and

∇η(θ). Let Uμ and W μ denote the differential value and action-value functions associated

with the square reward under policy μ, respectively. These two quantities satisfy the following

Poisson equations:

η(μ) + Uμ(x) =
∑

a

μ(a|x)
[
r(x, a)2 +

∑

x ′
P(x ′|x, a)Uμ(x ′)

]
,

η(μ) + W μ(x, a) = r(x, a)2 +
∑

x ′
P(x ′|x, a)Uμ(x ′). (41)

The gradients of ρ(θ) and η(θ) are given by the following lemma:

Lemma 3 Under (A1) and (A2), we have

∇ρ(θ) =
∑

x,a

πθ (x, a)∇ log μ(a|x; θ)Q(x, a; θ), (42)

∇η(θ) =
∑

x,a

πθ (x, a)∇ log μ(a|x; θ)W (x, a; θ). (43)

Proof The proof of ∇ρ(θ) can be found in the literature (e.g., Sutton et al. 2000; Konda

and Tsitsiklis 2000). To prove ∇η(θ), we start by the fact that from (41), we have U (x) =∑
a μ(x |a)W (x, a). If we take the derivative w.r.t. θ from both sides of this equation, we

obtain

6 Similar to the discounted setting, the risk-sensitive average reward algorithm proposed in this paper can be

easily extended to other risk measures based on the long-term variance of μ, including the Sharpe ratio (SR),

i.e., maxθ ρ(θ)/
√

Λ(θ). The extension to SR will be described in more details in Sect. 3.
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∇U (x) =
∑

a

∇μ(x |a)W (x, a) +
∑

a

μ(x |a)∇W (x, a)

=
∑

a

∇μ(x |a)W (x, a) +
∑

a

μ(x |a)∇
(
r(x, a)2 − η +

∑

x ′
P(x ′|x, a)U (x ′)

)

=
∑

a

∇μ(x |a)W (x, a) − ∇η +
∑

a,x ′
μ(a|x)P(x ′|x, a)∇U (x ′). (44)

The second equality is by replacing W (x, a) from (41). Now if we take the weighted sum,

weighted by dμ(x) = D
θ (x), from both sides of (44), we have

∑

x

dμ(x)∇U (x) =
∑

x,a

dμ(x)∇μ(a|x)W (x, a) − ∇η

+
∑

x,a,x ′
dμ(x)μ(a|x)P(x ′|x, a)∇U (x ′). (45)

The claim follows from the fact that the last sum on the RHS of (45) is equal to∑
x dμ(x)∇U (x). ⊓⊔

Note that (43) for calculating ∇η(θ) has close resemblance to (42) for ∇ρ(θ), and thus,

similar to what we have for (42), any function b : X → R can be added or subtracted

to W (x, a; θ) on the RHS of (43) without changing the result of the integral (see e.g.,

Bhatnagar et al. 2009a). So, we can replace W (x, a; θ) with the square reward advantage

function B(x, a; θ) = W (x, a; θ) − U (x; θ) on the RHS of (43) in the same manner as we

can replace Q(x, a; θ) with the advantage function A(x, a; θ) = Q(x, a; θ) − V (x; θ) on

the RHS of (42) without changing the result of the integral. We define the temporal difference

(TD) errors δn and ǫn for the differential value and square value functions as

δn = R(xn, an) − ρ̂n+1 + V̂ (xn+1) − V̂ (xn),

ǫn = R(xn, an)2 − η̂n+1 + Û (xn+1) − Û (xn).

If V̂ , Û , ρ̂, and η̂ are unbiased estimators of V μ, Uμ, ρ(μ), and η(μ), respectively, then we

show in Lemma 4 that δn and ǫn are unbiased estimates of the advantage functions Aμ and

Bμ, i.e., E[δn | xn, an, μ] = Aμ(xn, an) and E[ǫn | xn, an, μ] = Bμ(xn, an).

Lemma 4 For any given policy μ, we have

E[δn | xn, an, μ] = Aμ(xn, an), E[ǫn | xn, an, μ] = Bμ(xn, an).

Proof The first statement E[δn | xn, an, μ] = Aμ(xn, an) has been proved in Lemma 3 of

Bhatnagar et al. (2009a), so here we only prove the second statement E[ǫn | xn, an, μ] =
Bμ(xn, an). we may write

E[ǫn | xn, an, μ] = E
[
R(xn, an)2 − η̂n+1 + Û (xn+1) − Û (xn) | xn, an, μ

]

= r(xn, an)2 − η(μ) + E
[
Û (xn+1) | xn, an, μ

]
− Uμ(xn)

= r(xn, an)2 − η(μ) + E

[
E
[
Û (xn+1) | xn+1, μ

]
| xn, an

]
− Uμ(xn)

= r(xn, an)2 − η(μ) + E
[
Û (xn+1) | xn, an

]
− Uμ(xn)
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= r(xn, an)2 − η(μ) +
∑

xn+1∈X

P(xn+1|xn, an)Uμ(xn+1)

︸ ︷︷ ︸
Wμ(x,a)

−Uμ(xn)

= Bμ(x, a).

⊓⊔

From Lemma 4, we notice that δnψn and ǫnψn are unbiased estimates of ∇ρ(μ) and ∇η(μ),

respectively, where ψn = ψ(xn, an) = ∇ log μ(an |xn) is the compatible feature (see e.g.,

Sutton et al. 2000; Peters et al. 2005).

6 Average reward risk-sensitive actor-critic algorithm

We now present our risk-sensitive actor-critic algorithm for average reward MDPs. Algo-

rithm 2 presents the complete structure of the algorithm along with the update rules for the

average rewards ρ̂n, η̂n ; TD errors δn, ǫn ; critic vn, un ; and actor θn, λn parameters. The pro-

jection operators Γ and Γλ are as defined in Sect. 4, and similar to the discounted setting, are

necessary for the convergence proof of the algorithm. The step-size schedules satisfy (A3)

defined in Sect. 4, plus the step size schedule {ζ4(n)} satisfies ζ4(n) = kζ3(n), for some

positive constant k. This is to ensure that the average and critic updates are on the (same)

fastest time-scale {ζ4(n)} and {ζ3(n)}, the policy parameter update is on the intermediate

time-scale {ζ2(n)}, and the Lagrange multiplier update is on the slowest time-scale {ζ1(n)}.
This results in a three time-scale stochastic approximation algorithm.

Algorithm 2 Template of the Average Reward Risk-Sensitive Actor-Critic Algorithm

Input: parameterized policy μ(·|·; θ) and value function feature vectors φv(·) and φu(·)
Initialization: policy parameters θ = θ0; value function weight vectors v = v0 and u = u0; initial state

x0 ∼ P0(x)

for t = 0, 1, 2, . . . do

Draw action an ∼ μ(·|xn; θn) and observe the next state xn+1 ∼ P(·|xn , an) and the reward R(xn , an)

Average Updates: ρ̂n+1 =
(
1 − ζ4(n)

)
ρ̂n + ζ4(n)R(xn , an), (46)

η̂n+1 =
(
1 − ζ4(n)

)
η̂n + ζ4(n)R(xn , an)2

TD Errors: δn = R(xn , an) − ρ̂n+1 + vT

n φv(xn+1) − vT

n φv(xn)

ǫn = R(xn , an)2 − η̂n+1 + uT

nφu(xn+1) − uT

nφu(xn)

Critic Update: vn+1 = vn + ζ3(n)δnφv(xn), un+1 = un + ζ3(n)ǫnφu(xn)

Actor Update: θn+1 = Ŵ
(
θn − ζ2(n)

(
− δnψn + λn(ǫnψn − 2ρ̂n+1δnψn)

))
(47)

λn+1 = Ŵλ

(
λn + ζ1(n)(̂ηn+1 − ρ̂2

n+1 − α)
)

(48)

end for

return policy and value function parameters θ, λ, v, u

As in the discounted setting, the critic uses linear approximation for the differential value

and square value functions, i.e., V̂ (x) = vTφv(x) and Û (x) = uTφu(x), where φv(·) and

φu(·) are feature vectors of size κ2 and κ3, respectively.
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Although our estimates of ρ(θ) and η(θ) are unbiased, since we use biased estimates for

V θ and U θ (linear approximations in the critic), our gradient estimates ∇ρ(θ) and ∇η(θ),

and as a result ∇L(θ, λ), are biased. The following lemma shows the bias in our estimate of

∇L(θ, λ).

Lemma 5 The bias of our actor-critic algorithm in estimating ∇L(θ, λ) for fixed θ and λ is

B(θ, λ) =
∑

x

D
θ (x)

(
−
(
1 + 2λρ(θ)

)[
∇ V̄ θ (x) − ∇vθ⊤φv(x)

]

+ λ
[
∇Ū θ (x) − ∇uθ⊤φu(x)

])
,

where vθ⊤φv(·) and uθ⊤φu(·) are estimates of V θ (·) and U θ (·) upon convergence of the TD

recursion, and

V̄ θ (x) =
∑

a

μ(a|x)
[
r(x, a) − ρ(θ) +

∑

x ′
P(x ′|x, a)vθ⊤φv(x ′)

]
,

Ū θ (x) =
∑

a

μ(a|x)
[
r(x, a)2 − η(θ) +

∑

x ′
P(x ′|x, a)uθ⊤φu(x ′)

]
.

Proof The bias in estimating ∇L(θ, λ) consists of the bias in estimating ∇ρ(θ) and ∇η(θ).

Lemma 4 in Bhatnagar et al. (2009a) shows the bias in estimating ∇ρ(θ) as

E[δθ
nψn |θ ] = ∇ρ(θ) +

∑

x∈X

D
θ (x)

[
∇ V̄ θ (x) − ∇vθ⊤φv(x)

]
,

where δθ
n = R(xn, an)− ρ̂n+1 + vθ⊤φv(xn+1)− vθ⊤φv(xn). Similarly we can prove that the

bias in estimating ∇η(θ) is

E[ǫθ
n ψn |θ ] = ∇η(θ) +

∑

x∈X

D
θ (x)

[
∇Ū θ (x) − ∇uθ⊤φu(x)

]
,

where ǫθ
n = R(xn, an) − η̂n+1 + uθ⊤φu(xn+1) − uθ⊤φu(xn). The claim follows by putting

these two results together and given the fact that ∇Λ(θ) = ∇η(θ) − 2ρ(θ)∇ρ(θ) and

∇L(θ, λ) = −∇ρ(θ)+λ∇Λ(θ). Note that the following fact holds for the bias in estimating

∇ρ(θ) and ∇η(θ):
∑

x

D
θ (x)

[
V̄ θ (x) − vθ⊤φv(x)

]
= 0,

∑

x

D
θ (x)

[
Ū θ (x) − uθ⊤φu(x)

]
= 0.

⊓⊔

Remark 7 (Extension to Sharpe ratio optimization) The gradient of the Sharpe ratio (SR)

in the average setting is given by

∇S(θ) = 1√
Λ(θ)

(
∇ρ(θ) − ρ(θ)

2Λ(θ)
∇Λ(θ)

)
,

and thus, the actor recursion for the SR-variant of our average reward risk-sensitive actor-

critic algorithm is as follows:

θn+1 = Γ
(
θn + ζ2(n)√

η̂n+1 − ρ̂2
n+1

(
δnψn − ρ̂n+1(ǫnψn − 2ρ̂n+1δnψn)

2(̂ηn+1 − ρ̂2
n+1)

))
. (49)

Note that the rest of the updates, including the average reward, TD errors, and critic recursions

are as in the risk-sensitive actor-critic algorithm presented in Algorithm 2. Similar to the
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discounted setting, since there is no Lagrange multiplier in the SR optimization, the resulting

actor-critic algorithm is a two time-scale stochastic approximation algorithm.

Remark 8 In the discounted setting, another popular variability measure is the discounted

normalized variance Filar et al. (1989)

Λ(μ) = E

[ ∞∑

n=0

γ n
(
Rn − ργ (μ)

)2
]

, (50)

where ργ (μ) =
∑

x,a d
μ
γ (x |x0)μ(a|x)r(x, a) and d

μ
γ (x |x0) is the γ -discounted visiting

distribution of state x under policy μ, defined in Sect. 2. The variability measure (50) has

close resemblance to the average reward variability measure (39), and thus, any (discounted)

risk measure based on (50) can be optimized similar to the corresponding average reward

risk measure (39).

Remark 9 (Simultaneous perturbation analogues) In the average reward setting, a simul-

taneous perturbation algorithm would estimate the average reward ρ and the square reward

η on the faster timescale and use these to estimate the gradient of the performance objective.

However, a drawback with this approach, compared to the algorithm proposed above is the

necessity for having two simulated trajectories (instead of one) for each policy update.

In the following section, we establish the convergence of our average reward actor-critic

algorithm to a (local) saddle point of the risk-sensitive objective function L(θ, λ).

7 Convergence analysis of the discounted reward risk-sensitive actor-critic
algorithms

Our proposed actor-critic algorithms use multi-timescale stochastic approximation and we

use the ordinary differential equation (ODE) approach (see Chapter 6 of Borkar (2008))

to analyze their convergence. We first provide the analysis for the SPSA based first-order

algorithm RS-SPSA-G in Sect. 7.1 and later provide the necessary modifications to the proof

of SF based first-order algorithm and SPSA/SF based second-order algorithms.

7.1 Convergence of the first-order algorithm: RS-SPSA-G

Recall that RS-SPSA-G is a two-loop scheme where the inner loop is a TD critic that evaluates

the value/square value functions for both unperturbed as well as perturbed policy parameter.

On the other hand, the outer loop is a two-timescale stochastic approximation algorithm,

where the faster timescale updates policy parameter θ in the descent direction using SPSA

estimates of the gradient of the Lagrangian and the slower timescale performs dual ascent for

the Lagrange multiplier λ using sample constraint values. The faster timescale θ -recursion

sees the λ-updates on the slower timescales as quasi-static, while the slower timescale λ-

recursion sees the θ -updates as equilibrated.

The proof of convergence of the RS-SPSA-G algorithm to a (local) saddle point of the risk-

sensitive objective function L̂(θ, λ)
△= −V̂ θ (x0)+λ(Λ̂θ (x0)−α)=− V̂ θ (x0)+λ

(
Û θ (x0)−

V̂ θ (x0)2 − α
)

contains the following three main steps:

Step 1: Critic’s convergence We establish that, for any given values of θ and λ that are

updated on slower timescales, the TD critic converges to a fixed point of the projected

Bellman operator for value and square value functions.
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Step 2: Convergence of θ -recursion We utilize the fact that owing to projection, the θ

parameter is stable. Using a Lyapunov argument, we show that the θ -recursion tracks the

ODE (55) in the asymptotic limit, for any given value of λ on the slowest timescale.

Step 3: Convergence of λ-recursion This step is similar to earlier analysis for con-

strained MDPs. In particular, we show that λ-recursion in (19) converges and the overall

convergence of (θn, λn) is to a local saddle point (θλ∗
, λ∗) of L̂(θ, λ), with θλ∗

satisfying

the variance constraint in (3).

Step 1: (Critic’s convergence) Since the critic’s update is in the inner loop, we can assume

in this analysis that θ and λ are time-invariant quantities. The following theorem shows that

the TD critic estimates for the value and square value function converge to the fixed point

given by (12), for any given policy θ .

Theorem 2 Under (A1)–(A4), for any given policy parameter θ and Lagrange multiplier

λ, the critic parameters {vm} and {um} governed by the recursions of (13) converge almost

surely, i.e.,

As m → ∞, vm → v̄ and um → ū a.s.

In the above v̄ and ū are the solutions to the TD fixed point equations for policy θ [see (12)

in Sect. 4.2].

Remark 10 It is easy to conclude from the above theorem that the TD critic parameters for

the perturbed policy parameter also converge almost surely, i.e., v+
m → v̄+ and u+

m → ū+

a.s., where v̄+ and ū+ are the unique solutions to TD fixed point relations for perturbed policy

θn + βnΔn , where θn, βn and Δn correspond to the policy parameter, perturbation constant

and perturbation random variable. The latter quantities are updated in the outer loop—see

Algorithm 1.

We first provide a proof of Lemma 2 (see Sect. 4.2), which claimed that the operator

ΠT for the value/square value functions is a contraction mapping. The result in Lemma 2 is

essential in establishing the convergence result in Theorem 2.

Proof (Lemma 2) We employ the technique from Tamar et al. (2013a) to prove this result.

First, it is well-known that ΠvT θ
v is a contraction mapping [cf. Lemma 6 in Tsitsiklis and

Roy (1997)]. This can be inferred as follows: For any y, ȳ ∈ R
2|X |,

‖T θ
v y − T θ

v ȳ‖
D

θ = γ ‖yv − ȳv‖D
θ .

We have used the fact that ‖Pθv‖
D

θ ≤ ‖v‖
D

θ for any v ∈ R
|X | [For a proof, see Lemma

1 in Tsitsiklis and Roy (1997)]. The claim that ΠvT θ
v is a contraction mapping now follows

from the fact that the projection operator Πv is non-expansive under ‖ · ‖
D

θ norm.

Now, for any y, ȳ ∈ R
2|X |, we have

‖Πu T θ
u y − Πu T θ

u ȳ‖
D

θ

= ‖2γΠu Rθ Pθ yv − 2γΠu Rθ Pθ ȳv + γ 2Πu Pθ yu − γ 2Πu Pθ ȳu‖
D

θ

≤ 2γ ‖Πu Rθ Pθ yv − Πu Rθ Pθ ȳv‖D
θ + γ 2‖yu − ȳu‖

D
θ

≤ γ C1‖yv − ȳv‖D
θ + γ 2‖yu − ȳu‖

D
θ , (51)

for some C1 < ∞. The first inequality above follows from the aforementioned facts that Pθ

and Πu are non-expansive. The second inequality follows by using equivalence of norms [cf.

the justification for Eq. (7) in the proof of Lemma 7 in Tamar et al. (2013b)].
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Setting ν = γ C1

ǫ + γ C1
, where ǫ is such that γ + ǫ < 1 and plugging in (51), we obtain

‖ΠT θ y − ΠT θ ȳ‖ν

= ν‖T θ
v y − T θ

v ȳ‖
D

θ + (1 − ν)‖Πu T θ
u y − Πu T θ

u ȳ‖
D

θ

≤ νγ ‖yv − ȳv‖D
θ + (1 − ν)γ C1‖yv − ȳv‖D

θ + (1 − ν)γ 2‖yu − ȳu‖
D

θ

≤ ν(γ + ǫ)‖yv − ȳv‖D
θ + (1 − ν)γ ‖yu − ȳu‖

D
θ

≤ (γ + ǫ)‖y − ȳ‖ν .

The claim follows by setting γ̄ = γ + ǫ. ⊓⊔

Proof (Theorem 2) The v-recursion in (13) is performing TD) with function approximation

for the value function, while the u-recursion is doing the same for the square value function.

The convergence of v-recursion to the fixed point in (12) can be inferred from Tsitsiklis and

Roy (1997).

Using an approach similar to Tamar et al. (2013a), we club both v and u recursions and

establish convergence using a stability argument in the following: Let wm = (vm, um)T.

Then, (13) can be seen to be equivalent to

wm+1 =wm + ζ3(m)(Mwm + ξ + ΔMm+1), where

M =
(

ΦT

v D
θ (γ Pθ − I )Φv 0

2γΦT

u D
θ Rθ PθΦv ΦT

u D
θ (γ 2 Pθ − I )Φu

)
and

ξ =
(

ΦT

v D
θr θ

ΦT

u D
θ Rθr θ

)
. (52)

Further, ΔMm+1 is a martingale difference, i.e., E[ΔMm+1 | Fm] = 0, where Fm is the

sigma field generated by wl ,ΔMl , l ≤ m.

Let h(w) = Mw + ξ . Then, the ODE associated with (52) is

ẇt = h(wt ). (53)

The above ODE has a unique globally asymptotically stable equilibrium, since M is a negative

definite. To see the latter fact, observe that M is block triangular and hence its eigenvalues

are that of ΦT

v D
θ (γ Pθ − I )Φv and ΦT

u D
θ (γ 2 Pθ − I )Φu . It can be inferred from Theorem 2

of Tsitsiklis and Roy (1997) that the aforementioned matrices are negative definite. For the

sake of completeness, we provide a brief sketch in the following: For any V ∈ R
|X |, it can

be shown that
∥∥Pθ V

∥∥
D

θ ≤ ‖V ‖
D

θ [see Lemma 1 in Tsitsiklis and Roy (1997) for a proof].

Now,

V T
D

θγ Pθ V ≤γ
∥∥(D

θ )1/2V
∥∥ ∥∥(D

θ )1/2 PV
∥∥

= γ ‖V ‖
D

θ ‖PV ‖
D

θ

≤γ ‖V ‖2
D

θ .

Hence, V T
D

θ (γ Pθ − I )V ≤ (γ − 1) ‖V ‖2
D

θ < 0. By (A3), we know that Φv is full rank

implying the negative definiteness of ΦT

v D
θ (γ Pθ − I )Φv . Using the same argument as above

and replacing Φv with Φu and γ with γ 2, one can conclude that ΦT

u D
θ (γ 2 Pθ − I )Φu .

The final claim now follows by applying Theorems 2.1–2.2(i) of Borkar and Meyn (2000),

provided we verify assumptions (A1)–(A2) there. The latter assumptions are given as follows:
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(A1) The function h is Lipschitz. For any c, define hc(w) = h(cw)/c. Then, there

exists a continuous function h∞ such that hc → h∞ as c → ∞ uniformly on compacts.

Furthermore, origin is an asymptotically stable equilibrium for the ODE

ẇt = h∞(wt ). (54)

(A2) The martingale difference {ΔMm, m ≥ 1} is square-integrable with

E[‖ΔMm+1‖2 | Fm] ≤ C0(1 + ‖wm‖2), m ≥ 0,

where C0 < ∞.

It is straightforward to verify (A1), as hc(w) = Mw + ξ/c converges to h∞(w) = Mw

as c → ∞. Given that M is negative definite, it is easy to see that origin is a asymptotically

stable equilibrium for the ODE (54). (A2) can also be verified by using the same arguments

that were used to show that the martingale difference associated with the regular TD algorithm

with function approximation satisfies a bound on the second moment (cf. Tsitsiklis and Roy

1997). ⊓⊔

Step 2: (Analysis of θ -recursion) Due to timescale separation, the value of λ (updated on a

slower timescale) is assumed to be constant for the analysis of the θ -update. To see this in

rigorous terms, first rewrite the λ-recursion as

λn+1 = Γλ

[
λn + ζ2(n)Ĥ(n)

]
.

where Ĥ(n) = ζ1(n)
ζ2(n)

(
uT

nφu(x0) −
(
vT

nφv(x0)
)2 − α

)
. Since the critic recursions converge,

it is easy to see that supn Ĥ(n) is finite. Combining with the observation that
ζ1(n)
ζ2(n)

= o(1)

due to the assumption (A3) on step-sizes, we see that the λ-recursion above tracks the ODE

λ̇ = 0.

In the following, we show that the update of θ is equivalent to gradient descent for the

function L̂(θ, λ) and converges to a limiting set that depends on λ.

Consider the following ODE

θ̇t = Γ̌
(
∇ L̂(θt , λ)

)
, (55)

with the limiting set Zλ =
{
θ ∈ C : Γ̌

(
∇ L̂(θt , λ)

)
= 0

}
. In the above, Γ̌ (·) is a pro-

jection operator that ensures the evolution of θ via the ODE (55) stays within the set

Θ :=
∏κ1

i=1[θ
(i)
min, θ

(i)
max] and is defined as follows: For any bounded continuous function

f (·),

Γ̌
(

f (θ)
)

= lim
τ→0

Γ
(
θ + τ f (θ)

)
− θ

τ
. (56)

Notice that the limit above may not exist and in that case, as pointed out on pp. 191 of Kushner

and Clark (1978), one can define Γ̌ ( f (θ)) to be the set of all possible limit points. From the

definition above, it can be inferred that for θ in the interior of Θ , Γ̌ ( f (θ)) = f (θ), while

for θ on the boundary of Θ , Γ̌ ( f (θ)) is the projection of f (θ) onto the tangent space of the

boundary of Θ at θ .

The main result regarding the convergence of the policy parameter θ for both the RS-

SPSA-G and RS-SF-G algorithms is as follows:

Theorem 3 Under (A1)–(A4), for any given Lagrange multiplier λ, θn updated according

to (19) converges almost surely to θ∗ ∈ Zλ.
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The proof of the above theorem requires the following lemma which shows that the

conditions mn, βn in (A4) ensure that the TD-critic does not introduce any bias from a finite

sample run length of mn .

Lemma 6 Let

T (i)
n

△=
((

1 + 2λvT

nφv(x0)
) (v+

n − vn)Tφv(x0)

βnΔ
(i)
n

− λ
(u+

n − un)Tφu(x0)

βnΔ
(i)
n

)
,

L̂(θ, λ)
△= − V̂ θ (x0) + λ

(
Û θ (x0) − V̂ θ (x0)2 − α

)
,

where V̂ (θ) = φv̄(x0)Tv̄ and Û (θ) = φū(x0)Tū denote the approximate value and square

value functions for policy θ .7

Then, we have that
∣∣∣E
(
T (i)

n | θn

)
− ∇ L̂(θn, λ)

∣∣∣ = O(β2
n ), for i = 1, . . . , κ1.

Proof Let

ξ1,n :=
(

T (i)
n −

((
1 + 2λv̄Tφv(x0)

) (v̄+ − v̄)Tφv(x0)

βnΔ
(i)
n

− λ
(ū+ − ū)Tφu(x0)

βnΔ
(i)
n

)
.

From Theorem 1, we know that the critic parameters vn, un converge to their limits v̄, ū at

the rate O(m−1/2) and hence, after mn steps of the TD-critic, ξ1,n = O( 1√
mnβn

). Now, from

(A4), we have that 1√
mnβn

→ 0 and hence ξ1,n vanishes asymptotically. Hence, we have

T (i)
n →

((
1 + 2λv̄Tφv(x0)

) (v̄+ − v̄)Tφv(x0)

βΔ
(i)
n

− λ
(ū+ − ū)Tφu(x0)

βΔ
(i)
n

))
. (57)

We next show that the RHS above is an order O(β2
n ) term away from the gradient of the

Lagrangian L(θn, λ). Using a Taylor’s expansion of V̂ (·) around θn , we obtain:

V̂ (θn + βnΔn) = V̂ (θn) + βnΔn
T∇ V̂ (θn) + βn

2

2
Δn

T∇2V̂ (θn)Δn + O(β3
n ).

Taking expectations and rearranging terms, we obtain

E

[(
V̂ (θn + βnΔn) − V̂ (θn)

βnΔ
(i)
n

)∣∣∣∣∣ θn

]

= E

[
ΔT

n∇ V̂ (θn)

Δ
(i)
n

| θn

]
+ E

[
ΔT

n∇2
θn

V̂ (θn)Δn

Δ
(i)
n

| θn

]
+ O(β2

n )

= ∇i V̂ (θn) + E

⎡
⎣∑

j �=i

Δ
( j)
n

Δ
(i)
n

∇ j V̂ (θn) | θn

⎤
⎦+ O(β2

n )

= ∇i V̂ (θn) + O(β2
n ). (58)

In the above, we have used the fact that Δn is i.i.d. Rademacher and independent of θn .

7 For notational convenience, we drop the dependence of v̄ and ū on the underlying policy parameter θ and

this dependence should be clear from the context.
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In a similar manner, defining Û (θn) = φū(x0)Tū and Û (θn + βnΔn) = φū+(x0)Tū+, we

can conclude that

E

[(
Û (θn + βnΔn) − Û (θn)

βnΔn
(i)

)∣∣∣∣ θn

]
=∇i Û (θn) + O(β2

n ). (59)

The claim now follows by plugging in (58)–(59) into (57). ⊓⊔

In order to the prove Theorem 3, we require the well-known Kushner–Clark lemma (see

Kushner and Clark 1978, pp. 191–196). For the sake of completeness, we recall this result

below.

Kushner–Clark lemma Consider the following recursion in κ1-dimensions:

xn+1 = Γ (xn + a(n)(h(xn) + ξ1,n + ξ2,n)), (60)

where Γ projects the iterate xn onto a compact and convex set, say C ∈ R
N . The ODE

associated with (60) is given by

ẋ(t) = Γ̄ (h(x(t))), (61)

where Γ̄ is a projection operator that keeps the ODE evolution within the set C and is defined

as in (56).

We make the following assumptions:

(B1) h is a continuous R
κ1 -valued function.

(B2) The sequence ξ1,n, n ≥ 0 is a bounded random sequence with ξ1,n → 0 almost

surely as n → ∞.

(B3) The step-sizes a(n), n ≥ 0 satisfy a(n) → 0 as n → ∞ and
∑

n a(n) = ∞.

(B4) {ξ2,n, n ≥ 0} is a sequence such that for any ǫ > 0,

lim
n→∞

P

(
sup
m≥n

∥∥∥∥∥

m∑

i=n

aiξ1,i

∥∥∥∥∥ ≥ ǫ

)
= 0.

(B5) The ODE (61) has a compact subset K of Rκ1 as its set of asymptotically stable

equilibrium points.

The main result (see Kushner and Clark 1978, pp. 191–196) is as follows:

Theorem 4 Assume (B1)–(B5). Then, xn converges almost surely to the set K .

Proof (Theorem 3) We first rewrite the recursion (19) as follows:

θ
(i)
n+1 =Γi

(
θ (i)

n + ζ2(n)
(
∇ L̂(θn, λ) + ξ1,n + ξ2,n

))
, (62)

where

ξ1,n = E

(
T (i)

n | θn

)
− ∇ L̂(θn, λ),

ξ2,n = T (i)
n − E

(
T (i)

n | θn

)
,

with T
(i)

n defined as in Lemma 6.

We now verify (B1)–(B5) for the above recursion:
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– From (A1) together with the facts that the state space is finite and the projection Γ is

onto a compact set, we have from Theorem 2 of Schweitzer (1968) that the stationary

distributions D
θ
γ (x |x0) and d̃θ

γ (x |x0) are continuously differentiable. This in turn implies

continuity of ∇ V̂ (θn) and ∇Û (θn). Thus, (B1) follows for ∇ L̂(θn, λ).

– In light of Lemma 6 and (A4), we have that ξ1,n → 0 as n → ∞.

– (A4) implies (B3).

– A simple calculation shows that E(ξ2,n)2 ≤ E(T
(i)

n )2 ≤ C3/β
2
n for some C3 < ∞.

Applying Doob’s inequality, we obtain

P

(
sup
l≥k

∥∥∥∥∥

l∑

n=k

ζ2(n)ξ2,n

∥∥∥∥∥ ≥ ǫ

)
≤ 1

ǫ2

∞∑

n=k

ζ2(n)2
E

∥∥ξ2,n

∥∥2
. (63)

≤C3

ǫ2

∞∑

n=k

ζ2(n)2

β2
n

= 0. (64)

Thus, (B4) is satisfied.

– Zλ is an asymptotically stable attractor for the ODE (55), with L̂(θ, λ) itself serving as

a strict Lyapunov function. This can be inferred as follows:

d L̂(θ, λ)

dt
= ∇ L̂(θ, λ)θ̇ = ∇ L̂(θ, λ)Γ̌

(
− ∇ L̂(θ, λ)

)
< 0.

The claim now follows from Kushner–Clark lemma. ⊓⊔

Step 3: (Analysis of λ-recursion and convergence to a local saddle point) We first show

that the λ-recursion converges and then prove that the whole algorithm converges to a local

saddle point of L̂(θ, λ).

We define the following ODE governing the evolution of λ:

λ̇t = Γ̌λ

[
Λ̂θλt

(x0) − α
]

= Γ̌λ

[
Û θλt

(x0) − V̂ θλt
(x0)2 − α

]
, (65)

where θλt is the limiting point of the θ -recursion corresponding to λt . Further, Γ̌λ is an

operator similar to the operator Γ̌ defined in (56) and is defined as follows: For any bounded

continuous function f (·),

Γ̌λ

(
f (λ)

)
= lim

τ→0

Γλ

(
λ + τ f (λ)

)
− λ

τ
. (66)

Theorem 5 λn → F almost surely as n → ∞, where F
△=
{
λ | λ ∈ [0, λmax], Γ̌λ

[
Λ̂θλ

(x0)

− α
]

= 0, θλ ∈ Zλ

}
.

Proof The proof follows using standard stochastic approximation arguments. The first step

is to rewrite the λ-recursion as follows:

λn+1 = Γλ

[
λn + ζ1(n)

(
ūTφu(x0) −

(
v̄Tφv(x0)

)2 − α + ξ2,n

)]
,

where ξ2,n :=
(

uT

nφu(x0) −
(
vT

nφv(x0)
)2)−

(
ūTφu(x0) −

(
v̄Tφv(x0)

)2)
. Note that the con-

verged critic parameters v̄ and ū are for the policy θλn . The latter is a limiting point of the

θ -recursion, with the Lagrange multiplier λn . Owing to convergence of θ -recursion and also

TD-critic in the inner loop, we can conclude that ξ2,n = o(1). Thus, ξ2,n adds an asymp-

totically vanishing bias term to the λ-recursion above. The claim follows by applying the
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standard result in Theorem 2 of Borkar (2008) for convergence of stochastic approximation

schemes. ⊓⊔

Recall that L̂(θ, λ)
△= −V̂ θ (x0) + λ(Λ̂θ (x0) − α) and hence ∇λ L̂(θ, λ) = Λ̂θ (x0) − α.

Thus,

Γ̌λ

[
Λ̂θλ

(x0) − α
]

= 0,

is the same as

Γ̌λ∇λ L̂(θλ, λ) = 0.

As in Borkar (2005), we invoke the envelope theorem of mathematical economics (Mas-

Colell et al. 1995) to conclude that the ODE (65) is equivalent to the following

λ̇t = Γ̌λ

[
∇λ L̂(θλt , λt )

]
. (67)

Note that the above has to interpreted in the Cartheodory sense, i.e., as the following integral

equation

λt = λ0 +
∫ t

0

Γ̌λ

[
∇λ L̂(θλs , λs)

]
ds.

As noted in Lemma 4.3 of Borkar (2005), using the generalized envelope theorem from

Milgrom and Segal (2002) it can be shown that the RHS of (67) coincides with that of (65)

at differentiable points, while the ODE spends zero time at non-differentiable points (except

at the points of maxima).

We next claim that the limit θλ∗
corresponding to λ∗ satisfies the variance constraint in

(3), i.e.,

Proposition 1 For any λ∗ in F̂
△=
{
λ | λ ∈ [0, λmax), Γ̌λ

[
Λ̂θλ

(x0) − α
]

= 0, θλ ∈ Zλ

}
,

the corresponding limiting point θλ∗
satisfies the variance constraint Λ̂θλ∗

(x0) ≤ α.

Proof Follows in a similar manner as Proposition 10.6 in Bhatnagar et al. (2013). ⊓⊔

From Theorems 3, 4, 5 and Proposition 1, it is evident that the actor recursion (19)

converges to a tuple (θλ∗
, λ∗) that is a local minimum w.r.t. θ and a local maximum w.r.t. λ of

L̂(θ, λ). In other words, overall convergence is to a (local) saddle point of L̂(θ, λ). Further, the

limit is also feasible for the constrained problem in (3) as θλ∗
satisfies the variance constraint

there.

7.2 Convergence of the first-order algorithm: RS-SF-G

Note that since RS-SPSA-G and RS-SF-G use different methods to estimate the gradient,

their proofs only differ in the second step, i.e., the convergence of the policy parameter θ .

7.2.1 Proof of Theorem 3 for SF

Proof As in the case of the SPSA algorithm, we rewrite the θ -update in (20) using the

converged TD-parameters and constant λ as
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θ
(i)
n+1 = Γi

(
θ (i)

n − ζ2(n)

(
−Δ

(i)
n

(
1 + 2λv̄Tφv(x0)

)

β
(v̄+ − v̄)Tφv(x0)

+λΔ
(i)
n

β
(ū+ − ū)Tφu(x0) + ξ1,n

))
,

where ξ1,n → 0 by using arguments analogous to those in the proof of Lemma 6. Next, we

establish that E

[
Δ(i)

βn

(v̄+ − v̄)Tφv(x0) | θ, λ

]
is an asymptotically correct estimate of the

gradient of V̂ (θ) in the following:

E

[
Δ

(i)
n

βn

(v̄+ − v̄)Tφv(x0) | θn, λ

]
−→ ∇i v̄

Tφv(x0) a.s. as n → ∞.

The above follows in a similar manner as Proposition 10.2 of Bhatnagar et al. (2013). On

similar lines, one can see that

E

[
Δ

(i)
n

βn

(ū+ − ū)Tφu(x0) | θn, λ

]
−→ ∇i ū

Tφu(x0) a.s. as n → ∞.

Thus, (20) can be seen to be a discretization of the ODE (55) and the rest of the analysis

follows in a similar manner as in the SPSA proof. ⊓⊔

7.2.2 Convergence of the second-order algorithms: RS-SPSA-N and RS-SF-N

Convergence analysis of the second-order algorithms involves the same steps as that of the

first-order algorithms. In particular, the first step involving the TD-critic and the third step

involving the analysis of λ-recursion follow along similar lines as earlier, whereas θ -recursion

analysis in the second step differs significantly.

Step 2: (Analysis of θ -recursion for RS-SPSA-N and RS-SF-N) Since the policy parameter

is updated in the descent direction with a Newton decrement, the limiting ODE of the θ -

recursion for the second order algorithms is given by

θ̇t = Γ̌
(
Υ
(
∇2 L(θt , λ)

)−1∇L(θt , λ)
)

, (68)

where Γ̌ is as before [see (56)]. Let

Zλ =
{
θ ∈ Θ : −∇L(θt , λ)T Υ

(
∇2

θ L(θt , λ)
)−1∇L(θt , λ) = 0

}
.

denote the set of asymptotically stable equilibrium points of the ODE (68) and Zε
λ its ε-

neighborhood. Then, we have the following analogue of Theorem 3 for the RS-SPSA-N and

RS-SF-N algorithms:

Theorem 6 Under (A1)–(A5), for any given Lagrange multiplier λ and ε > 0, there exists

β0 > 0 such that for all β ∈ (0, β0), θn → θ∗ ∈ Zε
λ almost surely.

7.2.3 Proof of Theorem 6 for RS-SPSA-N

Before we prove Theorem 6, we establish that the Hessian estimate Hn in (30) converges

almost surely to the true Hessian ∇2
θ L(θn, λ) in the following lemma.
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Lemma 7 For all i, j ∈ {1, . . . , κ1}, we have the following claims with probability one:

(i)

∥∥∥∥∥
L(θn + βnΔn + βnΔ̂n, λ) − L(θn, λ)

β2
nΔ

(i)
n Δ̂

( j)
n

− ∇2

θ
(i, j)
n

L(θn, λ)

∥∥∥∥∥→ 0,

(ii)

∥∥∥∥∥
L(θn + βnΔn + βnΔ̂n, λ) − L(θn, λ)

βnΔ̂
(i)
n

− ∇
θ

(i)
n

L(θn, λ)

∥∥∥∥∥→ 0,

(iii)

∥∥∥∥H (i, j) − ∇2

θ
(i, j)
n

L(θn, λ)

∥∥∥∥→ 0,

(iv)

∥∥∥M − Υ (∇2
θn

L(θn, λ))−1
∥∥∥→ 0.

Proof The proofs of the above claims follow from Propositions 10.10, 10.11 and Lemmas

7.10 and 7.11 of Bhatnagar et al. (2013), respectively. ⊓⊔

Proof (Theorem 6 for RS-SPSA-N) As in the case of the first order methods, due to timescale

separation, we can treat λn ≡ λ, a constant and use the converged TD-parameters to arrive

at the following equivalent update rules for the Hessian recursion (30) and θ -recursion (31):

H
(i, j)
n+1 = H

(i, j)
n + ζ ′

2(n)

[(
1 + λn(v̄n + v̄+

n )Tφv(x0)
)
(v̄n − v̄+

n )Tφv(x0)

β2
nΔ

(i)
n Δ̂

( j)
n

+ λ(ū+
n − ūn)Tφu(x0)

β2
nΔ

(i)
n Δ̂

( j)
n

− H
(i, j)
n

]
,

θ
(i)
n+1 =Γi

[
θ (i)

n + ζ2(n)

κ1∑

j=1

M
(i, j)
n

((1 + 2λv̄T

nφv(x0)
)
(v̄+

n − v̄n)Tφv(x0)

βnΔ
( j)
n

− λ(ū+
n − ūn)Tφu(x0)

βnΔ
( j)
n

)]
.

By a completely parallel argument to the proof of Lemma 6 in conjunction with Lemma 7,

the θ -recursion above is equivalent to the following:

θ
(i)
n+1 = Γ̄i

(
θ (i)

n + ζ2(n)
(
∇2 L(θn, λ)

)−1∇L(θn, λ)

)
. (69)

The above can be seen as a discretization of the ODE (68), with Zλ serving as its asymp-

totically stable attractor. The rest of the claim follows in a similar manner as Theorem 3.

⊓⊔

7.2.4 Proof of Theorem 6 for RS-SF-N

Proof We first establish the following result for the gradient and Hessian estimators employed

in RS-SF-N: ⊓⊔

Lemma 8 We have the following claims with probability one:

(i)

∥∥∥∥E
[

1
β2

n
H̄(Δn)(L(θn + βnΔn, λ) − L(θn, λ)) | θn, λ

]
− ∇2

θ L(θn, λ)

∥∥∥∥→ 0.

(ii) ‖E

[
1

βn

Δn(L(θn + βnΔn, λ) − L(θn, λ)) | θn, λ

]
− ∇L(θn, λ)‖ → 0.
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Proof The proofs of the above claims follow from Propositions 10.1 and 10.2 of Bhatnagar

et al. (2013), respectively. ⊓⊔
The rest of the analysis is identical to that of RS-SPSA-N.

Remark 11 (On convergence rate) In the above, we established asymptotic limits for all our

algorithms using the ODE approach. To the best of our knowledge, there are no convergence

rate results available for multi-timescale stochastic approximation schemes, and hence, for

actor-critic algorithms. This is true even for the actor-critic algorithms that do not incorporate

any risk criterion. In Konda and Tsitsiklis (2004), the authors provide asymptotic convergence

rate results for linear two-timescale recursions. It would be an interesting direction for future

research to obtain concentration bounds for general (non-linear) two-timescale schemes.

While a rigorous analysis on convergence rate of our proposed schemes is difficult, one

could make a few concessions and use the following argument to see that the SPSA-based

algorithms converge quickly: In order to analyse the rate of convergence of θ -recursion,

assume (for sufficiently large n) that the TD-critic has converged in the inner-loop. This is

because, the trajectory lengths mn → ∞ as n → ∞ and under appropriate step-size settings

(or with iterate averaging) one can obtain convergence rate of the order O
(
1/

√
m
)

on the

root mean square error of TD (see Theorem 1). Now, if one holds λ fixed, then invoking

asymptotic normality results for SPSA [see Proposition 2 in Spall (1992)] it can be shown

that n1/3(θn − θλ) is asymptotically normal, where θλ is a limit point in the set Zλ. Similar

results also hold for second-order SPSA variants [cf. Theorem 3a in Spall (2000)]. Both

the aforementioned claims are proved using a well-known result on asymptotic normality of

stochastic approximation schemes due to Fabian (1968).

The second-order schemes such as RS-SPSA-N score over their first order counterpart

RS-SPSA-G from a asymptotic normality results perspective. This is because obtaining the

optimal convergence rate for RS-SPSA-G requires that the step-size ζ2(n) is set to ζ2(0)/n

where ζ2(0) > 1/λmin(∇2
θ L(θλ, λ)), whereas there is no such constraint for the second-order

algorithm RS-SPSA-N. Here λmin(A) denotes the minimum eigenvalue of the matrix A. The

reader is referred to Dippon and Renz (1997) for a detailed discussion on convergence rate

of (one timescale) SPSA-based schemes using asymptotic mean-square error.

Remark 12 (Unstable equilibria) The limit set Zλ contains both stable and unstable equi-

libria and the θ -recursion can possibly end up in a unstable equilibrium point. One may

avoid this situation by including additional noise in the randomized policy that drives the

θ -recursion. For instance, define a η-offset policy as

μ̂(a | x) = μ(a | x) + η∑
a′∈A(x)

(μ(a′ | x) + η)
.

The above policy can be used in place of the regular μ(· | x), so that the algorithm is pulled

away from an unstable equilibria. Providing theoretical guarantees for such a scheme is

non-trivial and we have left it for future work.

8 Convergence analysis of the average reward risk-sensitive actor-critic
algorithm

As in the discounted setting, we use the ODE approach (Borkar 2008) to analyze the conver-

gence of our average reward risk-sensitive actor-critic algorithm. The proof involves three

main steps:
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1. The first step is the convergence of ρ, η, V , and U , for any fixed policy θ and Lagrange

multiplier λ. This corresponds to a TD(0) (with extension to η and U ) proof. Using

arguments similar to that in Step 2 of the proof of RS-SPSA-G, one can show that the

θ and λ recursions track θ̇t = 0 and λ̇t = 0, when viewed from the TD critic timescale

{ζ3(t)}. Thus, the policy θ and Lagrange multiplier λ are assumed to be constant in the

analysis of the critic recursion.

2. The second step is to show the convergence of θn to an ε-neighborhood Zε
λ of the set

of asymptotically stable equilibria Zλ of ODE

θ̇t = Γ̌
(
∇L(θt , λ)

)
, (70)

where the projection operator Γ̌ ensures that the evolution of θ via the ODE (70) stays

within the compact and convex set Θ ⊂ R
κ1 and is defined in (56). Again here it is

assumed that λ is fixed because θ -recursion is on a faster time-scale than λ’s.

3. The final step is the convergence of λ and showing that the whole algorithm converges

to a local saddle point of L(θ, λ). where the limit is shown to satisfy the variance

constraint in (40).

Step 1: Critic’s convergence

Lemma 9 For any given policy μ, {ρ̂n}, {̂ηn}, {vn}, and {un}, defined in Algorithm 2 and by

the critic recursion (46) converge to ρ(μ), η(μ), vμ, and uμ almost surely, where vμ and uμ

are the unique solutions to

ΦT

v D
μΦvv

μ = ΦT

v D
μT μ

v (Φvv
μ), ΦT

u D
μΦuuμ = ΦT

u D
μT μ

u (Φuuμ), (71)

respectively. In (71), D
μ denotes the diagonal matrix with entries dμ(x) for all x ∈ X , and

T
μ
v and T

μ
u are the Bellman operators for the differential value and square value functions

of policy μ, defined as

T μ
v J = r

μ − ρ(μ)e + P
μ J, T μ

u J = R
μ

r
μ − η(μ)e + P

μ J, (72)

where r
μ and P

μ are the reward vector and transition probability matrix of policy μ, R
μ =

diag(r
μ), and e is a vector of size n (the size of the state space X ) with elements all equal

to one.

Proof The proof for the average reward ρ(μ) and differential value function vμ follows

in a similar manner as Lemma 5 in Bhatnagar et al. (2009a). It is based on verifying the

Assumptions (A1)–(A2) of Borkar and Meyn (2000), and uses the second part of Assumption

(A3) of our paper, i.e., v ∈ R
κ2 , for every v ∈ R

κ2 . The proof for ρ(μ) and vμ can be easily

extended to the square average reward η(μ) and square differential value function uμ. ⊓⊔

Step 2: Actor’s convergence

Let Zλ =
{
θ ∈ Θ : Γ̌

(
− ∇L(θ, λ)

)
= 0

}
denote the set of asymptotically stable

equilibrium points of the ODE (70) and Zε
λ =

{
θ ∈ Θ : ||θ − θ0|| < ε, θ0 ∈ Zλ

}
denote the

set of points in the ε-neighborhood of Zλ. The main result regarding the convergence of the

policy parameter in (47) is as follows:

Theorem 7 Assume (A1)–(A4). Then, given ε > 0, ∃β > 0 such that for θn, n ≥ 0 obtained

by the algorithm, if supθn
‖B(θn, λ)‖ < β, then θn governed by (47) converges almost surely

to Zε
λ as n → ∞.
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Proof Let F(n) = σ(θm, m ≤ n) denote a sequence of σ -fields. We have

θn+1 = Γ
(
θn − ζ2(n)

(
− δnψn + λ(ǫnψn − 2ρ̂n+1δnψn)

))

= Γ
(
θn + ζ2(n)(1 + 2λρ̂n+1)δnψn − ζ2(n)λǫnψn

)

= Γ

(
θn − ζ2(n)

[
1 + 2λ

((
ρ̂n+1 − ρ(θn)

)
+ ρ(θn)

)]
E
[
δθn ψn |F(n)

]

− ζ2(n)
[
1 + 2λ

((
ρ̂n+1 − ρ(θn)

)
+ ρ(θn)

)](
δnψn − E

[
δnψn |F(n)

])

− ζ2(n)
[
1 + 2λ

((
ρ̂n+1 − ρ(θn)

)
+ ρ(θn)

)]
E
[
(δn − δθn )ψn |F(n)

]

+ ζ2(n)λE
[
ǫθn ψn |F(n)

]
+ ζ2(n)λ

(
ǫnψn − E

[
ǫnψn |F(n)

])

+ ζ2(n)λE
[
(ǫn − ǫθn )ψn |F(n)

])
.

By setting ξn = ρ̂n+1 − ρ(θn), we may write the above equation as

θn+1 =Γ

(
θn − ζ2(n)

[
1 + 2λ

(
ξn + ρ(θn)

)]
E
[
δθn ψn |F(n)

]
(73)

− ζ2(n)
[
1 + 2λ

(
ξn + ρ(θn)

)] (
δnψn − E

[
δnψn |F(n)

])

︸ ︷︷ ︸
∗

− ζ2(n)
[
1 + 2λ

(
ξn + ρ(θn)

)]
E
[
(δn − δθn )ψn |F(n)

]
︸ ︷︷ ︸

+

+ ζ2(n)λE
[
ǫθn ψn |F(n)

]
+ ζ2(n)λ

(
ǫnψn − E

[
ǫnψn |F(n)

])

︸ ︷︷ ︸
∗

+ ζ2(n)λ E
[
(ǫn − ǫθn )ψn |F(n)

]
︸ ︷︷ ︸

+

)
. (74)

Since Algorithm 2 uses an unbiased estimator for ρ, we have ρ̂n+1 → ρ(θn), and thus, ξn →
0. The terms (+) asymptotically vanish in light of Lemma 9 (Critic convergence). Finally

the terms (∗) can be seen to vanish using standard martingale arguments [cf. Theorem 2 in

Bhatnagar et al. (2009a)]. Thus, (73) can be seen to be equivalent in an asymptotic sense

to

θn+1 = Γ
(
θn − ζ2(n)

[
1 + 2λρ(θn)

]
E
[
δθn ψn |F(n)

]
+ ζ2(n)λE

[
ǫθn ψn |F(n)

])
. (75)

From the foregoing, it can be seen that the actor recursion in (47) asymptotically tracks the

stable fixed points of the ODE

θ̇t = Γ̌
(
∇L(θt , λ) + B(θt , λ)

)
. (76)
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Note that the bias of Algorithm 2 in estimating ∇L(θ, λ) is (see Lemma 5)

B(θ, λ) =
∑

x

D
θ (x)

{
−
(
1 + 2λρ(θ)

)[
∇ V̄ θ (x) − ∇vθ⊤φv(x)

]

+ λ
[
∇Ū θ (x) − ∇uθ⊤φu(x)

]}
.

Since the bias supθ ‖B(θ, λ)‖ → 0 by assumption, the trajectories (76) converge to those

of (55) uniformly on compacts for the same initial condition and the claim follows. ⊓⊔

Remark 13 (Bias in estimating gradient) We do not always expect that supθ ‖B(θ, λ)‖ → 0.

However, if there is no bias or negligibly small bias in the actor-critic algorithm, which is

directly related to the choice of the critic’s function space, then we will definitely gain from

using actor-critic instead of policy gradient. Note that the choice between actor-critic and

policy gradient is a bias–variance tradeoff, and similar to any other bias–variance tradeoff, if

the variance reduction is more significant (given the number of samples used to estimate each

gradient) than the introduced bias, then it would be advantageous to use actor-critic instead

of policy gradient. Also note that this tradeoff exists even in the original form (risk neutral)

of actor-critic and policy gradient and has nothing to do with the risk-sensitive objective

function studied in this paper. For more details on this, we refer the reader to Theorem 2 and

Remark 2 in Bhatnagar et al. (2009b).

Step 3: λ Convergence and overall convergence of the algorithm

As in the discounted setting, we first show that the λ-recursion converges and then prove

convergence to a local saddle point of L(θ, λ). Consider the ODE

λ̇t = Γ̌λ

(
Λ(θλt ) − α

)
, (77)

where Γ̌λ is a projection operator that forces the evolution of λ via (65) is within [0, λmax]
and is defined in (66).

Theorem 8 λn → F almost surely as t → ∞, where F
△=
{
λ | λ ∈ [0, λmax], Γ̌λ

(
Λ(θλ) −

α
)

= 0, θλ ∈ Zλ

}
.

Proof The proof follows in a similar manner as that of Theorem 3 in Bhatnagar and Laksh-

manan (2012). ⊓⊔

As in the discounted setting, the following proposition claims that the limit θλ∗
corre-

sponding to λ∗ satisfies the variance constraint in (40), i.e.,

Proposition 2 For any λ∗ in F̂
△=
{
λ | λ ∈ [0, λmax), Γ̌λ

[
Λθλ

(x0) − α
]

= 0, θλ ∈ Zλ

}
,

the corresponding limiting point θλ∗
satisfies the variance constraint Λθλ∗

(x0) ≤ α.

Using arguments similar to that used to prove convergence of RS-SPSA-G, it can be shown

that that the ODE (77) is equivalent to λ̇t = Γ̌λ

[
∇λL(θλt , λt )

]
and thus, the actor parameters

(θn, λn) updated according to (47) converge to a (local) saddle point (θλ∗
, λ∗) of L(θ, λ).

Morever, the limiting point θλ∗
satisfies the variance constraint in (40).

9 Experimental results

We evaluate our algorithms in the context of a traffic signal control application. The objective

in our formulation is to minimize the total number of vehicles in the system, which indirectly
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minimizes the delay experienced by the system. The motivation behind using a risk-sensitive

control strategy is to reduce the variations in the delay experienced by road users.

9.1 Implementation

We consider both infinite horizon discounted and average settings for the traffic signal control

MDP, formulated as in Prashanth and Bhatnagar (2011). We briefly recall their formulation

here: The state at each time t , xn , is the vector of queue lengths and elapsed times and is

given by xn = (q1(n), . . . , qN (n), t1(n), . . . , tN (n)), where N is the number of signalled

lanes in the road network considered. Here qi and ti denote the queue length and elapsed

time since the signal turned to red on lane i . The actions an belong to the set of feasible sign

configurations. The single-stage cost function h(xn) is defined as follows:

h(xn) = r1 ∗
[∑

i∈Ip

r2 ∗ qi (n) +
∑

i /∈Ip

s2 ∗ qi (n)
]

+ s1 ∗
[∑

i∈Ip

r2 ∗ ti (n) +
∑

i /∈Ip

s2 ∗ ti (n)
]
, (78)

where ri , si ≥ 0 such that ri + si = 1 for i = 1, 2 and r2 > s2. The set Ip is the set

of prioritized lanes in the road network considered. While the weights r1, s1 are used to

differentiate between the queue length and elapsed time factors, the weights r2, s2 help in

prioritization of traffic.

Given the above traffic control setting, we aim to minimize both the long run discounted

and average sum of the cost function h(xn) in (78). The underlying policy that guides the

selection of the sign configuration in each of the algorithms we implemented (see below for

the complete list) is a parameterized Boltzmann family and has the form

μθ (x, a) = eθ⊤φx,a

∑
a′∈A(x) eθ⊤φx,a′

, ∀x ∈ X , ∀a ∈ A. (79)

The experiments for each algorithm that we implement is comprised of the following two

phases:

Policy search phase Here each iteration involved the simulation run with the nominal

policy parameter θ as well as the perturbed policy parameter θ+ (algorithm-specific).

We run each algorithm for 500 iterations, where the run length for a particular policy

parameter is 150 steps.

Policy test phase After the completion of the policy search phase, we freeze the pol-

icy parameter and run 50 independent simulations with this (converged) choice of the

parameter. The results presented subsequently are averages over these 50 runs.

We implement the following algorithms using the Green Light District (GLD) simulator

(Wiering et al. 2004)8:

8 We would like to point out that the experimental setting involves ‘costs’ and not ‘rewards’ and the algorithms

implemented should be understood as optimizing a negative reward.
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Discounted setting

1. SPSA-G This is a first-order risk-neutral algorithm with SPSA-based gradient estimates

that updates the parameter θ as follows:

θ
(i)
n+1 =Γi

(
θ (i)

n + ζ2(n)

βΔ
(i)
n

(v+
n − vn)Tφv(x0)

)
,

where the critic parameters vn, v+
n are updated according to (13). Note that this is a two-

timescale algorithm with a TD critic on the faster timescale and the actor on the slower

timescale. Unlike RS-SPSA-G, this algorithm, being risk-neutral, does not involve the

Lagrange multiplier recursion.

2. SF-G This is a first-order risk-neutral algorithm that is similar to SPSA-G, except that

the gradient estimation scheme used here is based on the smoothed functional (SF)

technique. The update of the policy parameter in this algorithm is given by

θ
(i)
n+1 = Γi

(
θ (i)

n + ζ2(n)
(Δ

(i)
n

β
(v+

n − vn)Tφv(x0)
))

.

3. SPSA-N This is a risk-neutral algorithm and is the second-order counterpart of SPSA-

G. The Hessian update in this algorithm is as follows: For i, j = 1, . . . , κ1, i < j , the

update is

H
(i, j)
n+1 = H

(i, j)
n + ζ ′

2(n)

[
(vn − v+

n )Tφv(x0)

β2Δ
(i)
n Δ̂

( j)
n

− H
(i, j)
n

]
, (80)

and for i > j , we set H
(i, j)
n+1 = H

( j,i)
n+1 . As in RS-SPSA-N, let Mn

△= H−1
n , where

Hn = Υ
(
[H

(i, j)
n ]|κ1|

i, j=1

)
. The actor updates the parameter θ as follows:

θ
(i)
n+1 = Γi

[
θ (i)

n + ζ2(n)

κ1∑

j=1

M
(i, j)
n

( (v+
n − vn)Tφv(x0)

βΔ
( j)
n

)]
. (81)

The rest of the symbols, including the critic parameters, are as in RS-SPSA-N.

4. SF-N This is a risk-neutral algorithm and is the second-order counterpart of SF-G. It

updates the Hessian and the actor as follows: For i, j, k = 1, . . . , κ1, j < k, the Hessian

update is

Hessian: H
(i,i)
n+1 = H (i,i)

n + ζ ′
2(n)

[(
Δ

(i)2

n − 1
)

β2
(vn − v+

n )Tφv(x0) − H (i,i)
n

]
,

H
( j,k)
n+1 = H

( j,k)
n + ζ ′

2(n)

[
Δ

( j)
n Δ

(k)
n

β2
(vn − v+

n )Tφv(x0) − H
( j,k)
n

]
,

and for j > k, we set H
( j,k)
n+1 = H

(k, j)
n+1 . As before, let Mn

△= H−1
n , with Hn formed as

in SPSA-N. Then, the actor update for the parameter θ is as follows:

Actor: θ
(i)
n+1 = Γi

[
θ (i)

n + ζ2(n)

κ1∑

j=1

M
(i, j)
n

Δ
( j)
n

β
(v+

n − vn)Tφv(x0)

]
.

The rest of the symbols, including the critic parameters, are as in RS-SPSA-N.
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5. RS-SPSA-G This is the first-order risk-sensitive actor-critic algorithm that attempts to

solve (40) and updates according to (19).

6. RS-SF-G This is a first-order algorithm and the risk-sensitive variant of SF-G that

updates the actor according to (20).

7. RS-SPSA-N This is a second-order risk-sensitive algorithm that estimates gradient and

Hessian using SPSA and updates them according to (31).

8. RS-SF-N This second-order risk-sensitive algorithm is the SF counterpart of RS-SPSA-

N, and updates according to (36).

9. TAMAR This is a straightforward adaptation of the algorithm proposed in Tamar et al.

(2012). The main difference between this and our algorithms is thatTAMARuses a Monte

Carlo critic, while our algorithms employ a TD critic. Moreover, TAMAR incorporates

the λ-recursion that is identical to that of our algorithms (see Eq. 21). In contrast, the

algorithm proposed in Tamar et al. (2012) is for a fixed λ that may not be optimal. Note

that even though TAMAR is an algorithm proposed for a stochastic shortest path (SSP)

setting, it can be implemented in the traffic signal control problem since we truncate

the simulation after 150 steps.

Let Dn denote the sum of rewards obtained from a single simulation run in the policy

search phase. Further, let zn :=
∑150

m=0 ∇ ln μθ (xm, am) denote the likelihood deriva-

tive. Then, the update rule is given by

Ṽn+1 =Ṽn + ζ3(n)
(
Dn − Ṽn

)

Λ̃n+1 =Λ̃n + ζ3(n)
(
D2

n − Ṽ 2
n − Λ̃n

)

θ
(i)
n+1 =Γi

(
θn + ζ2(n)

(
Dn − λn(D2

n − 2Dn Ṽn)
)
z(i)

n

)
, i = 1, . . . , κ1,

λn+1 =Γλ

[
λn + ζ1(n)

(
Λn − α

)]
.

Note that the θ -recursion above corrects an error (we believe it is a typo) in the corre-

sponding update rule [i.e., Eq. 13 in Tamar et al. (2012)]. Unlike the above, Eq. 13 in

Tamar et al. (2012) is missing the multiplier Dn in the last term in the θ -recursion. The

latter multiplier originates from the gradient of the value function [see Lemma 4.2 in

Tamar et al. (2012)].

Average setting

1. AC This is an actor-critic algorithm that minimizes the long-run average sum of the

single-stage cost function h(xn), without considering any risk criteria. This is similar

to Algorithm 1 in Bhatnagar et al. (2009a).

2. RS-AC This is the risk-sensitive actor-critic algorithm that attempts to solve (40) and

is described in Sect. 6.

All our algorithms incorporate function approximation owing to the curse of dimension-

ality associated with larger road networks. For instance, assuming only 20 vehicles per lane

of a 2 × 2-grid network, the cardinality of the state space is approximately of the order 1032

and the situation is aggravated as the size of the road network increases. We employ the fea-

ture selection scheme from Prashanth and Bhatnagar (2012) in each of our algorithms. The

features are obtained with coarse congestion estimates along the lanes of the road network

as input. For instance, instead of the exact queue length on a lane, the coarse congestion

information specifies whether the queue length was between 0 to L1 units, between L1 and
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Fig. 2 The 2 × 2-grid network used in our traffic signal control experiments

L2 units or greater than L2 units. By placing magnetic sensor loops on the lane at distances

L1 and L2 from the junction, it is possible to obtain coarse congestion information. Assume

another threshold T1 for the elapsed time. Using the aforementioned coarse inputs on queue

lengths and elapsed times for each lane in the road network considered, the feature selection

is performed in a graded fashion as follows: queue length less than L1 and elapsed time

less than T1 leading a to feature value that recommends red light, queue length more than

L2 and elapsed time more than T1 leading to a feature value that recommends green light,

with the feature values for the intermediate scenarios graded appropriately. For a detailed

description of the feature selection scheme, the reader is referred to Section V-B of Prashanth

and Bhatnagar (2012). The values L1, L2 and T1 are set to 6, 14 and 130, as recommended

in Prashanth and Bhatnagar (2012).

Figure 2 shows a snapshot of the road network used for conducting the experiments from

GLD simulator. Traffic is added to the network at each time step from the edge nodes. The

spawn frequencies specify the rate at which traffic is generated at each edge node and follow

a Poisson distribution. The spawn frequencies are set such that the proportion of the number

of vehicles on the main roads (the horizontal ones in Fig. 2) to those on the side roads is

in the ratio of 100:5. This setting is close to what is observed in practice and has also been

used for instance in Prashanth and Bhatnagar (2011) and Prashanth and Bhatnagar (2012).

In all our experiments, we set the weights in the single stage cost function (78) as follows:

r1 = r2 = 0.5 and r2 = 0.6, s2 = 0.4. For the SPSA and SF-based algorithms in the

discounted setting, we set the parameter δ = 0.2 and the discount factor γ = 0.9. The

parameter α in the formulations (40) and (3) was set to 20. The step-size sequences are

chosen as follows:

ζ1(n) = 1

n
, ζ2(n) = 1

n0.75
, ζ ′

2(n) = 1

n0.7
, ζ3(n) = 1

n0.66
, n ≥ 1. (82)

Further, the constant k related to ζ4(n) in the risk-sensitive average reward algorithm is set to

1. It is easy to see that the choice of step-sizes above satisfies (A4). The projection operator Γi

was set to project the iterate θ (i) onto the set [0, 10], for all i = 1, . . . , κ1, while the projection
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Fig. 3 Performance comparison in the discounted setting using the distribution of Dθ (x0). a SPSA-G versus

RS-SPSA-G, b SF-G versus RS-SF-G, c SPSA-N versus RS-SPSA-N, d SF-N versus RS-SF-N

operator for the Lagrange multiplier used the set [0, 1000]. The initial policy parameter θ0 was

set to the κ1-dimensional vector of ones. All the experiments were performed on a 2.53GHz

Intel quad core machine with 3.8GB RAM.

9.2 Results

Figure 3 shows the distribution of the discounted cumulative cost Dθ (x0) for the algorithms

in the discounted setting. Figure 4 shows the total arrived road users (TAR) obtained for all

the algorithms in the discounted setting, whereas Fig. 5 presents the average junction waiting

time (AJWT) for the first-order SF-based algorithm RS-SF-G.9 TAR is a throughput metric

that measures the number of road users who have reached their destination, whereas AJWT

is a delay metric that quantifies the average delay experienced by the road users.

The performance of the algorithms in the average setting is presented in Fig. 6. In particular,

Fig. 6a shows the distribution of the average reward ρ, while Fig. 6b presents the average

junction waiting time (AJWT) for the average cost algorithms.

Observation 1 Risk-sensitive algorithms that we propose result in a long-term (discounted

or average) cost that is higher than their risk-neutral variants, but with a significantly lower

empirical variance of the cost in both discounted as well as average cost settings.

9 The AJWT performance of the other algorithms in the discounted setting is similar and the corresponding

plots are omitted here.
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Fig. 4 Performance comparison of the algorithms in the discounted setting using the total arrived road users

(TAR). a SPSA-G versus RS-SPSA-G, b SF-G versus RS-SF-G, c SPSA-N versus RS-SPSA-N, d SF-N versus

RS-SF-N

Fig. 5 Performance comparison

of the first-order SF-based

algorithms, SF-G and RS-SF-G,

using the average junction

waiting time (AJWT)
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The above observation is apparent from Figs. 3 and 6a, which present results for discounted

and average cost settings respectively.

Observation 2 From a traffic signal control application standpoint, the risk-sensitive algo-

rithms exhibit a mean throughput/delay that is close to that of the corresponding risk-neutral

algorithms, but with a lower empirical variance in throughput/delay.
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Fig. 6 Performance comparison of the risk-neutral (AC) and risk-sensitive (RS-AC) average reward actor-

critic algorithms using two different metrics. a average reward ρ distribution, b average junction waiting

time

Table 1 Throughput (TAR) for

algorithms in the discounted

setting: standard deviation from

50 independent simulations

shown after ±

Algorithm Risk-neutral Risk-sensitive

SPSA-G 754.84 ± 317.06 622.38 ± 28.36

SF-G 832.34 ± 82.24 810.82 ± 36.56

SPSA-N 1077.2.66 ± 250.42 942.3 ± 65.77

SF-N 1013.62 ± 152.22 870.5 ± 61.61

Figures 4, 5 and 6b validate the first part of the observation above, while the results for

the discounted risk-sensitive algorithms in Table 1 substantiate the second part in the above

observation. In particular, Table 1 presents the mean and standard deviation of the final TAR

value (i.e., the TAR value observed at the end of the policy test phase) for both first-order

and second-order algorithms in the discounted setting and it is evident that the risk-sensitive

algorithms exhibit a lower empirical variance in TAR when compared to their risk-neutral

counterparts.

From the results in Figs. 3, 4 and Table 1, it is apparent that the second-order schemes

(RS-SPSA-N and RS-SF-N) in the discounted setting exhibit better results in comparison to

first-order methods (RS-SPSA-G and RS-SF-G), from the mean and variance of the long-term

discounted cost as well as the throughput (TAR) performance.

Observation 3 The policy parameter θ converges for the risk-sensitive algorithms.

The above observation is validated for SPSA based algorithms in the discounted setting

in Fig. 7a, b. Note that we established theoretical convergence of our algorithms earlier (see

Sects. 7, 8) and these plots confirm the same. Further, these plots also show that the transient

period, i.e., the initial phase when θ has not converged, is short. Similar observations hold

for the other algorithms as well. The results of this section indicate the rapid empirical

convergence of our proposed algorithms. This observation coupled with the fact that they

guarantee low variance of return, make them attractive for implementation in risk-constrained

systems.

Observation 4 RS-SPSA, which is based on an actor-critic architecture, outperforms

TAMAR, which employs a policy gradient approach.
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Fig. 7 Convergence of SPSA based algorithms in the discounted setting—illustration using two (arbitrarily

chosen) coordinates of the parameter θ . a RS-SPSA-G, b RS-SPSA-N

45 50 55 60 65 70
0

5 · 10−2

0.1

0.15

0.2

0.25

Dθ(x0)

P
ro

b
ab

il
it

y

TAMAR

RS-SPSA-G

0 1,000 2,000 3,000 4,000 5,000

0

200

400

600

time

T
A

R

TAMAR

RS-SPSA

(a) (b)

Fig. 8 Performance comparison of RS-SPSA and TAMAR (Tamar et al. 2012) algorithms using two different

metrics. a Distribution of Dθ (x0), b total arrived road users (TAR)

Figure 8 shows the distribution of the cumulative cost Dθ (x0) and the total arrived road

users (TAR) obtained for TAMAR and RS-SPSA algorithms. It is evident that RS-SPSA

performs better than TAMAR in terms of mean as well as variance of the cumulative cost

and also in terms of the throughput (TAR) observed. These results illustrate the benefits

of using an actor-critic architecture. Note that both algorithms use the same parameterized

Boltzmann policy (see Eq. 79) and the results have been obtained with the same number

of updates, i.e., 500 SPSA updates, which is equivalent to 1000 policy gradient updates, as

each iteration of SPSA uses two trajectories to estimate the gradient. While the results in

Fig. 8 implicitly indicate that RS-SPSA gives a better estimate of the gradient in comparison

to TAMAR, we make this observation explicit in Table 2, which plots the results from the

following experiment:

Step 1 (True gradient estimation): Estimate ∇θΛ(x0) using the likelihood ratio method,

along the lines of Lemma 4.2 in Tamar et al. (2012). For this purpose, simulate a large

number, say ⊤1 = 1000, of trajectories of the underlying MDP (as before, we truncate

the trajectories to 150 steps). This estimate can be safely assumed to be very close to the

true gradient and hence, we shall use it as the benchmark for comparing our SPSA based

actor-critic scheme vs. the policy gradient approach of TAMAR.
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Table 2 ℓ2 distance between

gradient estimated using either

RS-SPSA or TAMAR and a

likelihood ratio benchmark: mean

and standard error from 100

replications shown before and

after ±, respectively

Policy TAMAR RS-SPSA

θ (i) = 0.5, ∀i 655.77 ± 18.65 142.1 ± 9.56

θ (i) = 1, ∀i 694.99 ± 16.67 149.82 ± 10.25

θ (i) = 2, ∀i 720.99 ± 14.85 146.67 ± 9.31

θ (i) = 5, ∀i 941.53 ± 25.39 200.08 ± 13.25

θ (i) = 7, ∀i 1167.78 ± 37.14 210.73 ± 12.97

θ (i) = 10, ∀i 1489.32 ± 43.43 277.15 ± 11.93

Step 2 (Policy gradient approach of TAMAR):

– Fix a policy parameter.

– Run two simulations for the policy above.

– Estimate ∇θΛ(x0) using the scheme in TAMAR.

– Calculate the distance (in ℓ2 norm) between the estimate above and the benchmark

defined in Step 1.

Repeat the above steps 100 times and collect the mean and standard errors of the ℓ2

distance in the last step above.

Step 3 (Actor-critic approach of RS-SPSA):

– Fix a policy parameter.

– Run two simulations—one for the unperturbed parameter and the another for the

perturbed parameter, where perturbation is performed as in RS-SPSA (see Sect. 4.3).

– Estimate ∇θΛ(x0) using the scheme in RS-SPSA.

– Calculate the distance (in ℓ2 norm) between the estimate above and the benchmark

defined in Step 1.

Repeat the above steps 100 times and collect the mean and standard errors of the relevant

ℓ2 distance as in Step 2.

From the mean and standard errors presented in Table 2 for six different policies, it is

evident that RS-SPSA produces more accurate estimates of the policy gradients than TAMAR,

which explains its faster convergence (compared to TAMAR) in the experiments of Fig. 8.

The trend did not change by having the true gradient estimated from a larger number of

trajectories. In particular, with ⊤1 = 5000 (see Step 1 above), the relevant ℓ2 distances

for TAMAR and RS-SPSA were observed to be (683.06 ± 26.75) and (143.02 ± 14.44),

respectively for the policy θ (i) = 1,∀i .

10 Conclusions and future work

We proposed novel actor-critic algorithms for control in risk-sensitive discounted and average

reward MDPs. All our algorithms involve a TD critic on the fast timescale, a policy gradient

(actor) on the intermediate timescale, and a dual ascent for Lagrange multipliers on the slowest

timescale. In the discounted setting, we pointed out the difficulty in estimating the gradient

of the variance of the return and incorporated simultaneous perturbation based SPSA and

SF approaches for gradient estimation in our algorithms. The average setting, on the other
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hand, allowed for an actor to employ compatible features to estimate the gradient of the

variance. We provided proofs of convergence to locally (risk-sensitive) optimal policies for

all the proposed algorithms. Further, using a traffic signal control application, we observed

that our algorithms resulted in lower variance empirically as compared to their risk-neutral

counterparts.

As future work, it would be interesting to develop a risk-sensitive algorithm that uses

a single trajectory in the discounted setting. An orthogonal direction of future research is

to obtain finite-time bounds on the quality of the solution obtained by our algorithms. As

mentioned earlier, this is challenging as, to the best of our knowledge, there are no convergence

rate results available for multi-timescale stochastic approximation schemes, and hence, for

actor-critic algorithms.
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