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Abstract: In recent times, a variety of Reinforcement Learning (RL) algorithms have been proposed for optimal tracking problem

of continuous time nonlinear systems with input constraints. Most of these algorithms are based on the notion of uniform ultimate

boundedness (UUB) stability, in which normally higher learning rates are avoided in order to restrict oscillations in state error to

smaller values. However, this comes at the cost of higher convergence time of critic neural network weights. This paper addresses

that problem by proposing a novel tuning law containing a variable gain gradient descent for critic neural network that can adjust the

learning rate based on Hamilton-Jacobi-Bellman (HJB) approximation error. By allowing high learning rate the proposed variable

gain gradient descent tuning law could improve the convergence time of critic neural network weights. Simultaneously, it also

results in tighter residual set, on which trajectories of augmented system converge to, leading to smaller oscillations in state error.

A tighter bound for UUB stability of the proposed update mechanism is proved. Numerical studies are then presented to validate

the robust Reinforcement Learning control scheme in controlling a continuous time nonlinear system.

1 Introduction

Optimal Control as a part of Control Theory seeks to minimize the
cost function subjected to system dynamics as constraints. In nature,
oragnisms act on the environment and observe the resulting reward.
Over time, the actions on the environment are tweaked to improve
the likelihood of the reward. This process is sometimes referred to as
reinforcement learning and it captures the notion of optimality [1].
Adaptive dynamic programming (ADP) refers to the mathematical
formulation and solution of the reinforcement learning problem [1].
It is a practical way of implementing optimal control. The optimal
control problem can be broadly classified into two major categories:
regulation Problems (wherein states are driven to zero) and Tra-
jectory Tracking Problems (wherein error between actual state and
desired state is driven to zero). For a general nonlinear system, opti-
mal control requires the solution of Hamilton Jacobi Bellman (HJB)
equation (which is a nonlinear partial differential equation (PDE))
that yields the optimal cost function. The optimal value function is
then used to generate optimal control action. The fundamental prob-
lem with this approach is that in even simplest of nonlinear cases,
the HJB equation is extremely difficult to solve. For linear systems
though, HJB equation is transformed into Riccati equation.

In order to alleviate the challenge of solving HJB equation di-
rectly, iterative Approximate Dynamic Programming methods were
first proposed in the works of Werbos as a method to solve opti-
mal control problem for discrete time (DT) systems in his seminal
work [2]- [3]. Neural Network (NN) were used to deal with unknown
functions. Sutton and Barto in 1995 proposed ADP for discrete time
systems [4]. The usage of two distinct NNs (also known as Actor-
Critic structure) to learn the cost function and the control action first
appeared in the works of Barto [5] where both the NNs were tuned
online. Werbos came up with a third NN to approximate the system
dynamics [6]. All of the aforementioned works deal with DT systems
and the first few works that appeared for generic nonlinear continu-
ous time system are from [7], [8], [9], [10], [11] [12] [13] [14] [15].
The works mentioned above deal with continuous time (CT) non-
linear optimal regulation problem where states are driven to zero.

Vamvoudakis and Lewis (2010) deal with CT nonlinear optimal reg-
ulation problem based on an online algorithm, which involved tuning
of the critic and the actor weights in a synchronous fashion. The
apriori knowledge of the CT nonlinear system dynamics is assumed
in both Abu-Khalaf and Lewis (2005) and Vamvoudakis and Lewis
(2010). Bhasin et al [15] introduced a novel method of comput-
ing control action for regulation problems for CT nonlinear system
where partial knowledge of system dynamics exists. Their method
demanded the knowledge of control gain matrix. The primary ad-
vantage of their methodology was simultaneous tuning of the actor
and the critic. Nonetheless, a predefined convex set was required in
their work for the implementation of the projection algorithm. This
was done to force the NN weights to remain in the set. Identifier NNs
were used in the works of Yang et al. [16] to obviate the requirement
of knowledge of drift dynamics. This technique could generate the
optimal control for nonlinear continuous time systems with unknown
structures.

Use of identifiers is not the only method that has been proposed
in the literature to deal with unknown systems while implementing
ADP. Integral Reinforcement Learning (IRL), first proposed by Vra-
bie et al. [17] is one such implementation of RL wherein the system
dynamics knowledge is not required in policy evaluation step, i.e.,
the step involving the evaluation of cost function. However, it too re-
quires the knowledge of control dynamics in policy iteration step, i.e,
the step involving generation of control action. Synchronous tuning
of actor-critic NN, based on a novel IRL algorithm was first pro-
posed by Modares et al. [14] in 2014 for continuous time nonlinear
systems. A robust ADP algorithm was proposed by Jiang and Jiang
[18] to derive the robust control for uncertain nonlinear systems. It
was achieved by synthesizing the optimal control solution with infi-
nite horizon cost for original uncertain nonlinear system. However,
like most of the ADP methods introduced above, Jiang’s formulation
[18] required initial stabilizing controller.

Most of the aforementioned ADP schemes are for regulation
problems. ADP formulations for optimal tracking control problem
(OTCP) for CT nonlinear systems was initially proposed by Zhang
et al. [19] in 2011. Zhang’s method entailed two different controllers
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viz., the adaptive optimal control (for transient behaviour, i.e to stabi-
lize the tracking error in transience in an optimal manner) and steady
state controller (for steady state, i.e, to maintain the tracking error
close to zero in steady state). However, the major limitation of his
method was that it required the control gain matrix to be invertible
in order to implement a steady state controller. This requirement was
relaxed in [20] in 2014 when they proposed a single network based
critic structure to approximate the cost function. Thereafter, [21] pro-
posed an algorithm that was used to analyze the constrained-input
optimal tracking problem with a discounted value function for CT
nonlinear systems. It should be mentioned that the knowledge of drift
dynamics is not required in [14] and [21], however the knowledge of
control dynamics is assumed). Most of the schemes discussed above
require an initial stabilizing control to initiate the process of policy
iteration.

Finding an initial stabilizing controller to begin the policy im-
provement is often a very difficult task. Recently, a way to relax
the criteria of initial stabilizing control for ADP based RL methods
(policy iteration) was proposed by Dierks and Jagannathan [22] as
a single online approximator based system. Similarly, Yang el al.
[23] proposed an ADP algorithm for robust optimal tracking con-
trol of nonlinear systems in 2015. This formulation, did not require
an initial stabilizing controller for robust optimal tracking control
problem for nonlinear systems. In order to approximate the value
function, a single critic NN was utilized in their paper. Tracking
control action was generated by critic NN. However, their method
requires the knowledge of nominal plant dynamics and does not in-
clude the input constraints. It is also noted that their method took a
lot of time to achieve convergence of critic NN weights and reduc-
tion of oscillation magnitude in state error to a small residual set.
These requirements might not be feasible for a lot of practical cases.

Inspired by [23] and [24], this paper addresses these concerns by
proposing a ADP-based robust optimal tracking controller that is
driven by a novel variable gain gradient descent tuning law. Simi-
lar to [23] and [24], the critic update law is made up of three terms,
the first term is responsible for reducing the HJB error, the second
term is responsible for stability, i.e., it comes into effect when the
Lyapunov function is growing along the augmented system trajecto-
ries and lastly the third term determines the size of the compact UUB
set on which the augmented states finally converge to. However, un-
like [23] and [24], the learning rate of gradient descent presented in
this paper is a function of HJB error. This leads to improved tracking
performance in terms of faster convergence times of critic neural net-
work weights and smaller oscillation magnitude of state error (error
between actual state and desired state).

The salient features of the proposed variable gain gradient descent
scheme for RL tracking controller are:
(i) To the best of authors’ knowledge, this is the first time when
variable learning rate is leveraged in gradient descent to tune critic
NN weights to solve robust optimal tracking problem for continu-
ous time nonlinear systems with actuator constraints. The first term
in the weight update law responsible for reducing the approximate
HJB error is driven by variable learning rate gradient descent where,
the variable learning rate is a function of HJB error. So, when HJB
error is large, the learning rate gets scaled up proportionally which
results in speedier reduction in HJB error, however the learning pro-
cess is dampened, as the HJB error approaches zero.
(ii) Further, variable gain gradient descent leads to tighter residual
set for critic NN weights thus resulting in approximated optimal con-
trollers that are closer to ideal optimal controller. This in turn leads
to improved tracking performance.

The rest of the paper is organized as follows, Section 2 introduces
robust optimal tracking controller and its preliminaries. This section
is followed by Section 3 that utilizes the concept of RL to solve
optimal trajectory tracking problem for continuous time nonlinear
system with actuator constraints. It is divided into two subsections
(subsection 3.1 and 3.2) that delve into value function approximation
using critic NN and existing parameter update law respectively. It is
then followed by Section 4 that presents the primary contribution of
this paper i.e., novel weight update law for critic NN. This section
contains subsection 4.2 that discusses the stability proof of the up-
date law presented in this paper in detail. Finally towards the end, the

paper is concluded by 5 and 6 that discusses results and conclusions
respectively.

2 Robust Optimal Tracking Controller

2.1 Problem Formulation

The uncertain nonlinear dynamics is given by the affine-in-control
equation,

ẋ = f(x) + g(x)u+∆f(x) (1)

where f(x) and g(x) are known dynamics (drift and control cou-
pling dynamics) and ∆f(x) is the unknown matching perturbation.

Assumption 1. The drift dynamics i.e., f(x) is Lipschitz continu-
ous in x ∈ Ω ⊂ R

n and g(x) is bounded such that, ∃gM > 0 ∋ 0 <
‖g(x)‖ < gM , ∀x ∈ R

n. It is also assumed that matching condi-
tion is satsified by the perturbation i.e., ∆f(x) = g(x)d(x), where
d(x) ∈ R

m is an unknown function bounded by a known function
dM (x) > 0.

Assumption 2. The commanded trajectory, i.e, the ẋd(t) : R →
R
n is bounded and is Lipschitz continuous satisfying H(0) = 0, ∋,

ẋd = H(xd).

These two assumptions are in line with Assumption 2 of [23] and
Assumptions 1, 2 and 3 of [24].

Objective of the control: It is required to derive a robust optimal
tracking controller that makes the system trajectories x follow the
desired reference trajectory xd with state error in a sufficiently small
neighborhood of the origin in the presence of unknown but bounded
d(x).

2.2 Preliminaries of Robust OTCP

In [24] the feedback controller was derived for constrained input
case in the presence of unknown uncertainties for optimal regulation
problem. In this paper optimal tracking problem is considered with
actuator constraints and unknown uncertainties. In order to achieve
the desired objective, an augmented system dynamics that consists
of dynamics of errors (ė) and desired states (ẋd) is defined first. Us-
ing (1) and Assumptions (1) and (2), tracking error dynamics can be
written as:

ė = ẋ− ẋd

ė = f(xd + e) + g(xd + e)u(t)−H(xd(t)) + ∆f(xd + e)
(2)

Therefore, the dynamics of augmented system, given as z =
[eT , xTd ]

T , can compactly be written as:

ż = F (z) +G(z)u+∆F (z) (3)

where, u ∈ R
m, F : R2n → R

2n and G : R2n → R
2n×m are

given by:

F (z) =

(
f(e+ xd)−H(xd)

H(xd)

)

, G(z) =

(
g(e+ xd)

0

)

(4)

∆F (z) ∈ R
2n and is defined as ∆F (z) = G(z)d(z) with d(z) ∈

R
m and ‖d(z)‖ ≤ dM (z). Following Assumptions 1 and 2 and

Eq. (4), ‖F (z)‖ ≤ Lf‖z‖ and ‖G(z)‖ ≤ gM . In the subsequent

analysis, dM , dM (z).
One of the prime advantages of creating an augmented system,

is that, the controller does not require invertibility of control gain
matrix and a single controller comprising of both steady state con-
troller and transient control can be synthesized [21] [25]. Nominal
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augmented dynamics is given by:

ż = F (z) +G(z)u (5)

The infinite horizon discounted cost function for (5) is considered
as follows [21] :

V (z) =

∫
∞

t

e−γ(τ−t)[d2M + ū(z, u)]dτ (6)

where, ū = zTQ1z + C(u) is the utility function comprising of
augmented state z and the control action u. The positive definite

diagonal matrix Q1 ∈ R
2n×2n is defined as,

Q1 =

(
Q 0n×n

0n×n 0n×n

)

(7)

where, Q ∈ R
n×n is a positive definite diagonal matrix with non

zero entries.

Remark 1. Following from [23] and [24], it can be shown that ro-
bust control problem for (3) can be transformed into optimal tracking
control problem for nominal augmented system (5) with discounted
cost function (6).

In trajectory tracking problems, xd contained in z might not go
to 0 in steady state and u encapsulates both optimal part and steady
state part, hence, infinite horizon cost index comprising of z, umight
blow up and become infinite. Hence, in order to make V finite, dis-
counted cost function of the form (6) is chosen for trajectory tracking
problems. Generally, the function C(u) is quadratic in nature, how-
ever, it can be non-quadratic [26], [27], if, control constraints are
taken into account, i.e, |ui| ≤ um, i = 1, 2...m. This corresponds
to an input-constrained scenario, which is also considered in this
paper. Thus, C(u) is defined in this paper as follows [7],[26]-[28].

C(u) = 2um

∫u
0
(ψ−1(ν/um))TRdν

= 2um

m∑

i=1

∫ui

0
(ψ−1(νi/um))TRidνi

(8)

where, R ∈ R
m×m is a positive definite matrix, ψ ∈ R

m is a func-
tion possessing following properties
(i) It is odd and monotonically increasing
(ii) It is bounded function (|ψ(.)| ≤ 1) that belongs toCp(p ≥ 1). In
literature dealing with constrained input, some of the possible candi-

dates for ψ include, tanh, erf, sigmoid. In this paper ψ−1(.) =
tanh−1(.). It can be clearly observed that C(u) (as shown in
Lemma 7.2 in appendix) is positive. The discount factor, 0 ≤ γ, de-
fines the value of utility in future. The first term inside the integral
caters to any perturbations or uncertainties that might appear in the
plant dynamics.

Differentiating (6) along the nominal system trajectories the
following can be obtained [14]:

Vz(z)(F (z) +G(z)u)− γV (z) + d2M + ū(z, u)

= H(z, u, Vz(z)) = 0
(9)

where, H(.) represents the Hamiltonian and Vz(z) , ∇zV (z). Let

V ∗(z) ∈ C1 be the optimal cost function that satisfies H(.) = 0 and

is given by:

V ∗(z) = min
u

∫
∞

t

e−γ(τ−t)[d2M + ū(z, u)]dτ (10)

Also in the subsequent analysis, V , V (z), V ∗ , V ∗(z) and V ∗

z ,

V ∗

z (z). Thus, H(.) = 0 can be re-written in terms of optimal cost as:

∇zV ∗(F (z) +G(z)u)− γV ∗(z) + d2M + ū(z, u) = 0 (11)

Differentiating (11) with respect to (w.r.t.) u, i.e, ∂H/∂u = 0,
closed form of optimal control action u∗ is obtained as:

u∗ = −um tanh
( 1

2um
R−1G(z)T∇zV ∗

)

(12)

Substituting (12) in (11) the HJB equation is formulated as:

V ∗

z F (z)− 2u2mA
T (z) tanh(A(z)) + d2M + zTQ1z+

2um

∫u∗

0
tanh−1(ν/um)TRdν − γV ∗ = 0

(13)

where V ∗

z = ∇zV ∗, and A = (1/2um)R−1G(z)TV ∗

z ∈ R
m. The

C(u) or last but one term in left hand side of (13) can be simplified
as:

2um

∫
−um tanhA(z)

0
tanh−1(ν/um)TRdν

= 2u2mA
T (z)R tanhA(z) + u2m

m∑

i=1

Ri ln[1− tanh2Ai(z)]

(14)

Eq. (14) follows from Lemma 7.1 given in Appendix 7. Now, using
(14), Eq. (13) can further be simplified into:

V ∗

z F (z) + d2M + zTQ1z + u2m

m∑

i=1

Ri ln[1− tanh2Ai(z)]− γV ∗ = 0

(15)
Eq. (15) is the HJB equation which is a nonlinear PDE in optimal
cost function. Note that ln (.) used in this paper is natural log with
base e. Now, the optimality of u∗ (defined in (12)) and asymptotic
stability of (e = x− xd) would be discussed, which follows the line
of logic as Theorem 1 of [21].

Theorem 2.1. For augmented system defined in (3), and its asso-
ciated discounted cost function defined in (6) with V ∗ being the
solution of the HJB equation, the controller (u∗) described as in (12)
minimizes the performance index (6) over all control policies con-
strained to |ui| ≤ um. Further, it also ensures asymptotic stability
of error dynamics (2) in the limiting sense when γ → 0.

Proof: In the formulation of robust OTCP, it can be observed from
(6) and (9) that both V (z) and H contain dm (upper bound of un-
known perturbation d(z)) in their expressions, respectively. This is
the difference w.r.t. the expressions of V (z) and H corresponding to

OTCP in [21]. It is evident that the presence of the robust term d2M
in the performance index does not alter the proof for optimality of
u∗. Therefore, for details of this part of the proof refer to the proof
of Theorem 1 in [21].

However, the presence of the robust term d2M in the perfor-
mance index affect the proof of the stability in the following way.
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Differentiating V ∗(z) along the augmented system trajectories,

∇zV ∗(F (z) +G(z)u+∆F (z))− γV ∗(z) + d2M+

ū(z, u) = 0
(16)

Multiplying e−γt to both sides of Eq. (16),

de−γtV (z(t))

dt
= −e−γt[d2M + ū(z, u∗)] ≤ 0 (17)

Note that, (17) has an additional term (d2M ) on the right hand side
(RHS) of the equation compared to the Eq. (43) of [21]. Therefore,
following the same methodology as [21], it can be observed that,
tracking error is asymptotically stable when γ = 0. However, when
γ 6= 0, the considering V ∗ and C(u∗) to be finite and using the fact

that zTQ1z = eTQe, the stability can be analyzed in two cases,
namely,

Case (a): When A < 0 ⇒ γ <
d2
M

+C(u∗)
V ∗ , then in this case,

V̇ < 0, for all values of e implying asymptotic stability. In order
to ensure asymptotic stability, use of sufficiently small value of γ is
suggested.

Case (b): When A > 0 ⇒ γ >
d2
M

+C(u∗)
V ∗ , then V̇ < 0, only

when following inequality is satisfied, i.e.,

‖e‖ >
√

γV ∗ − d2M − C(u∗)

λmin(Q)
(18)

The RHS of Eq. (18) gives the UUB bound for state error e, which
is valid only when A > 0.

�

3 Background of Optimal Tracking Using RL

3.1 Approximation of Value function using Critic NN

For applying the optimal controller (12), V ∗ must be calculated first.
This is difficult to achieve because it requires solution to (11), which
is a nonlinear PDE. In order to by-pass solving the HJB equation
directly, an NN will be utilized to approximate the value function.
For that, in this paper, the value function is assumed to be smooth.
Let there exist ideal weight parameter vector W that can accurately
approximate the value function as:

V ∗(z) =WTϑ(z) + ε (19)

where, W ∈ R
N (N being the size of the regressor vector) denotes

the ideal weight vector that can closely approximate the value func-

tion. And, ϑ(z) = [ϑ1(z), ϑ2(z), ..., ϑN (z)]T ∈ R
N represents a

set of regressor functions, with following properties such as:

ϑj(z) ∈ C1 and ϑj(0) = 0 and ϑjs are linearly independent of each
other. Substituting (19) in (12),

u∗(z) = −um tanh
( 1

2um
R−1G(z)T∇ϑTW + εuu

)

(20)

where, εu∗ = (1/2um)R−1GT (z)∇ε ∈ R
m. Next, substituting

(19) in (15), the HJB equation can be written as,

WT∇ϑF (z)− γWTϑ+ zTQ1z + d2M+

u2m

m∑

i=1

ln[1− tanh2 (τ1i + ǫu∗

i
)] +∇ǫTF (z) = 0

(21)

where, τ1 = (1/2um)R−1G(z)T∇ϑTW = [τ11, ..., τ1m]T ∈ R
m,

εu∗ = [εu∗

11
, εu∗

12
, ..., εu∗

1m
]T . Upon using Mean value theorem

[29], Eq. (21) becomes:

WT∇ϑF (z)− γWTϑ+ zTQ1z + d2M+

u2m

m∑

i=1

ln[1− tanh2 (τ1i)] + ǫHJB = 0
(22)

where, ǫHJB represents the HJB approximation error [7],[14] hav-
ing a form similar to the one in [24] and is given as,

ǫHJB = ∇ǫTF (z) +
m∑

i=1

2u2m
p1i

tanh p2i(tanh
2 p2i − 1)ǫu∗

i

(23)
where, p1i ∈ R and p2i ∈ R considered between 1− tanh2Ai(z)
and 1− tanh2 τi. Now, using (19) and mean value theorem, the
optimal control can be re-written as:

u∗ = −um tanh (τ1(z)) + ǫu (24)

where τ1(z) = (1/2um)R−1ĜT∇ϑTW = [τ11, ..., τ1m]T ∈ R
m

and ǫu = −(1/2)((Im − diag(tanh2 (q)))R−1ĜT∇ǫ) with q ∈
R
m and qi ∈ R considered between τ1i + εuui and ǫuui i.e., ith

element of τ1 + εuu and ǫuu, respectively such that tangent of
tanh (q) is equal to the slope of the line joining tanh (τ1 + ǫuu)
and tanh εuu. For the detailed proof, refer to Lemma 7.3. In the

subsequent analysis, τ1 , τ1(z).
Since ideal weights that can accurately approximate the value

function are unknown, their estimates will be used instead as follows.

V (z) = ŴTϑ(z) (25)

Error in critic weights is given by W̃ =W − Ŵ . Using (25) the
estimated optimal control action can be described as:

û(z) = −um tanh

(

1

2um
GT (z)∇ϑT Ŵ

)

(26)

From (15) and (25) the HJB approximation error is obtained as
follows.

Ĥ(z, Ŵ ) = ŴT∇ϑF (z)− γŴTϑ+ zTQ1z + d2M+

u2m

m∑

i=1

ln[1− tanh2 (τ2i)] , e(z, Ŵ )
(27)

where, e(z, Ŵ ) is the HJB error (referred to as ê in subsequent dis-

cussion) and τ2(z) = (1/2um)GT (z)∇ϑT Ŵ = [τ21(z), ..., τ2m(z)]T ∈
R
m. Next, from (22) and (27) the HJB error can be expressed in

terms of (W̃ which is W − Ŵ ) and W as [24]:

e = −W̃T∇ϑF (z) + γW̃Tϑ+

m∑

i=1

u2m[Γ(τ2i)− Γ(τ1i)]− ǫHJB

(28)
where, Γ(τιi) = ln[1− tanh2 ιi], ι = 1, 2. It is observed that for all
τιi(z) ∈ R, Γ(τιi) can be represented by:

Γ(τιi) = −2 ln[1 + exp(−2τιisgn(τιi))]− 2τιisgn(τιi) + ln(4)
(29)

where, sgn is signum function. Also note that:

m∑

i=1

Γ(τιi) = −2
m∑

i=1

ln[1 + exp(−2τιisgn(τιi))]−

2τTι sgn(τι) +m ln(4)

(30)
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Therefore, using (28) and (30), e in terms of W̃ , is obtained as [24]:

ê = 2u2m[τT1 sgn(τ1)− τT2 sgn(τ2)]− W̃∇ϑF (z) + u2m∆τ

− ǫHJB

= um[WT∇ϑG(z)sgn(τ1(z))−
ŴT∇ϑG(z)sgn(τ2(z))]W̃

T∇ϑF (z) + u2m∆τ − ǫHJB

= −W̃T [∇ϑF (z)− um∇ϑG(z)sgn(τ2)] + ρ(z)
(31)

where,

∆τ = 2
m∑

i=1

ln

(

1 + exp[−2τ1i(z)sgn(τ1i(z))]

1 + exp[−2τ2i(z)sgn(τ2i(z))]

)

ρ(z) = umW
T∇ϑG(z)[sgn(τ1(z)− sgn(τ2(z)))] + u2m∆τ

− ǫHJB
(32)

3.2 Existing update laws in literature

In traditional RL literature for continuous time nonlinear systems,

a quadratic cost function of the form, E = (1/2)ê2 is chosen,
and then gradient descend (GD) is used to drive the parame-

ters Ŵ so as to minimize this cost E and thus to minimize
the HJB error. The following tuning law has been proposed in
[10],[15],[16],[19],[21],[30].

˙̂
W = − α

(1 + φTφ)2
∂E

∂Ŵ
= − αφ

(1 + φTφ)2
ê (33)

where, φ = ∇ϑ(F (z) +G(z)û), α > 0 is the learning rate, and

1 + φTφ is the normalization factor. Then in 2015, Yang et al. [24]
proposed a modified version of (33) for optimal regulation problems
wherein they used constant learning rate in their gradient descent
formulation. Their update mechanism was given as below.

˙̂
W = −αφ̄

(

Y (x) + d2M (x) + u2m

m∑

i=1

ln[1− tanh2 (τ2i(x))]

)

+
α

2
Ξ(x, û)∇ϑG(x)[Im − B(τ2(x))]GT (x)L2x

+ α
(

(K1ϕ
T −K2)Ŵ + um∇ϑG(x)[tanh (τ2(x))−

sgn(τ2(x))]
ϕT

ms
Ŵ
)

(34)

where, x is the actual state of the system (not the aug-

mented state), α > 0, φ = ∇ϑ(F (x) +G(x)û), φ̄ = φ/m2
s ,

ϕ = φ/ms, ms = 1 + φφT , Y (x) = ŴT∇ϑF + xTQ1x, B =
diag{tanh2 (τ2i(x))}, i = 1, 2...,m.

4 Variable gain-based update law

4.1 Update law

It can be observed in [23] and [24] that significantly high amount
of time is taken by the approximate optimal controller to bring the
states [24] or the error in states (x− xd) [23] to a small residual set
around origin. In both the above papers, a smaller learning rate was
selected to avoid oscillations. However, small values of learning rate
results in longer learning phase. In order to address this issue, in this
paper, a tuning law with variable learning rate gradient descent is

proposed and expressed as follows.

˙̂
W = −α(|e(z, Ŵ )|k2 + l)φ̄e(z, Ŵ )

+
α

2
Ξ(z, û)∇ϑG(z)[Im − B(τ2(z))]GT (z)L2z

+ α(|e(z)|k2 + l)
(

(K1ϕ
T −K2)Ŵ

+ um∇ϑG(z)[tanh (τ2(z))− sgn(τ2(z))]
ϕT

ms
Ŵ
)

(35)

where, α > 0 is the learning rate, l is a small positive constant,

and e(z, Ŵ ) is the HJB error as mentioned in (27). In the sub-

sequent analysis, g1 , |ê|k2 + l further, to ease the development
of stability proof, k2 = 1, however it can be set to any posi-
tive value. In (35), the term φ is defined as φ = ∇ϑ(F (z) +
G(z)û)− γϑ(z), φ̄ = φ/m2

s , ϕ = φ/ms, ms = 1 + φφT , B =
diag{tanh2 (τ2i(z))}, i = 1, 2...,m. The term Ξ(z, û) is a piece-
wise continuous indicator function defined as in [24].

Ξ(z, û) =

{

0, if Σ(z(t)) < 0

1, otherwise
(36)

where, Σ(z(t)) = LT2z(F (z) +G(z)û) denotes the rate of variation
of Lyapunov function along the system trajectories. It is to be noted

that, L2 = (1/2)zT z and hence L2z = z. The constants, k2 > 0
provide an augmentation to the controller by enabling accelerated

learning, when the HJB error (e(z, Ŵ )) is large. On the other hand,

it dampen the learning process when e(z, Ŵ ) diminishes to a small
quantity. Proper choice of this constants allows for the use of higher
value of learning rate without significant oscillations as will be ob-
served in the simulation results presented in Section 5. Thus, the
controller can bring the error within a small residual set around
origin much quickly without any significant oscillations.

Note that the form of (35) is different from (34) that was presented
in literature [24] in following ways.

• The φ in (35) has an additional term γϑ(z) and e(z, Ŵ ) has

−γŴϑ(z). Both these terms arise because of the discounted cost
function that was used in (35) compared to (34).
• The variable gain in first term of (35) is chosen to be a function of
HJB error. This has been done in order to accelerate the reduction of
HJB error when it is large and dampen the reduction process when
the HJB error becomes small. The added benefit of variable gain is
that it shrinks the size of the residual sets for both error in state and
error in parameter as will become clear in the stability proof.
• The second term in (35) is dependent on the variation of Lyapunov
function along the system trajectories. It is 0, when the Lypunov
function is strictly decreasing along the system trajectories as shown
by the piece-wise indicator function Ξ(z, û). However it comes into
effect when the Lyapunov function is non-decreasing along the sys-
tem trajectories. It implies that the control action generated at any
time step during policy improvement leads to growth in Lyapunov
function along the augmented system trajectories. The second terms
starts pulling the critic weights in the direction where the Lyapunov
is no more increasing along the system trajectories. In order to fully
understand it, let Σ denote the variation of Lyapunov function along
the sytem trajectories as Σ = L2z(F (z)− umG(z) tanh τ2(z))
◦ Gradient descent is utilized in [24] to drive the weights in
direction such that Σ can be reduced and eventually made negative.

−α ∂Σ
∂Ŵ

= −α∂[L2z(F (z)− umG(z) tanh τ2(z))]

∂Ŵ

= α

(

∂τ2(z)

∂Ŵ

)T
∂[umL2zG(z) tanh τ2(z)]

∂Ŵ

=
α

2
∇ϑG(z)[Im − B(τ2(z))]GT (z)L2z

(37)

• The last term in (35) provides control over the UUB sets as men-
tioned in [24]. Proper choice of gains K1 and K2 can shrink the
UUB ball close to the origin.
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Using (31) and (35) the dynamics of error in critic weights is then
given as,

˙̃W = αg1
ϕ

ms

[

− W̃Tφ+ umW̃T∇ϑG(z)F(z) + ρ(z)
]

−
α

2
Ξ(z, û)∇ϑG(z)

[

Im − B(z)
]

GT (z)L2z

+ αg1

[

∇ϑG(z)F(z)
ϕT

ms

Ŵ + (K2 −K1ϕ
T )Ŵ

]

(38)

where, F(z) = sgn(τ2(z))− tanh (τ2(z)).

4.2 Proof of Stability of Online Tuning Law

Assumption 3. Ideal NN weight vector W is considered to be
bounded, i.e., ‖W‖ ≤WM . There exists positive constants bǫ and
bǫz that bound the approximation error and its gradient such that
‖ε(z)‖ ≤ bǫ and ‖∇ε‖ ≤ bǫz . This is in line with Assumptions 3b
of [10], Assumption 5 of [24] and Assumptions made in Section 4.1
in [21].

Assumption 4. Critic regressors are considered to be bounded as
well: ‖ϑ(z)‖ ≤ bϑ and ‖∇ϑ(z)‖ ≤ bϑz . This is in line with As-
sumption 4 of [23], Assumption 6 of [24] and Assumption 4 of
[21].

In this paper, both the assumptions hold true because, there ex-
ists a stabilizing term (second term) in the update law (35) that
comes into effect when Lyapunov function starts growing along the
system trajectories. This term helps in pulling the system out of
region where Lyapunov function is growing thus ensuring that the

trajectories remain finite within a region Ω1 ⊂ R2n.

Assumption 5. Let L2 ∈ C1 be a continuously differentiable and

radially unbounded Lyapunov candidate for (5) and satisfies L̇2 =
LT2z(F (z) +Gu∗) < 0. Furthermore, a symmetric and positive def-

inite Λ(z) ∈ R
n×n can be found, such that, LT2z(F (z) +Gu∗) =

−LT2zΛ(z)L2z , where L2z is the partial derivative of L2 wrt z. In

the subsequent analysis, Λ , Λ(z).

Following Lipschitz continuity of (F (z) +Gu∗) in z, this as-
sumption can be shown reasonable. It is also in line with Assumption
4 mentioned in [24] and [22].

Theorem 4.1. Let the CT nonlinear augmented system be described
by (5) with associated HJB as (15) and approximate optimal control
as (26) and let the Assumptions 1-5 hold true, then the tuning law

(35) makes L2z and W̃ uniform ultimate boundedness (UUB) sta-
ble. Further, the UUB set could be made arbitrary small by proper
selection of gains K1,K2 and exponent k2 in (35).

Proof: Let the Lyapunov candidate be L = L2 + (1/2α)W̃T W̃
(Where L2 is a positive definite function of augmented state as
defined after (35)). Derivative of L w.r.t. time is obtained as follows.

L̇ = L2z(F (z) +G(z)û) + ˙̃Wα−1W̃

= L2z(F (z)− umG(z) tanh (τ2(z))) +
˙̃Wα−1W̃

(39)

Utilizing error dynamics of weights, i.e (38) and using the fact that
ż = F (z) +G(z)û, the last term of Lyapunov derivative becomes:

˙̃Wα−1W̃ =
[

− W̃Tφ+ umW̃T∇ϑG(z)F(z) + ρ(z)
]

g1
ϕT

ms

W̃

−
1

2
g2Ξ(z, û)L

T
2zG(z)

[

Im − B(τ2(z))
]

GT (z)∇ϑT W̃

+ g1umW̃∇ϑG(z)F(z)
ϕT

ms

Ŵ + g1W̃
T (K2Ŵ −K1ϕ

T Ŵ )

= −g1W̃ϕϕT W̃ + g1δ(z)ϕ
T W̃ + g1W̃

T β(z) + g1W̃
T (K2Ŵ

−K1ϕ
T Ŵ )−

1

2
Ξ(z, û)LT

2zG[Im − B(τ2(z))]G
T (z)∇ϑT W̃

︸ ︷︷ ︸
S

(40)

where δ(z) , ρ(z)/ms and β(z) , um∇ϑG(z)F(z)(ϕT /ms)W .

Let, A , −g1W̃ϕϕT W̃ + g1δ(z)ϕ
T W̃ + g1W̃

T β(z)
+ g1W̃

T (K2Ŵ −K1ϕ
T Ŵ ). The last term in (40) can be ex-

pressed as:

W̃T (K2Ŵ −K1ϕ
T Ŵ ) = W̃TK2W − W̃TK2W̃−

W̃TK1ϕ
TW + W̃TK1ϕ

T W̃
(41)

Let,

J , [W̃Tϕ, W̃T ]T (42)

then (40) can be re-written as:

˙̃WT W̃/α = A+ S ≤ g1(−λmin(M)‖J ‖2 + bN‖J ‖) + S
(43)

where, M and N are defined as:

M =

(
1 − 1

2K
T
1

− 1
2K1 K2

)

; N =

(
δ(z)

(β(z) +K2W −K1ϕ
TW )

)

(44)

where, bN is the upper bound of N which is given by the expression:

‖N‖ ≤ bN = max(‖N‖) (45)

In (44), ifK1 andK2 are chosen such thatK2 is symmetric, thenM
becomes symmetric. Further, in order to ensure that λmin(M) is real
and positive, K1 and K2 should be selected such that M is positive
definite. Further, A can be developed by leveraging g1 as a function

of W̃ . From (31), g1 as a function of W̃ is, g1 = |ê(W̃ )|k2 + l (with
k2 = 1).

g1 = | − W̃Tφ+ umW̃
T∇ϑG(z)F(z) + ρ(z)|+ l

≤ ‖ρ‖+ ‖W̃‖‖φ‖+ um‖W̃‖bϑzgM2
√
m+ l

≤ ‖W̃‖ (‖φ‖+ umbϑzgM2
√
m)

︸ ︷︷ ︸

A1

+(‖ρ‖+ l)
︸ ︷︷ ︸

A2

(46)

where, ‖F‖ ≤ 2
√
m. It could be noted that δ(z) = ρ(z)/ms is one

of the component of vector N , and by appropriately selecting K1
and K2 in N , and selecting a very small offset l, it can be ensured

thatA2 = ‖ρ‖+ l ≤ bN . Also, from (42), ‖W̃‖ ≤ ‖J ‖ , therefore,

g1 ≤ A1‖J ‖+ bN (47)

Therefore, the Lyapunov derivative can be rendered in the follow-
ing inequality:

L̇ ≤ L2z(F (z) +G(z)û)+

(A1‖J ‖+ bN )(−λmin(M)‖J ‖2 + bN‖J ‖) + S
(48)

Based on the variation of Lyapunov function along the system tra-
jectories, which is captured by the value of the piecewise continuous
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function, Ξ(z, û), (48) can be explained in two cases:
Case(i): When Ξ(z, û) = 0 ⇒ S = 0.

By definition, in this case, LT2z ż < 0 (where ż = F (z) +G(z)û).
Therefore,

L̇ ≤ LT2z ż + (A1‖J ‖+ bN )(−λmin(M)‖J ‖2 + bN‖J ‖)
︸ ︷︷ ︸

A
(49)

In order for L̇ to be negative definite, A should be negative, now for
‖J ‖ 6= 0, A < 0 when,

−A1λmin(M)‖J ‖2 + (bNA1 − λmin(M)bN )
︸ ︷︷ ︸

, B1

‖J ‖+ b2
N

< 0

⇒‖J‖ >
B1

2A1λmin(M)
+

√

B2

1

4A2

1
λ2

min
(M)

+
b2
N

A1λmin(M)

⇒‖J‖ >
bN

λmin(M)

[

1

2
(1− γ1) +

√
1

4
(1− γ1)

2 − γ1

]

︸ ︷︷ ︸

, Γ

(50)

where, γ1 ,
λmin(M)

A1
, therefore, if, 0 ≤ γ1 ≤ 3−

√
8 ≈ 0.17,

then .478 ≤ Γ ≤ 1. Also, recall from the definition of J in (42),
the upper bound of ‖J ‖ can be obtained as,

‖J ‖ ≤
(√

1 + ‖ϕ‖2
)

‖W̃‖ (51)

Therefore, from lower and upper bounds of J in (50) and (51),

respectively, the bound over ‖W̃‖ becomes,

‖W̃‖ >
bN

λmin(M)
Γ

√

1 + ‖ϕ‖2
(52)

It could be seen that W̃ is UUB stable with bound given in the
RHS of (52). Also, note that if Eq. (52) holds, then the negative

definiteness of L̇ is ensured.
Case(ii): If Ξ(z, û) = 1

By definition, in this case, the Lyapunov function is non-decreasing
along the system trajectories. The analysis of this case follows sim-
ilarly as in the previous one, except, the last term in the right hand
side (RHS) of (48) also needs to be considered. For that, (12), (48)
and Assumption 5 would be utilized.

L̇ ≤ LT
2zF (z)− umLT

2zG(z)
[

tanh (τ2(z)) +
2

2um

[Im

− B(τ2(z))]G
T∇ϑT W̃

]

+ (A1‖J ‖+ bN )(−λmin(M)‖J ‖2 + bN‖J ‖)

(53)

Now, adding and subtracting LT2z(G(z)u∗) one gets:

L̇ ≤ LT
2z(F (z) +Gu∗)− umLT

2zG(z)
[

tanh (τ2(z))

+
g2

2um

[Im − B(τ2(z))]G
T∇ϑT W̃

]

+ (A1‖J ‖+ bN )

× (−λmin(M)‖J ‖2 + bN‖J ‖)− LT
2zG(z)(−um tanh (τ1(z)) + ǫu)

(54)

Using the inequality ‖ tanh (τ1(z))− tanh (τ2(z))‖ ≤ Tm (see
Lemma 7.4 in Appendix 7), Assumption 3, 4 and 5, Inequality (54)

can be re-written as:

L̇ ≤ −LT
2zΛL2z − LT

2zG(z)ǫu + um‖LT
2z‖gM‖ tanh (τ1(z)

− tanh τ2(z)‖+ (A1‖J ‖+ bN )(−λmin(M)‖J ‖2 + bN‖J ‖)

+
g2

2
‖LT

2z‖‖N1∇
TϑW̃‖

≤ −λmin(Λ)‖L2z‖
2 + ‖L2z‖(TmumgM +

g2

2
‖N1∇

TϑW̃‖)

+ (A1‖J ‖+ bN )(−λmin(M)‖J ‖2 + bN‖J ‖) +
1

2
‖LT

2z‖g
2

M
bǫz

(55)

where, N1 , G(z)[B(τ2(z))− Im]GT (z). Now, two positive con-
stant numbers n1 and n2 are defined such that n1 + n2 = 1. In the
following analysis, ‖W̃‖2 ≤ ‖J ‖2 is also utilized. Therefore the
inequality in (55) can be developed as follows:

L̇ ≤ −n1λmin(Λ)‖L
T
2z‖

2 + ‖L2z‖TmumgM +
‖g2/2N1∇Tϑ‖2‖W̃‖2

4n2λmin(Λ)

− n2λmin(Λ)
(

‖LT
2z‖ −

‖g2/2N1∇Tϑ‖‖W̃‖

2n2λmin(Λ)

)
2

+A

≤ −n1λmin(Λ)
︸ ︷︷ ︸

, a

‖LT
2z‖

2 + ‖L2z‖ (TmumgM +
1

2
g2
M

bǫz)
︸ ︷︷ ︸

, b

+

(
‖g2/2N1∇Tϑ‖2

4n2λmin(Λ)

)

︸ ︷︷ ︸

, c

‖J ‖2 + (A1‖J ‖+ bN )(−λmin(M)‖J ‖2 + bN‖J ‖)

≤ −a

(

L2z −
b

2a

)
2

+
b2

4a
+ ‖J ‖

(

−A1λmin(M)‖J ‖2

+ (A1bN − bNλmin(M) + c)‖J ‖+ b2
N

)

(56)

In order for L̇ to be negative definite,

− a

(

L2z −
b

2a

)2

+
b2

4a
< 0 ⇒ ‖L2z‖ >

b

a
(57)

and

‖J ‖
(

−A1λmin(M)‖J ‖2 + (A1bN − bNλmin(M) + c)‖J ‖

+ b2
N

)

< 0

⇒‖J‖ >
bN

λmin(M)




1

2
(1− γ1 + α2) +

√
(
1

2
(1− γ1 + α2)

)
2

+ γ1





︸ ︷︷ ︸

, Γ
′

(58)

where,α2 = c/(A1bN ) ≥ 0 and Γ
′

is a fractional scaling factor that

can scale the term bN
λmin(M)

. Now, in order for Γ
′

to lie between

[c1, c2] such that 1
2 < c1 < c2 < 1, γ1 must lie between,

2c2(1 + α2)− c22
2c2 − 1

≤ γ1 ≤ 2c1(1 + α2)− c21
2c1 − 1

(59)

From (51) and (58), UUB set for W̃ is,

‖W̃‖ >
bN

λmin(M)
√

1 + ‖ϕ‖2
Γ

′

(60)

Therefore, for L̇ to be negative definite, both (57) and (60) should
hold true.
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This completes the stability proof of the update mechanism (35).
�

Remark 2. Note that for Case (i), if W̃ satisfies (52), and for Case
(ii), if L2z and W̃ satisfy (57) and (60), respectively, then it leads

to decreasing W̃ and L2z . It is evident that when the Lyapunov
function is decreasing along the augmented state trajectory, variable
learning rate has a direct influence over UUB bound for error in critic

NN weights (W̃ ). By suitable selection of K1 and K2, the scaling

factor Γ in (50) can be varied between .478 and 1 or Γ
′

in (58)
can be varied between 1

2 and 1 and accordingly the UUB bound of

W̃ gets scaled down compared to that
(

= bN
λmin(M)

)

with constant

learning rate (also derived in Eq. (45) of [24]). The UUB set for W̃
for constant learning rate gradient descent is ‖W̃‖ > bN

λmin(M)
for

both Case (i) and (ii). This leads to critic NN weights converging
close to their ideal weights in finite time.

Remark 3. Further, variable learning can scale the learning speed
based on the instantaneous value of the HJB approximation er-
ror. This leads to faster convergence time as compared to constant
learning rate gradient descents

These advantages are exemplified in the following section.

5 Results and Simulation

In this section we will consider the numerical simulation of the
parameter update law presented in this paper.

1. At first the parameter update law is validated on a generic non-
linear system with two different actuator limits and the results are
contrasted against the constant learning parameter update law.
2. Thereafter, the variable gain update law is validated on a full 6-
DoF nonlinear model of UAV and the result is contrasted against the
constant learning-based parameter update law.

5.1 Nonlinear system

Consider a continuous time nonlinear system ẋ = f(x) + g(x)u as
mentioned in [23],

f =

( −x1 + x2
−(x1 + 1)x2 − 49x1 + .5((cos(x1))

3 sin(x2))

)

=

(
f1
f2

)

g =

(
0
1

)

=

(
g1
g2

)

(61)

Drift dynamics f1, f2 and control coupling dynamics (g1, g2) are as
mentioned in (61).

This continuous time nonlinear system is required to track a
desired reference system given as [23].

(
ẋd1
ẋd2

)

=

(
xd2

−49xd1

)

(62)

The augmented state vector z = [ex1, ex2, xd1, xd2]
T . The Lya-

punov function L2 is selected as L2 = 1/2zT z. Also, R = 1, and
Q1 (refer to Eqs. (6), (8)) is selected as,

Q1 =

(
I2 0
0 02×2

)

(63)

where, I2 = diag(10, 10). Regressor vector for critic network is
selected as [23]. The larger the size of the regressor vector with mul-
tiple polynomial powers of augmented state z, the accurate will be

the results [31].

ϑ(z) = [z21 , z
2
2 , z

2
3 , z

2
4 , z1z2, z1z3, z1z4, z2z3, z2z4, z3z4]

T
(64)

Initial state of the system is chosen to be, x(0) = [1.5, 1.5]T .

Critic weights are initialized to 0, i.e, Ŵ (0) = 0. A dither-

ing noise of the form n(t) = 2e−0.009t(sin(11.9t)2 cos(19.5t) +
sin(2.2t)2 cos(5.8t) + sin(1.2t)2 cos(9.5t) + sin(2.4t)5) is added
to maintain the persistent excitation (PE) condition [32]. Now, a
comparative study of the variable gain gradient descent method pre-
sented in this paper w.r.t. constant gradient descent will be carried
out. In order to validate the performance of the controller developed
in this paper, two input bounds were selected, i.e., um = 1.8 and
um = 9. Figs. 3 and 4 correspond to the case with input bound of
1.8, while Figs. 1 and 2 correspond to the input bound of 9. Con-
stant learning rate (α) for um = 9 is selected to be 35.9 and discount
(γ = .1), similarly for um = 1.8, the constant learning rate α was
92.9 and discount being γ = .1. Constants used in variable gain gra-
dient descent are k2 = 1.4 for um = 9 and k2 = .7 for um = 1.8
(see Eq. (35)). Simulations have been run till the critic NN weights
have converged in respective cases.

Comparing Figs. 1a and 2a, it can be observed that the application
of variable gain gradient descent leads to faster and efficient learning
of critic NN weights. In Fig. 1a when the variable gain gradient de-
scent algorithm was utilized, the critic NN weights converged much
before 250s, whereas in Fig. 2a, they took approximately 1300s. Ob-
serve that the update law presented in this paper is able to bring
the state error to a much tighter residual set compared to constant
learning rate-based gradient descents as can be seen from Figs. 1b
and 2b. This is due to the fact that, the evolution of weight vectors
with variable gain gradient descent converges to a smaller neighbor-
hood about the ideal weight vector than with constant learning rate
gradient descent.

It is noted from Figs. 1c and 2c that the optimal control commands
generated were within the saturation limit of [−9, 9]. Also, most of
the time, the control effort was well within this bounded interval
[−2.2, 2.2]. Hence, in order to study the performance of the pro-
posed adaptation scheme in a more stringent setting, a tighter control
saturation limit um = 1.8 < 2.2 would be considered next.

A tighter input saturation has an adverse effect on learning as it
takes more time to achieve convergence of critic NN weights as can
be seen from Figs. 3a and 4a. In contrast to constant learning gradient
descents, variable gain gradient descent-based update law presented
in this paper is able to not only achieve convergence of critic NN
weights within 1200s (refer to Fig. 3a) but also bring the state error
(refer to Fig. 3b) to a tight residual set comparable to Fig 1b. On
the other hand, under constant learning-based update law, some of
the critic NN weights were not able to converge properly even after
3000s (refer to Fig. 4a). This results in larger state error as can be
seen in Fig. 4b.

It is because of these reasons, that the update law presented in
this paper yields improved tracking performance even with tight ac-
tuator constraints. The control effort was limited to [−1.8, 1.8] for
both with/without variable gain gradient descent update law as can
be seen in Figs. 3c and 4c.

In [23], a smaller value of learning rate was selected to train the
critic network online, however, following their formulation, it takes
a lot more time for the controller to bring the oscillation magnitude
of state error down to a small bound, which can be clearly seen in
Fig. 1 in [23]. Also in [23], the control effort during the initial phases
touches [−20, 20] and does not incorporate actuator constraints. As
it can be inferred from Figs. 2b and 4b that a high constant learning
rate leads to larger oscillation bound on states error compared to
the case when variable gain gradient descent (see Figs. 1b and 3b)
was utilized. It can be clearly concluded from Figs. 1 and 3 that,
the variable gain gradient descent based tuning law proposed in this
paper yields faster learning and is able to successfully bring the state
error to a much tighter residual set than constant learning rate for
both actuator contraints limits considered in this paper, i.e., um = 9
and um = 1.8.
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Fig. 1: Critic NN, state error and control profile with variable gain gradient descent (for um = 9)
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Fig. 2: Critic NN, state error and control profile with constant learning gradient descent (for um = 9)
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Fig. 3: Critic NN, state error and control profile with variable gain gradient descent (for um = 1.8)
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Fig. 4: Critic NN, State error and Control Profiles with constant learning gradient descent (for um = 1.8)
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Fig. 5: Performance of Aerosonde UAV under constant learning-based update law
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Fig. 6: Performance of Aerosonde UAV under variable gain gradient descent-based update law

Thus, the prime advantage of variable gain gradient descent-based
critic update law is the ability to select reasonably high learning rates
without large steady state errors.

5.2 Full 6-DoF nonlinear model of UAV

In this subsection, the variable gain gradient descent update law pre-
sented in this paper is validated on the full 6-DoF nonlinear model
of the Aerosonde UAV (refer to Pages 61 and 276 of [33]), and its
performance is compared against that of the constant learning-based
update law. The requirement of the control scheme is to track the de-
sired attitude angles of the UAV. Desired set points for φ, θ, ψ (roll,
pitch and yaw angle, respectively) were set to (−30, 0,−10) de-
grees for first 4 seconds, then (30, 0, 10) degrees from 4-8 seconds
and finally (0, 0, 10) degrees.

The control implementation is made up of two cascaded loops,
the the first loop, i.e., outer loop converts the desired Euler an-
gle information to desired rates, the inner loop uses the developed
control algorithm to track the desired rates in an optimal way. De-

sired Euler angle rates are given by, pdes = φ̇des − 8eφ, qdes =

θ̇des − 10eθ, rdes = ψ̇des − 12eψ , where φ, θ, ψ are roll, pitch
and yaw angles, respectively. The deflection of elevator, aileron and
rudder forms the control input to the UAV (represented by δe, δa, δr
respectively). The control deflections are limited to ±90 degrees.

The augmented state is, z = [ep, eq, er, pdes, qdes, rdes]
T ∈ R

6

where e = x− xdes and x = [p, q, r]T . The regressor vector for

critic NN is chosen to be, ϑ = [z1, z2, z3, z4, z5, z6, z
2
1 , z

2
2 , z

2
3 , z

2
4

, z25 , z
2
6 , z1z2, z1z3, z1z4, z1z5, z1z6, z2z3, z2z4, z2z5, z2z6, z3z4

, z3z5, z3z6, z4z5, z4z6, z5z6]
T . The discount factor was se-

lected as γ = 0.1, the weight matrix for augmented states
and control are Q1 = diag(10, 10, 50, 0, 0, 0) and R = I3, re-
spectively. The baseline learning rate α = 14.7, parameters
for variable gain gradient descent are k2 = .1. A dithering

noise of the form, n(t) = 2e−0.009t(sin(11.9t)2 cos(19.5t) +
sin(2.2t)2 cos(5.8t) + sin(1.2t)2 cos(9.5t) + sin(2.4t)5) is added
to maintain the persistent excitation (PE) condition as demonstrated

in [32]. All the critic weights were initialized to 0, i.e., Ŵ (0) = 0.
Both the update laws, i.e., variable gain gradient descent and con-
stant learning rate update law were run with same set of parameters

except the exponents in variable gain term and are able to track the
desired reference set point. However, it can be seen from Figs. 6c and
5c that the critic weights undergo spike at the times when reference
command for attitude changes i.e., at 4 and 8 second. At these junc-
tures it can be clearly noticed that the critic weights when updated
via the variable gain gradient descent-update law converge properly
within sufficiently short time-span and before the next attitude ref-
erence signal changes, i.e., during the intervals, 0− 4 sec, 4− 8 sec
and then finally 8− 10 sec. However, on the other hand, the critic
weights are not able to converge properly in such short time-span
between changes in the reference attitude when updated via con-
stant learning-based update law. As critic weights have converged
close to their ideal values in very small time when updated via the
variable gain gradient descent update law, overshoots in state errors
in this case are smaller in comparison with that in case of constant
gain gradient descent, as can be seen from Figs. 6a and 5a. This ef-
fect is especially prominent in pitch (θ) dynamics. Additionally, the
optimal control action (refer to Fig. 6b) generated via the variable
gain gradient descent is much smoother compared to the control ac-
tion (refer to 5b) generated via the constant learning based method,
which is found to lead to persistent chattering in control command.
The control effort in both these cases is bounded within ±90 degrees.

Based on the above discussion it can be inferred that the variable
gain gradient descent-based update law leads to faster convergence
of critic weights closer to their ideal values. This in turn leads to
achieving the ideal optimal tracking controller faster resulting into
smaller overshoot in state error. Further, the control action generated
by variable gain update law is devoid of chattering for the same set
of actuator constraints.

6 Conclusion

The paper presents a variable gain gradient descent based update
law for robust optimal tracking for continuous time nonlinear sys-
tems using reinforcement learning. The critic neural network (NN)
is utilized to approximate the value function which is also the solu-
tion of the tracking HJB equation. It is this critic NN that is tuned
online using the update law presented in this paper. The hallmarks
of this update law stems from the fact that it can adjust its learning
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rate based on the HJB error. The tuning law speeds up the learn-
ing process if the HJB error is large and it slows it down as the
HJB error becomes small. In addition to this, the parameter up-
date law presented in this paper leads to smaller convergence times
of critic NN weights and tighter residual set over which the aug-
mented system trajectories converge to. The update law presented in
this paper forms the basis of future scope of research using which
model-free online update law to solve optimal tracking problem will
be developed.

7 Appendices

Lemma 7.1. Following equality holds true,

2um

∫
−um tanhA(z)

0
tanh−1(ν/um)TRdν

= 2u2mA
T (z)R tanhA(z) + u2m

m∑

i=1

Ri ln[1− tanh2Ai(z)]

(65)

Proof:

∫
tanh−1

(x

a

)

=
1

2
a ln (a2 − x2) + x tanh−1

(x

a

)

+ I (66)

Therefore,

∫u
0
tanh−1

( ν

um

)

dν =
1

2
um ln (u2m − ν2) + ν tanh−1

( ν

um

)∣
∣
∣

u

0

2um

∫u
0
tanh−1

( ν

um

)

dν = u2m ln (u2m − ν2) + 2umν tanh
−1
( ν

um

)∣
∣
∣

u

0

= u2m ln (1− u2

u2m
) + 2u2m tanhA(z)

= u2m ln (1− tanh2A(z)) + 2u2m tanhA(z)
(67)

where, u = −um tanhA(z) is scalar. Now if u is a vector, then,

2um

∫u
0
tanh−1

( ν

um

)

Rdν

= 2u2mA
T (z)R tanhA(z) + u2m

m∑

i=1

Ri ln[1− tanh2Ai(z)]

(68)

�

Lemma 7.2. Following inequality holds true:

C(ui) = 2um

∫ui

0
ψ−1(

ν

um
)Ridν ≥ 0 (69)

if ψ−1 is monotonic odd and increasing and Ri > 0. Where ui ∈
R, i = 1, 2, ...,m

Proof: If ψ−1 is monotonic odd and increasing, then,

( ν

um

)

ψ−1
( ν

um

)

≥ 0 (70)

or

νψ−1
( ν

um

)

≥ 0 (71)

where ν ∈ R and um > 0. Let θ = 1/um. In order to prove

that, 2um
∫ui

0 ψ−1(ν/um)Ridν ≥ 0, it is enough to prove that,

∫ui

0 ψ−1(νθ)dν ≥ 0. In order to prove this inequality, a variable,
K ∈ [0, θ] is assumed. Therefore,

∫ui

0
ψ−1(νθ)dν =

1

θ

∫uiθ

0
ψ−1(l)dl (72)

where l = νθ. Similarly,

1

θ

∫uiθ

0
ψ−1(l)dl =

1

θ

∫θ
0
ψ−1(uiK)uidK (73)

by utilizing l = uiK
Since, ψ−1(uiK)ui ≥ 0, which implies,

1

θ

∫θ
0
ψ−1(uiK)uidK ≥ 0 (74)

Lemma 7.3. Following equation holds true,

u = −um tanh
( 1

2um
R−1ĜT∇ϑTW + ǫuu

)

= −um tanh (τ1(z))

+ ǫu
(75)

where, ǫuu = (1/2um)R−1ĜT∇ε(z) = [εuu11
, εuu12

, ..., εuu1m
]T ∈

R
m. τ1(z) = (1/2um)R−1ĜT∇ϑTW = [τ11, ..., τ1m]T ∈ R

m

and ǫu = −(1/2)((Im − diag(tanh2 (q)))R−1ĜT∇ǫ) with q ∈
R
m and qi ∈ R considered between τ1i + εuui and ǫuui i.e., ith

element of ǫuu.

Proof:

u = −um tanh (τ1 + εuu) (76)

Using mean value theorem,

tanh (τ1 + εuu)− tanh (τ1) = tanh
′

(q)εuu

= (Im − diag(tanh2 (q)))εuu
(77)

where, q ∈ R
m and qi ∈ R lying between τ1i and τ1i + εuui.

Now, using the expression for εuu in (77), tanh (τ1 + εuu) can
be rewritten as,

tanh (τ1 + εuu) = tanh (τ1) + (Im − diag(tanh2 (q)))

×
(

1

2um
R−1ĜT∇ε(z)

)
(78)

Multiplying −um on both sides,

− um tanh (τ1 + εuu) = −um tanh (τ1)−
1

2
(Im − diag(tanh2 (q)))

×
(

R−1ĜT (z)∇ε(z)
)

(79)

Hence proved. �

Lemma 7.4. Following vector inequality holds true:

‖ tanh (τ1(z))− tanh (τ2(z))‖ ≤ Tm ≤ 2
√
m (80)

where Tm =
√
∑m
i=1min(|τ1i − τ2i|2, 4), τ1(z) and τ2(z) both

belong in R
m, therefore, tanh (τi(z)) ∈ R

m, i = 1, 2.
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Proof: Since, tanh (.) is 1-Lipschitz, one can write,

| tanh (τ1i)− tanh (τ2i)| ≤ |τ1i − τ2i| (81)

Therefore using the above inequality and the fact that, −1 ≤
tanh (.) ≤ 1

‖ tanh (τ1(z))− tanh (τ2(z))‖2 =
m∑

i=1

| tanh τ1i − tanh τ2i|2

≤
m∑

i=1

min(|τ1i − τ2i|, 2)2

≤
m∑

i=1

min(|τ1i − τ2i|2, 4)

(82)

One can also see, using the absolute upper bound of tanh (.).

m∑

i=1

min(|τ1i − τ2i|2, 4) ≤ 2
√
m (83)

Which implies,

‖ tanh (τ1(z))− tanh (τ2(z))‖ ≤ Tm ≤ 2
√
m (84)

�

8 References

1 Lewis, F.L. and Vrabie, D.: ‘Reinforcement learning and adaptive dynamic pro-

gramming for feedback control’, IEEE circuits and systems magazine, 2009, 9,

(3), pp. 32–50

2 Werbos, P.: ‘Beyond regression:" new tools for prediction and analysis in the

behavioral sciences’, Ph D dissertation, Harvard University, 1974,

3 Werbos, P.: ‘Advanced forecasting methods for global crisis warning and models

of intelligence’, General System Yearbook, 1977, pp. 25–38

4 Barto, A.G.: ‘1" 1 adaptive critics and the basal ganglia,âĂİ’, Models of informa-
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