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Abstract

Tensegrity structures resemble biological tissues: a structural system that holds an internal balance

of prestress. Owing to the presence of prestress, biological tissues can dramatically change their

properties, making tensegrity a promising platform for tunable and functional metamaterials. How-

ever, tensegrity metamaterials require harmony between form and force in an infinitely–periodic

scale, which makes the design of such systems challenging. In order to explore the full potential

of tensegrity metamaterials, a systematic design approach is required. In this work, we propose

an automated design framework that provides access to unlimited tensegrity metamaterial de-

signs. The framework generates tensegrity metamaterials by tessellating blocks with designated

geometries that are aware of the system periodicity. We show that tensegrity metamaterials offer

tunable effective elastic moduli, Poisson’s ratio, and phononic bandgaps by properly changing their

prestress levels, which provide a new dimension of programmability beyond geometry.
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1 . Introduction

Biological tissues (such as muscles) are capable of actively changing their material properties

[1, 2, 3]. Through the contraction of myofibrils, muscle cells generate prestress that lead to tunable

stiffness and shape. This mechanism offers a route to create smart tunable materials. Tensegrity

structural systems are known to mechanically resemble biological tissues [4, 5, 6], which have been

shown to produce large changes in stiffness and shape [7]. Therefore, to a certain extent, we expect

that if a material is composed of tensegrity micro-structures, then it can reproduce (or mimic) the

behavior of biological tissues.

Tensegrities are structural systems with a continuous network of tensile members (i.e. cables),

and disjointed compressive members (i.e. struts), whose integrity is maintained by self-balanced

prestress in the cables and struts [8, 9, 10, 11, 12]. In engineering, a more general classification

of tensegrity is proposed by Skelton & de Oliveira [10] where a Class-n tensegrity structure has

at most n struts connected at each node. Under this expanded concept, the sculptures by Ken-

neth Snelson [13] belong to the Class-1 category. Engineering applications of tensegrities include

deployable [14, 15, 7], actively tunable [16, 17, 18], and lightweight structures [19]. These advan-

tages, if successfully transferred to the micro-scale, could lead to metamaterials with unprecedented

mechanical properties and functionalities [9].

A straightforward way to make a metamaterial based on a tensegrity micro-structure is to

tessellate a tensegrity unit cell in space to create a bulk assemblage (i.e. the metamaterial).

Metamaterials based on lattice micro-structures have been used to create super lightweight ma-

terials. The mechanical properties and density of the metamaterials, as well as a wide range of

other properties (e.g., acoustic, thermal, and biological properties), can be altered by adjusting

the cellular architecture. This micro-lattice approach has led to lightweight materials that exhibit

strength–stiffness ratios previously unachievable at low densities [20, 21, 22, 23].

Recently, a few pieces of pioneering work have shown that tensegrity metamaterials exhibit

some unusual properties [24, 25, 26, 27, 28, 29, 30, 31]. Fraternali et al. [24] study solitary waves

in a one-dimensional tensegrity chain composed of three-strut tensegrity prisms, indicating that

such system might be used for impact mitigation. This one-dimensional system exhibits tunable

frequency bandgaps when alternating tensegrity prisms with different height and stiffness are used

[25]. Rimoli & Pal [26] investigate the mechanical properties of a tensegrity metamaterial design

based on truncated octahedron elementary cells. They also observe that cable prestrains can sig-
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Figure 1: Schematic of the design framework to create tensegrity metamaterials. (a) From a (periodic) geometric
design to a tensegrity tessellation block. (b)-(d) From tessellation block to tensegrity metamaterials. (b) The
tessellation block is directly the unit cell for the bulk assembly, which is named as dense tessellation. (c) The
tessellation block is first used to sub-assemble a porous unit cell which is re-tessellated into a bulk assembly,
called the porous tessellation. This particular sub-assembled unit cell leads to truss-like assemblies. (d) The
same tessellation block can be sub-assembled into different unit cells, leading to various porous tessellations. This
particular porous tessellation is a honeycomb-like assembly.

nificantly affect the wave speeds in this tensegrity metamaterial [30]. However, these proposals

of tensegrity metamaterials employ ad hoc designs; i.e. they are based on known stand-alone

tensegrity designs that are not fully aware of the system periodicity once tessellated to become a

metamaterial. This type of approach results in tensegrities of Class-2 or higher after the periodic

tessellation. This limits control on the topological features of the tensegrity metamaterial, specifi-

cally its Class. Thus, the full potential of tensegrity metamaterials cannot be achieved. Moreover,

the previously proposed approaches cannot lead to a Class-1 tensegrity tessellation. In practice,

we are particularly interested at Class-1 tensegrity tessellations: they are easier to manufacture

since they are composed of straight “struts” and “cables”; no special hinge is necessary since two

struts never intersect; the structure is less likely to develop undesirable bending forces in the struts;

large deformations in the system (shortening of the struts) due to prestress or service loads are

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

easier to account for; etc. Thus, there is a need for a systematic approach to design tensegrity

metamaterials with a desired unit cell geometry and Class category – this is our focus.

Multiple approaches exist for the design of stand-alone tensegrities [32, 33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43]. However, it is challenging to incorporate periodicity in these approaches,

especially concerning the topology of the design. To overcome these challenges, we propose a

design framework that can automatically create tensegrity-based metamaterials with periodic unit

cells, as illustrated by Fig. 1. The framework utilizes topology optimization to find tensegrity

tessellation blocks with prescribed tiling geometries (periodicity). The resulting units can be

tessellated, either densely or porously, to create metamaterials. Using this automated process, we

can create a library of tensegrity metamaterial designs (see Table A.1). The following key terms

are used in this manuscript: tessellation block, the building block of a tessellation unit cell; design

domain, the geometric space within which the tensegrity (tessellation block) is designed; unit cell,

the periodic micro-structure of the tensegrity metamaterial. To demonstrate the applications of the

proposed approach, we use one example from the obtained tensegrity tessellation blocks to create

both, densely and porously tessellated Class-1 tensegrity metamaterials. We investigate their

static properties through homogenization, and dynamic properties through Bloch wave analyses.

We show that the effective elastic moduli, Poisson’s ratio, and phononic bandgaps of the tensegrity

metamaterials can be effectively tuned by changing prestress level, our design parameter of interest.

2 . Topology design formulation

Let us start with the design of stand-alone tensegrity structures, which will form the basis to

the design of metamaterials. The conceptual design of a tensegrity consists of three essential

components: topology (i.e. connectivity), geometry (i.e. configuration), and self-balanced prestress

state. Most numerical design methods start with a given topology for the tensegrity and evolve its

geometry to achieve a self-balanced prestress state [44, 35, 33]. More recently, design approaches

which manipulate the topology have been explored [37, 38, 39, 40, 41, 42, 43]. These instead, seek

the proper topology that allows for a self-balanced prestress state within a given geometry. From

a designer’s point of view, the geometry of a structure is typically given or constrained, and thus

the topology design approach is more intuitive. In addition, for complex designs, it is difficult to

define the initial (fixed) topology for the geometry-based approaches.

In the present work, we propose an optimization formulation for topology design of tensegrity
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structures based on the ground structure method and force maximization with arbitrary geometries

[43]. The ground structure method has been extensively used in the field of (structural) topology

optimization [45, 46, 47, 48]. It provides a very dense (and redundant) set of potential candidate

members and joints, from where the final structure can be extracted through an optimization

process. In the topology optimization of tensegrities, this process involves finding the associated

self-balanced prestress forces as well. The joint coordinates are fixed during the optimization, thus

preserving the prescribed geometry of the tensegrity.

Let us denote t as the tension forces in all candidate members, and c the compression forces.

The real force in a member is therefore (t−c). By decoupling tension and compression, we obtain

two vectors of non-negative design variables, each of size NEg × 1, where NEg is the number of

candidate members provided by the ground structure. The binary design variables s indicate the

presence of struts: sk = 1 indicated that the k-th candidate member is a strut (as opposed to a

cable). Eventually, the optimization formulation is written as a mixed integer linear programming

(MILP) problem:

max
t,c,s

1T(t− c) (1a)

s.t. B(t− c) = 0 (1b)

Gs 6 n1 (1c)

Gps 6 1 (1d)

1T s 6 NS,max (1e)

0 6 t (1f)

0 6 c 6 s 6 1 (1g)

s ∈ ZNEg (1h)

The constraints restrict the solution space to feasible tensegrity designs. Eq. (1b) requires self-

balance of prestress forces, where B is the equilibrium matrix [11]. Eq. (1c) imposes discontinuity

of struts. The incidence matrix G is defined as:

Gij =





1, if member j is connected to node i

0, otherwise

(2)
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Thus G is a NVg×NEg binary matrix which contains the connectivity information, i.e., the topology,

of a ground structure, where NVg refers to the number of nodes in the ground structure. Each

column of G contains exactly two entries of value 1, with the row indices indicating the start/end

nodes of a member. The product Gs results in an NVg × 1 vector whose entries indicate the

numbers of struts connected to each node, which need to be smaller than the Class number n.

Eq. (1d) prevents collisions between struts to improve manufacturability of the design, which is

defined as:

Gp,ij = Gp,ik =





1, if members j and k collide with each other at incidence i,

0, otherwise.

(3)

The Gp matrix is defined such that, if the product Gps leads to any entry greater than 1, then

there are two struts colliding with each other in space. In this work, each row of Gp corresponds to

a fictitious point reporting an intersection of the centerlines of two members. For more details on

the definition of the matrix Gp, the reader is referred to reference [43], which includes an example

in Appendix 2. Eq. (1e) limits the number of struts (denoted as NS) in a tensegrity design by

NS,max. Eqs. (1f) to (1h) define bounds for the design variables, among which Eq. (1g) also

ensures that the strut indicator is 1 when an element takes the form of a strut.

This formulation is able to effectively reproduce many of the renowned tensegrities, and create

new stable tensegrities [43]. However, directly applying Formulation (1) for designing tessella-

tion blocks for tensegrity metamaterials will not produce desired results. The reason being that

tensegrity metamaterials are periodic tessellations of the unit cells: the periodicity of tessellation

block must be considered in the formulation. The periodicity leads to shared nodes on the com-

mon boundaries of each tessellation block, which makes our strut discontinuity constraint defined

in Eq. (1c) ineffective, as sketched in Fig. 2(a). Therefore, the periodic boundary conditions

(PBCs) must be included in the strut discontinuity constraint (1c), as shown in Fig. 2(b). For the

self-balance constraint in Eq. (1b) the PBCs are not enforced: a self-balanced tessellation block

(naturally) results in a self-balanced periodic assembly. Hence, there is no force flowing between

adjacent tessellation block in a tensegrity for metamaterial design. This leads to an unintended

advantageous property: a finite assembly of tessellation blocks does not require additional support

over its boundary to maintain the equilibrium of the (metamaterial) system.

To incorporate the PBCs, we need to identify the common nodes on the tessellation block’s
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Figure 2: Effect of periodic boundary condition on the topology of struts. (a) Tessellating Class-1 tessellation
block creates nodes connecting multiple struts, which is not desired. The red bars indicate struts. If the struts
are placed as shown in (b), the tessellation preserves the tessellation block’s Class category – there is no pair of
struts connected at one node. (Note: intersections within the length of struts is ignored in this demonstration)
(c) Identification of independent groups of nodes for a 4×4 ground structure. Different groups are identified by
different colours. The numbers in parenthesis provide the numbers of nodes in different groups. The 4 corner nodes
belong to the same group.

boundaries. There are several independent groups of nodes: each group contains the indices of

nodes that are images of each other under translational symmetry (i.e. periodicity). For example,

two nodes belong to the same group if their coordinates satisfy:

xj = xi + (n1a1 + n2a2 + n3a3), n1, n2, n3 ∈ {−1, 0, 1}. (4)

where xi and xj denote the coordinates of nodes i and j, respectively; while a1, a2, and a3 are the

three primitive vectors of the tessellation. Node groups may be of different size under translational

symmetry – we refer to Fig. 2(c) for a 2D example. As an example, in a cubic design domain,

the 8 corner nodes belong to the same group. It should be noted that an internal node belongs to

an independent group by itself. Nodes can be classified into independent groups algorithmically,

which is elaborated in Appendix B. After generating the node groups, an identification matrix Q

can be constructed as:

Qij =





0, if node j does not belong to group i

1, if node j belongs to group i.

(5)

The number of rows of Q equals to the number of independent groups, and the number of columns

equals to the total number of nodes in the ground structure. For tensegrity metamaterial designs,
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the strut discontinuity of a tessellation block (tensegrity Class) is counted for each independent

group, as opposed to individual nodes. Using the identification matrix Q, we can rewrite Eq. (1c)

for tensegrity metamaterial design as:

QGs 6 n1. (6)

which is an elegant constraint to achieve the intended metamaterial design. We note that, in

general, the obtained tensegrity tessellation block designs do not display any apparent symmetry.

In particular, reflection symmetry is not allowed if the design needs to be globally Class-1, as

implied by the schematics in Fig. 2.

3 . Geometry of design domain

To perform the topology optimization, we need to build a ground structure, which is generated

by a set of nodes that conforms to prescribed geometries. Our experience shows that balloon-

like domains are likely to result in better tensegrity designs. In that regard, we develop a set

of algorithms and tools with the purpose of making the design domains simple to define and

manipulate (i.e. the nodes of the ground structure). The goal of these algorithms is not to

span the infinitely rich space of potential tessellation block geometries; but provide enough design

freedom and easy-usage to allow for a large variety of designs to be conceived. The described

algorithm for generating the unit geometry is summarized by the simplified flowchart in Fig. 3(a).

After a unit geometry is defined, a second set of transformations and variations can be applied.

These transformations and variations are based on: (a) inner holes, and (b) morphing of the

geometry. These are also parametrized, and thus the space of design domains for tensegrities

(while not infinite) is reasonably large.

The simplest manner to define a polyhedron is by using only the vertices and making the

polyhedron the convex hull of these [49, 50]. If the polyhedron is tessellated, a set of primitive

vectors that replicate the unit and span the entire space must also be defined. Thus, the required

user input to define a design domain consists of two pieces of information: (a) spatial nodes

(vertices) defining the boundary of the design domain; (b) a set of primitive vectors which span

the three-dimensional space.

As demonstrated in Fig. 2, extra nodes within the connecting facets are also needed in addition

to the basic (convex hull) vertices. This is necessary to allow freedom of the strut layout. These
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Figure 3: Creation of the design domain (i.e. geometry of the tessellation block). (a) Domain unit-cell generation
based on convex hulls. The black dots are the nodes used to generate the ground structure for topology optimization.
(b) Restriction zone creates holes in the design domain (i.e. the ground structure) by removing all members across
the prescribed zone(s). (c) Morphing example: original (un-morphed) tessellation block and morphed tessellation
block (in 2× 3 assemblies).

additional facet nodes can be added in a parametric manner, for instance, by shrinking the facet

boundary and including these (shrunk) vertices in the domain. However, it should be noted that

other options are available and can be easily implemented.

The tensegrity topology optimization formulation can handle concavities and even holes (or

voids) in the domain. While the nature of the convex-hull approach does not result in tessellation

blocks with concavities, the addition of inner holes (or concavities) as a subsequent step is possible

(optional), and is fully compatible with the topology optimization formulation. This feature leads

to a better tuning of the resulting micro geometry of the tessellated metamaterial. The inner hole

and concavities use the concept of restriction zones [47, 48], as illustrated in Fig. 3(b). Typically,

a spherical restriction zone with radius Rrz centered at the centroid of the unit geometry is used.

Additional variations for a given unit geometry and primitive vectors can be achieved by mor-

phing: the geometry of a tessellation block (and its primitive vectors) can be “deformed” (in a

virtual sense) while keeping their space-spanning property. Fig. 3(c) illustrates a two-dimensional

example of a square design domain being morphed into a new design domain, while keeping its

space-spanning property.
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4 . Variations of tessellation strategy

We explore different strategies to tessellate the obtained tessellation blocks. The tensegrity tessel-

lation block obtained by topology optimization (see Section 2 ) from the unit geometry (as defined

in Section 3 ) can be directly tessellated in space in accordance to the primitive vectors to make the

metamaterial bulk assembly, as illustrated in Fig. 1(b). Moreover, it should be noted that these

primitive vectors are often not unique: any set of vectors that span the entire space and correctly

tessellate the tessellation block (no overlaps) are valid, as long as the nodes in some of the facets

are common among neighboring units. We also note that it is not required for the tessellation

to be space filling, i.e. to completely fill the three-dimensional space: voids may be left in the

tessellation. Therefore, we can explore porous strategies to tile the tessellation block in order to

achieve different bulk assemblies. Furthermore, owing to the self equilibrium of the tessellation

block (refer to Section 2 ), units can be removed from the bulk assembly without compromising

the stability of the system: i.e. holes can be intentionally left in the tessellation.

A porous tessellation can be constructed as follows: the tessellation block is tessellated a

few times in a porous manner (i.e. leaving certain positions empty); this porous unit cell is

then re-tessellated to make metamaterial bulk assemblies, as demonstrated in Figs. 1(c) and (d).

The porous unit cell is encoded by a three-dimensional array Ns of size Ns1 × Ns2 × Ns3 with

true/false values. The tessellation block is then tessellated along each of the 3 primitive vectors,

but a structure is only created/appended to the unit cell when a true is found. This is repeated

for all three primitive vectors (all three dimensions of Ns). Thus, the same tensegrity tessellation

block can result in various metamaterials; either by itself or in a sub-assembled unit cell. The

sub-assembly approach is general: a single true value in Ns (matrix of size 1× 1× 1) refers to the

original case when no porous unit cell is used to create a densely tessellated metamaterial.

4 .1. Stiffness matrix of tensegrity

By definition, tensegrity structures have a self-balanced prestress: the initial undeformed config-

uration of a tensegrity structure is in reality a deformed state of its base materials. Thus, based

on this line of reasoning, we establish the stiffness matrix of a tensegrity structure following an

Updated Lagrangian formulation. In this sense, the deformation of a tensegrity structure refers to

the prestressed configuration, which is obtained from topology optimization in the present frame-

work. We briefly go through the derivation of the (tangent) stiffness matrix of a tensegrity in this
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section. As a matter of notation, we use left-subscript to label the reference configuration of a

quantity, and left-superscript to label the configuration when the quantity is evaluated (or occur).

By means of the principle of virtual work, the linearized equilibrium of a deformed one-

dimensional elastic rectilinear element is given by [51]:

∫

1V

(1E)(1e11)δ(1e11)d1V +

∫

1V

(1σ11)δ(1η11)d1V =

∫

1S

2
1tδud

1S −
∫

1V

(1σ11)δ(1e11)d1V (7)

where, 1V denotes the prestressed configuration, 1E is the tangent elastic modulus, 1eij and 1ηij are

the linear and nonlinear components of the incremental Green-Lagrange strain (denoted as 1ε11)

defined on the prestressed configuration, and 1σ11 is the Cauchy stress which is also defined on the

prestressed configuration (Fig. 4(a)). The unknown displacement variation is denoted as δu, and

2
1t is the deformation independent boundary traction vector (measured per unit boundary area at

the prestressed state). Considering uniform strain and stress within an element, the incremental

Green-Lagrange strain can be expressed as a function of nodal displacements of member r (denoted

as ur) upon the prestressed configuration. The linear (1eij) and nonlinear (1ηij) components of

1ε11 are given by:

1e11 =
1

1Lr
BT
Lur, 1η11 =

1

2(1L2
r)

uTr BNLur, (8)

where,

ur = [ uTa , uTb ]T , ui = 2xi − 1xi (i = a, b), Lr = ‖1xb − 1xa‖, (9)

BL =
1

Lr

[
1xTa − 1xTb ,

1xTb − 1xTa

]T
, BNL =


+I3 −I3

−I3 +I3


 . (10)

We remark that ur is measured taking reference to the prestressed configuration. Substituting

Eq. (8) into Eq. (7), the equilibrium of the system can be discretized and rewritten in matrix

form as:

δuTr Kreur + δuTr Krgur = δuTr
2
1fr − δuTr 1

1fr (11)

where Kre is the elemental elastic stiffness matrix, and Krg is the elemental geometric stiffness

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 4: Illustration of the Updated Lagrangian formulation for the derivation of the stiffness matrix of a tensegrity.
(a) Individual member configurations. Configuration 0 is the initial undeformed configuration; Configuration 1 is
the prestressed configuration; and Configuration 2 is the deformed configuration upon the prestressed configuration.
Only the prestressed state is known. (b) Configurations of members with respect to the tensegrity structure. The
stiffness matrix is formulated upon Configuration 1. Large deformation of each individual member is allowed
between Configuration 0 and Configuration 1. Notice that the members in Configuration 0 may not be compatible
to allow structural integrity. An integral structure only appear in Configuration 1 when all members are properly
prestressed.

matrix. They are derived as:

Kre =
(1Er)(

1Ar)
1Lr

BLBT
L, (12)

Krg =
(1σ11)(1Ar)

1Lr
BNL. (13)

Because we adopt the Updated Lagrangian approach, the obtained elemental stiffness matrix re-

flects a tangent state of the prestressed member, and this approach does not require compatibility

(structural integrity) of the structure from the initial rest configuration to the prestressed config-

uration (see Fig. 4(b)). The external applied forces 2
1fr to the prestressed element comes from the

first term of the right hand side of Eq. (7), which is usually directly applied to nodes, and thus

there is no need to carry out the integration. The second term of the right hand side of Eq. (7)
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provides the nodal forces due to the internal prestress, which are given by:

1
1fr = (1σ11)(1Ar)BL. (14)

According to the design obtained from our topology optimization formulation (see Section 2

), we choose the values of (1Lr) and (1σ11)(1Ar), where the later term is the prestress force (i.e.

Pr = (1σ11)(1Ar)) of member r. Let’s assume 1Er = Er. We can define 1Ar to be proportional to

Pr such that the magnitude of 1σ11 is uniform for all members (i.e. fully stressed design). Now,

assuming a constant Young’s modulus such that 1Er = 0Er = Er, the original cross sectional area

of a member (before prestress is applied) can be determined by solving the following equation:

1Ar =

(
1− νPr

0ArEr

)2

(0Ar) (15)

where ν is the Poisson’s ratio of the base material (assumed constant). We remark that, in the

Updated Lagrangian formulation, all the input parameters to the stiffness matrix are defined based

on the prestressed configuration (i.e. Configuration 1). Because we perform elastic analysis, these

quantities do not have any history dependence on the initial configuration (i.e. Configuration 0).

Therefore, large deformation is allowed between the initial configuration (rest lengths) and the

prestressed configuration (current lengths). According to this line of reasoning, even if we assume

Er as constant, the material does not behave like a conventional linear spring, which is due to the

change of reference configuration during the deformation.

Assembling Eq. (11) over all elements in the structure and admitting the arbitrary nature

of the virtual displacement (δu), we obtain the incremental finite element equation of the entire

structure:

Ku = (Ke + Kg)u = 2
1f − 1

1f . (16)

Notice that a self-equilibrating tensegrity structure requires that 1
1f = 0. For linear elastic analysis,

we assume that the cables do not slack.

5 . Tunable elastostatic properties

Assuming the unit cell dimension is sufficiently small compared to the macroscale dimension of

the metamaterial, we can obtain the effective properties of the tensegrity metamaterial through
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homogenization [52]. We use computational homogenization to obtain the effective properties of a

tensegrity metamaterial based on the unit cell. Periodic boundary conditions (PBCs) are applied

to a tensegrity unit cell [53], such that:

um − us = (F− I)(1xm − 1xs), fm + fs = 0, (17)

which represent periodic deformations and anti-periodic tractions on the boundaries of the unit

cell. The subscripts m and s refer to master and slave nodes on opposite boundaries. The nodal

displacements of a master-slave pair are um and us. The nodal positions in the prestressed state

are 1xm and 1xs, which equals to the primitive vector of the lattice in the corresponding direction

of the two nodes. The symbol F denotes the deformation gradient of the homogenized material. In

linear analysis, these two boundary conditions can be directly condensed into the stiffness matrix

and force vectors. Following the procedure proposed by Vigliotti & Pasini [53], we derive the

full homogenized linear elasticity tensor D of the tensegrity metamaterial. We use the reduced

format (Voigt notation) of the elasticity tensor, and thus, D is a 6 × 6 symmetric matrix. The

computational implementation is elaborated upon in Appendix C.

To demonstrate how the elastic properties of a tensegrity metamaterial can be tuned, we refer

to Table A.1 and select the tessellation block design based on the cuboctahedron geometry (com-

posed with 13 struts and 96 cables) as an example. Analyzing the null space of the equilibrium

matrix B in Eq. (1b), we find that there are 12 independent prestress states that can possibly

exist given the layout of the tensegrity block. The current prestress state that we obtained from

the topology optimization is a linear combination of the many independent states that maximizes

the sum of forces within members. In addition, the cuboctahedron tessellation block possesses 17

independent internal mechanisms (i.e. degree of kinematic indeterminacy), which are stabilized by

the current prestress assignment. To demonstrate the richness of our design space, the cubocta-

hedron tessellation block is used to create two Class-1 tensegrity metamaterial designs: one using

a dense tessellation (see Fig. 5(a) and Supplementary Video S1); and a second one with a porous

tessellation (Fig. 5(b)). According to Figs. 5(d) to (f), we can clear observe that no pair of struts

are connected between tensegrity blocks. We denote the Young’s modulus of strut material as

ES, and cable material as EC . The areas of other struts and cables are determined proportionally

based on the prestress forces. We find that all struts in the cuboctahedron tessellation block have

the same prestress forces, while the cables are sized to ensure uniform magnitude of stress (1σ11)
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Figure 5: Tessellating tessellation block to obtain tensegrity metamaterials – see “Cuboctahedron” example of Table
A.1. (a) Demonstration of the dense tessellation using the cuboctahedron tessellation block. (b) Demonstration of
a porous tessellation based on the same tessellation block. (c) Illustration of the shared interfaces between adjacent
blocks in three primitive directions. The green, purple, and gold faces refer to the interfaces in the x, y, and z
directions, respectively. (d)-(f) Detailed layout of the interfaces. Background colors are in correspondence with
face colors in (c). The filled red dot and dashed red circles indicate nodes connected with struts, and the continuous
and dashed blue lines indicate cables within the boundary layer. We use filled (continuous) and dashed objects to
distinguish their belongings to the two adjacent tessellation blocks.

in all of them (fully stressed design).

In all simulations, we have used a linear elastic model with material parameters: Young’s

moduli of struts ES = 2600MPa, Young’s moduli of cables EC = 12MPa, and mass density for

both ρ = 1.18 × 10−3g/mm3, which are the typical properties of polymers used in 3D printing.

We consider a cuboctahedron unit cell bounded in a 10mm×10mm×10mm box. We assume that

all members have a circular cross-section, and the maximum radius of struts is r = 0.5mm in the

prestressed state, and hence 1AS = 0.25πmm2. This work does not consider geometric changes of

the tensegrity metamaterials due to varying external stimuli, i.e. we assume that the prestressed

configurations of the tensegrity metamaterial under different prestress level are within infinitesimal

(linear) deformations, and thus can be ignored.

If we assume that the prestress in the metamaterial is 1σ11 = (0.05EC) = 0.60MPa, we can
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Figure 6: Tensegrity metamaterial with tunable elastic properties. (a)-(b) Undeformed and simply sheared modes
of the two metamaterials unit cells: (a) Densely tessellated metamaterial, (b) Porously tessellated metamaterial.
(c)-(d) Tunable elastic properties (including elastic modulus D11, D13, D44; and Poisson’s ratio ν12): (c) Densely
tessellated metamaterial, (d) Porously tessellated metamaterial. The green lines indicate the limit of prestress that
may cause buckling of struts. To the right of the green line, buckling is unlikely to happen.

obtain the homogenized elasticity tensor of the densely tessellated metamaterial (see Fig. 5(a)) as:

Ddense =




23.76 4.90 2.69 0.10 1.06 −1.79

17.03 2.65 2.07 −0.60 1.71

23.48 1.41 −3.26 −2.95

20.48 1.07 2.64

symm. 13.93 4.82

14.38




× 10−3 MPa. (18)

Moreover, the homogenized elasticity tensor of the porously tessellated metamaterial (see Fig. 5(b))
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is given by:

Dporous =




20.73 1.38 0.76 −0.07 −0.05 −0.06

15.68 0.69 0.10 −0.01 −0.08

22.33 −0.05 0.02 −0.03

0.48 0.04 0.01

symm. 0.46 0.03

0.45




× 10−4 MPa. (19)

We observe that both metamaterials exhibit anisotropy. The porously tessellated tensegrity meta-

material is much softer than the densely tessellated metamaterial, especially in shear. The unit

cell deformations under a simple shear of the two metamaterials are illustrated in Figs. 6(a) and

(b).

Figs. 6(c) and (d) show how some of the elastic moduli change in response to various material

properties and prestress level (normalized by EC). The densely tessellated metamaterial has a

much larger Poisson’s ratio (in the xy-plane) than the porously tessellated one, when the prestress

level is high. The tunability due to variations in the prestress is more effective when compression

members are much stiffer than tension members: changes of diagonal moduli of the elasticity

tensor are more sensitive to changes in the prestress level when ES/EC > 102. In addition, when

ES/EC > 102, buckling of compression members (i.e. struts) is unlikely to happen. Considering

Euler buckling [54], the stress of the longest compression member (with circular cross section)

should satisfy:

1σ11 ≤
πES(0ASmin)

40L2
Smax

≤ πES(1ASmin)

41L2
Smax

, (20)

where 0ASmin (and 1ASmin) is the minimal area of struts, and 0LSmax (and 1LSmax) is the maximal

length of struts, evaluated at Configuration 0 (and Configuration 1). The states of configurations

are demonstrated in Fig. 4. The middle term in Eq. (20) is the actual critical stress before buckling,

which shall be evaluated in the undeformed configuration (i.e. Configuration 0). However, in this

research we are specifying the lengths and areas of members at the prestressed configuration (i.e.

Configuration 1), thus the last term is used to provide an approximate upper bound for the

compressive stress in struts, assuming that the strut material has a positive Poisson’s ratio. Since

1AS and 1Lmax are given for the design, this lower bound is a function of ES, which is plotted as

the green lines in Figs. 6(c) and (d), normalized by EC .
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6 . Tunable elastodynamic bandgaps

Besides tunable static properties, the prestressed tensegrity metamaterials also provide tunable

dynamic properties. Hence, tensegrity metamaterials can be used for applications such as impact

absorption, vibration isolation, or acoustic cloaking [55, 56, 57]. In this paper, we focus on the

phononic bandgaps of the tensegrity metamaterial, which are the frequency ranges prohibiting

elastic wave propagation. The freedom provided by our design framework allows us to tailor the

unit cells for better likelihood of bandgaps. For instance, the porous unit cell is comprised of voids

in the tessellation that renders the system heterogeneous which could lead to bandgaps [56, 58].

Using the same tessellation blocks as in previous section, we are interested in finding all the free

vibration modes of wave propagation in the infinite tensegrity metamaterials, by means of Bloch

wave analysis. The free vibration modes of a structure are the eigenvectors of the generalized

eigenvalue problem:

Ku = ω2Mu, (21)

where, K and M represent the stiffness and mass matrices of the infinite global system defined in

the real space, and ω are the natural frequencies of harmonic wave propagation through the meta-

material. For periodic metamaterials consisting very large assembly of unit cells, direct evaluation

of their eigenmodes is computationally intractable. To overcome this challenge, the dynamics of

periodic structural systems is typically studied using the Bloch wave analysis [59, 58] framework,

which reduces the generalized eigenvalue problem to that on a single unit cell, by virtue of Bloch’s

theorem and spatial Discrete Fourier Transform.

We calculate the eigenvalues of a reduced eigenvalue problem on the unit cell for each of the

wavevectors defined in the Irreducible Brillouin Zone (IBZ) of the periodic system [58]:

K̃mũm = ω2M̃ũm, with, K̃m =
1∑

n=−1
e−ikm·xnK0n, (22)

where, K̃m is the reduced stiffness matrix defined in the reciprocal space, which depends on the

wavevector km as shown above. The summation above goes over a reference unit cell as well as

its immediate neighboring cells (with lattice position vectors xn) of the tensegrity metamaterial.

The matrix K0n is a matrix extracted from K with rows corresponding to the degrees-of-freedom
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(DOFs) of the reference unit cell, and columns corresponding to the DOFs of the n-indexed unit

cell. The matrix M̃ is the diagonal mass matrix obtained using a lumped mass technique over the

members in the unit cell.

Using Eq. 22, we can obtain the dispersion diagrams of the tensegrity metamaterials at any

given level of prestress. For the sake of simplicity and clear presentation, here we focus on the wave

propagation in 1D and 2D tessellations. However, the analysis framework is equally applicable to

3D tessellations.

We locate the bandgaps (if present) across the wavevectors in the IBZ at all the frequencies

and for varying levels of prestress. Similar to the elastostatic properties, the frequency bandgaps

also exhibit tunability in response to changing prestress, as demonstrated in Figs. 7 and 8. We

observe that the one-dimensional dense tessellation has wider bandgaps at lower frequencies (e.g.

between 0 to 2.5 kHz), compared to the two-dimensional dense tessellation. Similarly, the porous

tessellations that possess voids result in wider bandgaps at lower frequencies, compared to the

dense tessellations. In both cases, this is explained by the reduction of mobility restraint from

neighboring unit cells leading to wider bandgaps at lower frequencies. The examples show that by

varying the level of prestress, tensegrity metamaterials can provide versatile and tunable properties

for acoustic applications.

7 . Conclusion

We present a design framework that allows for automated creation of tensegrity metamaterials.

The proposed methodology begins by specifying a geometry of the tessellation block that tiles

space according to primitive vectors. Then a tessellation block is designed within this geometry by

topology optimization which considers the periodicity of the final system. This resulting tessellation

block can be tessellated in various ways in space to create metamaterials. Together with the unit

geometry, additional and optional procedures such as concavities, morphing, and various strategies

for tessellation, provide a rich design space for tensegrity metamaterials. While the resulting

tensegrity properties cannot be easily predicted, parametric analysis on a few of these techniques

offer sufficient control for the purpose of the present work. We present a library of various designs

of the tessellation block in Table A.1. Examples in the present work demonstrate how the static

and dynamic properties of the tensegrity metamaterials designed using our approach can be tuned

by changing the prestress level of the system.
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Figure 7: Schematics of the quasi one-dimensional tensegrity chains with (a) Dense and (b) Porous tensegrity
unit cells (shown in shaded rectangles) and their corresponding variation of bandgaps with prestress shown in (e)
and (f). (c), (d) Band structure diagrams at a prestress of (0.05EC) represented by red lines in (e) and (f),
respectively. The gray shaded regions illustrate the elastic bandgaps.
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Figure 8: Schematics of the quasi two-dimensional tensegrity tessellations with (a) Dense and (b) Porous tensegrity
unit cells (shown in shaded rectangles) and their corresponding variation of bandgaps with prestress shown in (e)
and (f). (c), (d) Band structure diagrams at a prestress of (0.05EC) represented by red lines in (e) and (f),
respectively. The gray shaded regions illustrate the elastic bandgaps.
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The current framework may be enhanced in the future by taking into account the mechanical

properties of resultant metamaterial into the optimization formulation, and allowing the nodes

to morph around in order to obtain simpler designs. However, such an objective or constraint is

likely to lead to nonlinear integer programming problems. Therefore, how to efficiently solve those

problems still poses a challenge. Moreover, the manufacturing of tensegrity metamaterials with

properly induced prestress needs to be investigated. Additive manufacture technologies with the

capability of printing multiple materials appear as the most promising at the time of this writing

[60]. For example, we can print the cables and struts using two materials with different thermal ex-

pansion coefficients, and then by changing ambient temperature, the thermal deformation induced

incompatibility can generate prestress in the system.
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Appendix A. Library of tensegrity tessellation blocks

In Table A.1, we provide ten different tessellation blocks that can create space-spanning tessella-

tions. The “Specification” column provides some detailed information about each design. As a

matter of notation, Rrz is the radius of the spherical restriction zone located at the centroid of each

unit geometry, NB is the total number of members (including struts and cables), NS is the number

of struts in the tessellation block (a subset of NB), and “Class” denotes the resulting global Class

category of the tensegrity metamaterial. The behavior of a tensegrity structure depends on the

number of independent prestressed states (self-stresses) and its kinematic indeterminacy (indepen-

dent internal mechanisms), which are denoted by PS and KI, respectively [11]. Notice that the

tessellation block for the Cube design domain is Class-1, however, the resulting metamaterial is

Class-4.
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Appendix B. Computation of identification matrix M

First, we need to find pairs of boundary nodes that are images of each other under translational

symmetry. Assume that the primitive vectors are a1, a2, and a3. We can translate the unit cell

nodal coordinates by different combinations of primitive vectors. If a node after the translation

has the same coordinate as another node before the translation; these two nodes are identified as

a pair. Supposing that there are m pairs of identified nodes, we can store their nodal incidence in

a m× 2 array.

Second, we use a union-find algorithm [61] with path compression and weighting to obtain the

independent groups of nodes, as well as the identification matrix Q. The MATLAB code for this

algorithm is given below. The input array SameNodePairs contains the indices of the identified

pairs, and where Nv is refer as NV . The output array Q is the identification matrix Q, and the

array Pairs is a NV × 2 matrix with the pairs of identified nodes.

1 function [Q,Pairs] = CondenseTopMat(SameNodePairs,Nv)
2 % union-find algorithm with path compression and weighting
3 id = 1:Nv;
4 sz = ones(1,Nv);
5

6 FirstNd = SameNodePairs(:,1);
7 SecondNd = SameNodePairs(:,2);
8

9 for i = 1:length(FirstNd)
10 % make every node in path point to its grandparent (path compression)
11 FNdi = FirstNd(i);
12 while FNdi 6= id(FNdi)
13 id(FNdi) = id(id(FNdi));
14 FNdi = id(FNdi);
15 end
16 SNdi = SecondNd(i);
17 while SNdi 6= id(SNdi)
18 id(SNdi) = id(id(SNdi));
19 SNdi = id(SNdi);
20 end
21

22 % merge smaller tree into larger tree (weighted quick union)
23 if FNdi 6= SNdi
24 if sz(FNdi) < sz(SNdi)
25 id(FNdi) = SNdi;
26 sz(SNdi) = sz(SNdi) + sz(FNdi);
27 else
28 id(SNdi) = FNdi;
29 sz(FNdi) = sz(FNdi) + sz(SNdi);
30 end
31 end
32 end
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33

34 % Compress to root
35 for i = Nv
36 while id(i) 6=id(id(i))
37 id(i) = id(id(i));
38 end
39 end
40 Pairs = [id;(1:Nv)]';
41

42 idnew = id; iduni = unique(id);
43 for i = 1:numel(unique(id))
44 idnew(id==iduni(i)) = i;
45 end
46 Q = sparse(1:Nv,idnew,ones(Nv,1),Nv,numel(unique(idnew)));
47 return

Appendix C. Computation of effective elasticity tensor

We write a MATLAB function to implement the homogenization procedure as explained in [53].

The input arguments are: array of nodal coordinates (NODE); array of member connectivities

(BARS); array of three primitive vectors (Amat); array of prestress forces (P); array of member areas

(A); array of Young’s modulus of all members E; the identification matrix (Q); and identified pairs

of nodes (Pairs). The output array Dhom is the homogenized elasticity tensor D. The function

also gives the six deformation modes (stored in Modes) of the unit cell under six elementary

displacement-type boundary conditions, corresponding to three uniaxial extensions and three pure

shear loadings. Denoting S as the elastic compliance, we have S = D−1. The Poisson’s ratio ν12

is derived as [62]:

ν12 = −1ε22

1ε11

= −S12

S11

. (C.1)

1 function [Dhom, Modes] = GetHomProp(NODE,BARS,Amat,P,A,E,Q,Pairs)
2 %% Get unit cell full stiffness matrix Kuc
3 Nv = size(NODE,1);
4 Nb = size(BARS,1);
5 % Length vector and equilibrium matrix
6 D = [NODE(BARS(:,2),1) - NODE(BARS(:,1),1),...
7 NODE(BARS(:,2),2) - NODE(BARS(:,1),2),...
8 NODE(BARS(:,2),3) - NODE(BARS(:,1),3)];
9 L = sqrt(D(:,1).ˆ2 + D(:,2).ˆ2 + D(:,3).ˆ2);

10 D = [D(:,1)./L D(:,2)./L D(:,3)./L];
11 B = sparse(repmat((1:Nb)',1,6),[3*BARS(:,1)-2 3*BARS(:,1)-1 3*BARS(:,1),...
12 3*BARS(:,2)-2 3*BARS(:,2)-1 3*BARS(:,2)],[D -D],Nb,3*Nv);
13 % Linear elastic stiffness matrix
14 Ke = B' * sparse(1:Nb,1:Nb,(E.*A./L)) * B;
15 % Geometric Stiffness Matrix
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16 G = sparse([1:Nb,1:Nb],reshape(BARS,[],1),[ones(Nb,1);-ones(Nb,1)],Nb,Nv);
17 Kg = kron((G'*sparse(1:Nb,1:Nb,P./L)*G),speye(3));
18 % Assembly unit cell stiffness matrix
19 Kuc = Ke + Kg;
20 % Eliminate numerical rounding errors
21 Kuc = 0.5 * (Kuc + Kuc');
22

23 %% Get homogenized elasticity tensor
24 B0 = kron(Q,eye(3));
25 Bep = ...
26 [Amat(1,1), 0, 0, Amat(2,1)/2, 0, Amat(3,1)/2;
27 0, Amat(2,1), 0, Amat(1,1)/2, Amat(3,1)/2, 0;
28 0, 0, Amat(3,1), 0, Amat(2,1)/2, Amat(1,1)/2;
29 Amat(1,2), 0, 0, Amat(2,2)/2, 0, Amat(3,2)/2;
30 0, Amat(2,2), 0, Amat(1,2)/2, Amat(3,2)/2, 0;
31 0, 0, Amat(3,2), 0, Amat(2,2)/2, Amat(1,2)/2;
32 Amat(1,3), 0, 0, Amat(2,3)/2, 0, Amat(3,3)/2;
33 0, Amat(2,3), 0, Amat(1,3)/2, Amat(3,3)/2, 0;
34 0, 0, Amat(3,3), 0, Amat(2,3)/2, Amat(1,3)/2];
35 BaTopInt = Amat \ (NODE(Pairs(:,2),:) - NODE(Pairs(:,1),:))';
36 BaTopInt(abs(BaTopInt)<1e-3) = 0;
37 BaTop = sign(BaTopInt)';
38 Ba = kron(BaTop,eye(3));
39 Nrn = size(B0,2);
40 D0 = -pinv(full(B0'*Kuc*B0)) * (B0'*Kuc*Ba); % Pseudo inverse
41 Da = B0*D0 + Ba;
42 Kda = Da' * Kuc * Da;
43 Dhom = Bep' * Kda * Bep / det(Amat);
44 Modes = Da * Bep;
45 return
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