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The linear stability analysis of an uniform shear flow of granular materials is revisited using

several cases of a Navier-Stokes’-level constitutive model in which we incorporate the global

equation of states for pressure and thermal conductivity (which are accurate up-to the maximum

packing density νm) and the shear viscosity is allowed to diverge at a density νµ (< νm), with

all other transport coefficients diverging at νm. It is shown that the emergence of shear-banding

instabilities (for perturbations having no variation along the streamwise direction), that lead to

shear-band formation along the gradient direction, depends crucially on the choice of the consti-

tutive model. In the framework of a dense constitutive model that incorporates only collisional

transport mechanism, it is shown that an accurate global equation of state for pressure or a vis-

cosity divergence at a lower density or a stronger viscosity divergence (with other transport co-

efficients being given by respective Enskog values that diverge at νm) can induce shear-banding

instabilities, even though the original dense Enskog model is stable to such shear-banding in-

stabilities. For any constitutive model, the onset of this shear-banding instability is tied to a

universal criterion in terms of constitutive relations for viscosity and pressure, and the sheared
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granular flow evolves toward a state of lower “dynamic” friction, leading to the shear-induced

band formation, as it cannot sustain increasing dynamic friction with increasing density to stay

in the homogeneous state. A similar criterion of a lower viscosity or a lower viscous-dissipation

is responsible for the shear-banding state in many complex fluids.

1. Introduction

One challenge in granular flow research is to devise appropriate hydrodynamic/continuum

models to describe its macroscopic behavior. Rapid granular flows (Campbell 1990; Goldhirsch

2003) can be well modeled by an idealized system of smooth hard spheres with inelastic col-

lisions. The kinetic theory of dense gases has been modified to obtain Navier-Stokes-like (NS)

hydrodynamic equations, with an additional equation for the fluctuation kinetic energy of par-

ticles (i.e., granular energy) that incorporates the dissipative-nature of particle collisions. Such

NS-order hydrodynamic models have been widely used as prototype models to gain insight into

the “microscopic” understanding of various physical phenomena involved in granular flows.

The plane Couette flow has served as a prototype model problem to study the rheology (Lun

et al. 1984; Jenkins & Richman 1985; Campbell 1990; Sela & Goldhirsch 1998; Alam & Lud-

ing 2003, 2003a; Tsai, Voth & Gollub 2003; Alam & Luding 2005; Gayen & Alam 2008) and

dynamics (Hopkins & Louge 1991; McNamara 1993; Tan & Goldhirsch 1997; Alam & Nott

1997, 1998; Conway & Glasser 2004; Alam et al. 2005; Alam 2005, 2006; Gayen & Alam

2006; Saitoh & Hayakawa 2007) of granular materials. In the rapid shear flow, the linear sta-

bility analyses of plane Couette flow (Alam & Nott 1998; Alam 2006) showed that this flow

admits different types of stationary and travelling-wave instabilities, leading to pattern forma-

tion. One such instability is the “shear-banding” instability in which the homogeneous shear flow

breaks into alternating dense and dilute regions of particles along the gradient direction. This is
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dubbed “shear-banding” instability since the “nonlinear” saturation of this instability (Alam &

Nott 1998; Alam et al. 2005; Shukla & Alam 2008) leads to alternate layers of dense and dilute

particle-bands in which the shear-rate is high/low in dilute/dense regions, respectively, leading to

“shear-localization” (Varnik et al. 2003). This is reminiscent of shear-band formation in shear-

cell experiments (Savage & Sayed 1984; Losert et al. 2000; Mueth et al. 2000; Alam & Luding

2003; Tsai, Voth & Gollub 2003): when a dense granular material is sheared the shearing is

confined within a few particle-layers (i.e., a shear-band) and the rest of the material remains

unsheared, leading to the two-phase flows of dense and dilute regions. Previous works (Alam

& Nott 1998; Alam et al. 2005) showed that the kinetic-theory-based hydrodynamic models are

able to predict the co-existence of dilute and dense regimes of such shear-banding patterns.

The above problem has recently been reanalyzed (Khain & Meerson 2006), with reference to

shear-band formation, with a constitutive model which is likely to be valid in the dense limit.

These authors showed that their ‘dense’ constitutive model does not admit shear-banding insta-

bilities of Alam & Nott (1998); however, a single modification that the shear viscosity diverges

at a density lower than other transport coefficients resulted in the appearance of two-phase-type

solutions of dilute and dense flows that are reminiscent of shear-banding instabilities. That the

viscosity diverges stronger/faster than other transport coefficient has also been incorporated pre-

viously in a constitutive model by Losert et al. (2000) that yields a satisfactory prediction for

shear-bands in an experimental Couette flow in three-dimensions.

We revisit this problem to understand the influence of different Navier-Stokes’-order constitu-

tive models (as detailed in §2) on the shear-banding instabilities in granular plane Couette flow.

More specifically, we will pinpoint how the effects of various models, some of them involving

the global equation of state and the viscosity divergence (at a density lower than the maximum

packing), change the shear-banding instabilities predicted by Alam & Nott (1998). For the sake

of a systematic overview, we will also discuss about the instability results based on special lim-
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iting cases of these models. One important finding is that a global equation of state (without

viscosity divergence at a lower density) leads to a shear-banding instability in the framework

of a “dense” model that incorporates only collisional transport mechanism. Even with the local

equation of state, if we use a constitutive relation for viscosity that has a stronger divergence (at

the same maximum packing density) than other transport coefficients, we recover shear-banding

instabilities in the framework of the dense-model of Haff (1983). This brings us to a crossroad:

is there any connection among the results of Alam & Nott, Khain & Meerson, and the present

work? Is there any universal criterion for the onset of the shear-banding instability in granular

shear flow? Such an universality for the shear-banding instability indeed exists, solely in terms of

the constitutive relations, as we show in this paper. Possible connections of the present criterion

of a lower dynamic friction for the shear-banding state to explain the onset of shear-banding in

many complex fluids as well as in an elastic hard-sphere fluid are discussed.

2. Balance equations and constitutive model

We use a Navier-Stokes-level hydrodynamic model for which we need balance equations for

mass, momentum and granular temperature:

(

∂

∂t
+ u ·∇

)

̺ = −̺∇ · u (2.1)

̺

(

∂

∂t
+ u ·∇

)

u = −∇ ·P (2.2)

dim

2
̺

(

∂

∂t
+ u ·∇

)

T = −∇ · q−P : ∇u−D. (2.3)

Here ̺ = mn = ρpν is the mass-density, m the particle mass, n the number density, ρp the

material density and ν the area/volume fraction of particles; u is the coarse-grained velocity-

field and T is the granular temperature of the fluid. Note that the granular temperature, T =

〈C2/ dim〉, is defined as the mean-square fluctuation velocity, with C = (c − u) being the

peculiar velocity of particles and c the instantaneous particle velocity; dim is the dimensionality
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of the system and here onward we focus on the two-dimensional (dim = 2) system of an inelastic

“hard-disk” fluid. The flux terms are the stress tensor, P, and the granular heat flux, q; D is the

rate of dissipation of granular energy per unit volume– for these three terms we need appropriate

constitutive relations which are detailed below.

2.1. General form of Newtonian constitutive model: Model-A

The standard Newtonian form of the stress tensor and the Fourier law of heat flux are:

P = (p− ζ∇ · u)I− 2µS, (2.4)

q = −κ∇T, (2.5)

where I is the identity tensor and S the deviator of the deformation rate tensor. Here p, µ, ζ

and κ are pressure, shear viscosity, bulk viscosity and thermal conductivity of the granular fluid,

respectively.

Focussing on the nearly elastic limit (e → 1) of an inelastic hard-disk (of diameter d) fluid,

the constitutive expressions for p, µ, ζ, κ and D are given by

p(ν, T ) = ρpf1(ν)T, µ(ν, T ) = ρpdf2(ν)
√
T ,

ζ(ν, T ) = ρpdf3(ν)
√
T , κ(ν, T ) = ρpdf4(ν)

√
T ,

D(ν, T ) =
ρp

d f5(ν, e)T
3/2,

(2.6)

where f1–f5 are non-dimensional functions of the particle area fraction ν (Gass 1971; Jenkins &

Richman 1985):

f1(ν) = ν + 2ν2χ, (2.7)

f2(ν) =

√
π

8χ
+

√
π

4
ν +

√
π

8

(

1 +
8

π

)

ν2χ, (2.8)

f3(ν) =
2√
π
ν2χ, (2.9)

f4(ν) =

√
π

2χ
+

3
√
π

2
ν +

√
π

(

2

π
+

9

8

)

ν2χ, (2.10)

f5(ν, e) =
4√
π
(1− e2)ν2χ. (2.11)
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These constitutive expressions give good predictions for transport coefficients of nearly elastic

granular fluid up-to a density of ν ≈ 0.55 (see, figure 2 of Alam & Luding 2003a). In the above

expressions, χ(ν) is the contact radial distribution function which is taken to be of the following

form (Henderson 1975)

χ(ν) =
1− 7ν/16

(1− ν/νm)2
, (2.12)

that diverges at some finite density ν = νm. For the ideal case of point particles (i.e. in one

dimension, Torquato 1995), we have νm = 1 which is unrealistic for macroscopic grains at very

high densities; there are two other choices for this diverging density: the random close packing

density νr = νm = 0.82 or the maximum packing density νm = π/2
√
3 ≈ 0.906 in two-

dimensions (Torquato 1995); up-to some moderate density (ν ∼ 0.5), there is no difference in

the value of χ(ν) for any choice of νm = 1 or 0.906 or 0.82. The range of validity of different

variants of model radial distribution functions is discussed in an upcoming paper (Luding 2008).

We shall denote the above constitutive model (2.6–2.11), with the contact radial distribution

function being given by (2.12), as “model-A”. Since the stability results do not differ qualitatively

with either choice of the numerical value for νm (= 0.82 or 0.906 or 1), we will present all results

with νm = π/2
√
3 in (2.12) (except in figure 12d, see §5.2).

Now we consider the dilute and dense limits of model-A. It should be noted that each transport

coefficient has contributions from the ‘kinetic’ and ‘collisional’ modes of transport: while the

former is dominant in the Boltzmann limit (ν → 0), the latter is dominant in the dense limit (ν →

νm). For example, the pressure can be decomposed into its kinetic and collisional contributions:

p = pk + pc = ρp(f
k
1 + f c

1 )T. (2.13)

To obtain the constitutive expressions for the dilute and dense regimes, one has to take the ap-
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propriate limit of all functions f1–f4:

f1 = fk
1 + f c

1 , f2 = fk
2 + f c

2 ,

f3 = fk
3 + f c

3 , f4 = fk
4 + f c

4 .

(2.14)

Based on this decomposition, we have the following two limiting cases of model-A.

2.1.1. Dilute limit: Model A0

For this dilute (ν → 0) model, χ(ν) → 1 and the constitutive expressions are assumed to

contain contributions only from the kinetic mode of transport:

f1 ≡ fk
1 (ν) = ν, f2 ≡ fk

2 (ν) =
√
π
8 +

√
π
4 ν,

f3 ≡ fk
3 (ν) = 0, f4 ≡ fk

4 (ν) =
√
π
2 + 3

√
π

2 ν,

f5 ≡ f5(ν → 0) = 4√
π
(1 − e2)ν2.

(2.15)

We shall call this “model A0”. Note that f5 has only the leading-order collisional contribution,

since no energy is dissipated in kinetic (free-flow) motion.

2.1.2. Dense limit: Model Ad

For this dense model, the constitutive expressions are assumed to contain contributions only

from collisional mode of transport:

f1 ≡ f c
1(ν) = 2ν2χ, f2 ≡ f c

2(ν) =
√
π
8

(

1 + 8
π

)

ν2χ,

f3 ≡ f c
3(ν) = 2√

π
ν2χ, f4 ≡ f c

4(ν) =
√
π
(

2
π + 9

8

)

ν2χ,

f5 ≡ f5(ν, e) = 4√
π
(1− e2)ν2χ.

(2.16)

We shall call this “model Ad” which is nothing but Haff’s model (1983).

2.2. Model B: global equation of state (EOS)

In two-dimensions, a global equation of state for pressure has recently been proposed by Luding

(2001):

p/ρpT ≡ f1(ν) = ν + ν (P4 +m(ν) [Pdense − P4]) , ∀ 0 6 ν 6 νm =
π

2
√
3
, (2.17)



8 M. Alam, P. Shukla and S. Luding

where

P4 = 2νχ4,

χ4(ν) = 1−7ν/16
(1−ν)2 − ν3

128(1−ν)4 ,

Pdense = 2νmh3(νm−ν)
(νm−ν) − 1,

h3(νm − ν) = 1− 0.04(νm − ν) + 3.25(νm − ν)3,

m(ν) = [1 + exp(−(ν − νf )/m0)]
−1

.

(2.18)

Here νf is the freezing point density, and m(ν) is a merging function that selects P4 for ν << νf

and Pdense for ν >> νf ; the value of m0 is taken to be 0.012 along with a freezing density of

νf = 0.7. It should be noted that the above functional form of f1(ν), (2.17), is a monotonically

increasing function of ν, and it has been verified (Luding 2001, 2002; Garcia-Rojo, Luding &

Brey 2006) from molecular dynamics simulations of elastic hard-disk systems that the numerical

values for different constants in (2.18) are accurate (within much less than 1% except around νf )

up-to the maximum packing density.

Rewriting equation (2.17) as

f1(ν) = ν + 2ν2χp(ν), (2.19)

we can define an “effective” contact radial distribution function for pressure:

χp(ν) =
1

2ν
(P4 +m(ν) [Pdense − P4]) ,

= χ4 +m(ν)

[

h3(νm − ν)

ν(1 − ν/νm)
− 1

2ν
− χ4

]

, with νm =
π

2
√
3
. (2.20)

It should be noted here that this functional form of χp(ν) has been verified by molecular dynam-

ics simulations of plane shear flow of frictional inelastic disks (Volfson, Tsimring & Aranson

2003). In particular, they found that the simulation data on G(ν) = νχp(ν) agree with the pre-

dictions of (2.20), however, its divergence appears to occur at the random close packing limit in

two-dimensions (νm = νr = 0.82).

Similar to pressure, a global equation for thermal conductivity has been suggested by Garcia-



Universality of shear-banding instability in granular shear flow 9

Rojo et al. (2006) which is also accurate up-to the maximum packing density. More specifically,

the non-dimensional function of density for thermal conductivity (equation (2.10)) is replaced by

f4(ν) =

√
π

2χκ(ν)
+

3
√
π

2
ν +

√
π

(

2

π
+

9

8

)

ν2χκ(ν) (2.21)

where χκ(ν) is the “effective” contact radial distribution function for thermal conductivity:

χκ(ν) = χ(ν, νm = 1) +m(ν)

[

h3(νm − ν)

ν(1 − ν/νm)
− 1

2ν
− χ(ν, νm = 1)

]

, (2.22)

with χ(ν, νm = 1) being obtained from (2.12) by putting νm = 1.

The model-A with the above global equation of state for pressure and the global equation

for thermal conductivity is called “model-B”. Note that the dilute limit of model-B is the same

as that of model-A, however, the dense limits of both models are different in the choice of the

equation of state and thermal conductivity.

Now we identify two subsets of model-B: “model-Bp” and “model-Bκ” where the former is

model-B with a global equation of state for pressure (2.17) only and the latter is model-B with a

global equation for thermal conductivity (2.21) only. As clarified in the previous paragraph, the

remaining transport coefficients of model-B are same as in model-A.

2.3. Model-C: viscosity divergence

Here we consider a variant of model-A which incorporates another ingredient in the constitutive

model: the shear viscosity diverges at a density lower than other transport coefficients (Garcia-

Rojo et al. 2006). This can be incorporated in the corresponding dimensionless function for the

shear viscosity (2.8):

fµ
2 (ν) = f2(ν)

(

1 +
0.037

νµ − ν

)

, (2.23)

which diverges at a density, ν = νµ < νm, that is lower than the close packing density. The first

term on the right-hand-side is the standard Enskog term (2.8) and the second term incorporates

a correction due to the viscosity divergence. For all results shown here, we use νµ = 0.71 which
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was observed for the unsheared case (Garcia-Rojo et al. 2006); note, however, that the precise

density at which viscosity diverges in a shear flow can be larger than 0.71 (see figure 6 of Alam

& Luding 2003).

The model with all transport coefficients as in model-A but with its viscosity divergence being

at a lower density is termed as “model-C”. Similar to model-A, we can recover the dilute and

dense limits of model-C, by separating the kinetic and collisional contributions to each transport

coefficient. The dense limit of model-C is, however, reached at ν = νµ due to the viscosity

divergence.

2.4. Model-D: Global equation of state and viscosity divergence

This is the most general model in which we incorporate: (1) the global equation of state for

pressure (2.17), (2) the global equation for thermal conductivity (2.21), and (3) the viscosity

divergence (2.23). The other transport coefficients of model-D are same as in model-A.

3. Plane shear and linear stability

Let us consider the plane shear flow of granular materials between two walls that are separated

by a distance H̃ : the top wall is moving to the right with a velocity Uw/2 and the bottom wall

is moving to the left with the same velocity. We impose no-slip and zero heat-flux boundary

conditions at both walls:

u = ±Uw/2 and q = 0 at y = ±H̃/2. (3.1)

The equations of motion for the steady and fully developed shear flow admit the following

solution:

u = [u(y), v(y)] = [(Uw/H̃)y, 0], ν(y) = const. = ν, T = d2
(

du

dy

)2
f2(ν)

f5(ν)
. (3.2)

The shear rate, du/dy = Uw/H̃, is uniform (constant) across the Couette gap, and this solution

will henceforth be called uniform shear solution. Note that if viscosity diverges at ν = νµ, there
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is no uniform shear solution for ν > νµ, i.e. the uniform shear flow is possible only for densities

0 < ν < νµ.

We have non-dimensionalized all quantities by using H̃, H̃/Uw and Uw as the reference

length, time and velocity scales, respectively. The explicit forms of dimensionless balance equa-

tions as well as the dimensionless transport coefficients are written down in Appendix A. There

are three dimensionless control parameters to characterize our problem: the scaled Couette gap

H = H̃/d, the mean density (area fraction) ν = ν and the restitution coefficient e. Here onwards,

all quantities are expressed in dimensionless form.

3.1. Linear stability

The stability analysis of the plane shear flow has been thoroughly investigated (Alam & Nott

1998; Alam 2005, 2006; Alam et al. 2005) using the constitutive models of class A for which

all transport coefficients diverge at the maximum packing fraction ν → νm, as outlined in §2.1.

The same analysis is carried out here for a specific type of perturbations that are invariant along

the streamwise/flow (x) direction, having variations along the gradient (y) direction only. This

implies that the x-derivatives of all quantities are set to zero (∂/∂x(·) = 0) in the governing

equations. The analysis being identical with that of Alam and Nott (1998), we refer the readers

to that article for mathematical details.

Consider the stability of the uniform shear solution (3.2) against perturbations that have spatial

variations along the y-direction only, e.g. the density field can be written as ν(y, t) = ν+ν′(y, t),

with the assumption of small-amplitude perturbations, |ν′(y, t)/ν| << 1, for the linear analysis.

Linearizing around the uniform shear solution, we obtain a set of partial differential equations:

∂X

∂t
= LX, with BX ≡

(

1, 1,
d

dy

)

· (u′, v′, T ′) = 0, (3.3)

where X = (ν′, u′, v′, T ′) is the vector of perturbation fields, L is the linear stability operator

and B denotes the boundary operator (i.e., zero slip, zero penetration and zero heat flux). Assum-
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ing exponential solutions in time X(y, t) = X̂(y) exp(ωt), we obtain a differential-eigenvalue

problem:

ωX̂ = L
(

d2

dy2
,
d

dy
, ...

)

X̂, with BX̂ = 0, (3.4)

where X̂(y) = (ν̂, û, v̂, T̂ )(y) is the unknown disturbance vector that depends on y. Here,

ω = ωr + iωi is the complex frequency whose real part ωr denotes the growth/decay rate of

perturbations and the imaginary part ωi is its frequency which characterizes the propagating

(ωi 6= 0) or stationary (ωi = 0) nature of the disturbance. The flow is stable or unstable if ωr < 0

or ωr > 0, respectively.

3.2. Analytical solution: dispersion relation and its roots

Before presenting numerical stability results (§4), we recall that the above set of ordinary differ-

ential equations (3.4) admits an analytical solution (Alam & Nott 1998):

(ν̂(y), T̂ (y)) = (ν1, T1) cos kn(y ± 1/2) (3.5)

(û(y), v̂(y)) = (u1, v1) sin kn(y ± 1/2), (3.6)

where kn = nπ is the ‘discrete’ wavenumber along y, with n = 1, 2, . . . being the mode number

that tells us the number of zero-crossing of the density/temperature eigenfunctions along y ∈

(−1/2, 1/2). With this, equation (3.4) boils down to an algebraic eigenvalue problem:

AX1 = ωX1, (3.7)

where X1 = (ν1, u1, v1, T1) and A is a 4 × 4 matrix. This leads to a fourth-order dispersion

relation in ω:

ω4 + a3ω
3 + a2ω

2 + a1ω + a0 = 0, (3.8)

with coefficients

a0 = 1
H4 a04 +

1
H6 a06, a1 = 1

H2 a12 +
1
H4 a14 +

1
H6 a16,

a2 = 1
H2 a22 +

1
H4 a24, a3 = a30 +

1
H2 a32.

(3.9)
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Here aij’s are real functions of density (ν), temperature (T ), and the restitution coefficient (e)

whose explicit forms are written down in Appendix B.

Out of four roots of (3.8), two roots are real and the other two form a complex-conjugate

pair. It is possible to obtain an approximate analytical solution for these four roots using the

standard asymptotic expansion for large Couette gaps (H ≡ H̃/d), with the corresponding small

parameter being H−1. The real roots have the approximations for large H :

ω(1) = − 1

H2

(

a04
a12

)

+O
(

H−4
)

, (3.10)

ω(2) = ω
(2)
0 +

1

H2

[

a12 + a22ω
(2)
0 + a32ω

(2)
0

2]

ω
(2)
0

(

3a30 + 4ω
(2)
0

) +O
(

H−4
)

, (3.11)

where

ω
(2)
0 = − 1

ν
f5T

1/2 < 0. (3.12)

The real and imaginary parts of the conjugate pair,

ω(3,4) = ω(3,4)
r ± i ω

(3,4)
i , (3.13)

have the asymptotic approximations for large H :

ωr
(3,4) =

1

H2





a04 +
(

a2

12

a2

30

)

−
(

a12a22

a30

)

2a12



+O
(

H−4
)

, (3.14)

(ω
(3,4)
i )2 =

1

H2

(

a12
a30

)

+O
(

H−4
)

. (3.15)

For full models (i.e., A, B, C and D), it can be verified that ω
(3,4)
r is always negative, making the

first real root ω(1), given by (3.10), the least-stable mode. However, for the dense models (i.e.,

Ad, Bd, Cd and Dd), ω
(3,4)
r could be positive, making the travelling waves, given by (3.13), the

least-stable mode at low densities. These predictions have been verified against numerical values

obtained from spectral method as discussed in §4.
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4. Stability results: comparison among different models

For results in this section, the differential eigenvalue problem (3.4) has been discretized us-

ing the Chebyshev spectral method (Alam & Nott 1998) and the resultant algebraic eigenvalue

problem has been solved using the QR-algorithm of the Matlab-software. The degree of the

Chebyshev polynomial was set to 20 which was found to yield accurate eigenvalues. In princi-

ple, we could solve (3.8) to obtain eigenvalues, but it provides eigenvalues only for a given mode

number n = 1, 2, . . . in one shot; therefore, one has to solve (3.8) for several n to determine the

growth rate of the most unstable mode. The advantage of the numerical solution of (3.4) is that

it provides all leading eigenvalues in one shot.

4.1. Results for model-A and its dilute and dense limits

As mentioned before, the stability analysis of the uniform shear flow with a 3D-variant (i.e. for

spheres) of model-A has been performed before (Alam & Nott 1998; Alam 2005, 2006; Alam

et al. 2005). Even though the results for our 2D-model are similar to those for the 3D-model, we

show a few representative results for this constitutive model for the sake of a complete, systematic

study and for comparison with other models; note that the results for model-A0 and model-Ad

are new.

The phase diagram, separating the zones of stability and instability, in the (ν,H)-plane is

shown in figure 1 for model-A. The flow is unstable inside the neutral contour, denoted by ‘0’,

and stable outside; a few positive growth-rate contours are also displayed. For the same parameter

set, from the respective contours of the frequency,ωi, in the (ν,H)-plane it has been verified that

these instabilities are stationary, i.e., ωi = 0. It is seen that there is a minimum value of the

Couette gap (H = Hcr) and a minimum density (ν = νcr) below which the flow remains stable.

With increasing value of e, the neutral contour shifts towards the right, i.e., Hcr increases and

hence the flow becomes more stable with increasing e. We shall discuss the dependence of e on

the shear-banding instability and the related instability length scale in §5.2.
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limit of model-A): e = 0.9, νm = π/2
√
3. (b) Contours of frequency, indicating that the instability in panel

a is due to travelling waves.

Figure 2(a) shows the variation of the growth rate of the least stable mode, ωl
r = maxωr, with

Couette gap for ν = 0.5, with other parameters as in figure 1. The kinks on the growth-rate curve

correspond to crossing of modes n = 1, 2, 3, · · ·. This can be verified from figure 2(b) which

displays density eigenfunctions for three values of Couette gaps H = 50, 100 and 150. The

density eigenfunction at H = 50 corresponds to the mode n = 1 (i.e. ν̂ ∼ cos(π(y ± 1/2)) =

sin(πy), see equation (3.5)), the other two at H = 100, 150 correspond to modes n = 2, 3 (i.e.,

ν̂ ∼ cos(2πy) and sin(3πy), respectively). In fact, there is an infinite hierarchy of such modes

as H → ∞ which has been discussed before (Alam & Nott 1998; Alam et al. 2005).

For the dilute limit of model-A (i.e., model-A0), there are stationary instabilities at finite

densities (ν > 0), and the stability diagram (not shown for brevity) in the (H, ν)-plane looks

similar to that for model-A (figure 1), but the range of H over which the flow is unstable is much

larger. As expected, both model-A and model-A0 predict that the flow is stable in the Boltzmann

limit (ν → 0).

Figure 3(a) shows the analogue of figure 1 for model-Ad for which the constitutive relations
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ν = 0.1 and e = 0.9. Other parameters as in figure 3.

are expected to be valid in the dense limit (since the constitutive relations contain the collisional

part only, §2.1.2); figure 3(b) shows the contours of frequency (corresponding to the least-stable

mode) in the (H, ν)-plane. The flow is unstable to travelling-wave instabilities inside the neutral

contour. For this dense model, the crossings of different instability modes (n = 1, 2, · · ·) with

increasing Couette gap H and their frequency variations can be ascertained from figure 4. From

a comparison between figures 1 and 3, the following differences are noted:

(1) Model-Ad predicts that the flow is stable in the dense limit which is in contrast to the predic-

tion of the full model (i.e., model-A) for which the dense flow is unstable. This is a surprising

result since the kinetic contribution to transport coefficients is small in the dense limit, and hence

both model-A and model-Ad are expected to yield similar results.

(2) There is a travelling-wave (TW) instability at low densities (ν < 0.3) for model-Ad which

is absent in model-A. Since model-Ad is devoid of the kinetic modes of momentum transfer

and hence not applicable at low densities, we call the TW-modes in figure 3(a) as “anomalous”
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FIGURE 5. Phase diagram, showing the positive growth-rate contours, for model-Bκ with a global

equation for thermal conductivity: e = 0.9, νm = π/2
√
3, νf = 0.7.

modes and they vanish when both kinetic and collisional effects are incorporated as in the full

model-A.

One conclusion that can be drawn from the results of three variants of model-A is that the

choice of the constitutive model is crucial for the prediction of shear-banding instability. We

shall come back to discuss this point in § 5.

4.2. Results for model-B: influence of global equation of state

Figure 5 shows a phase-diagram in the (H, ν)-plane for model Bκ; the flow is unstable inside the

neutral contour and stable outside. Recall that this model is the same as model-A for ν < νf , with

the only difference being that we use a global equation for thermal conductivity which is valid

up-to the maximum packing density (equation 2.21). This instability is stationary and the other

features of stability diagrams remain the same (as those in figure 1 for the standard model-A), but

there is a dip on the neutral contour at the freezing density ν = νf . For its dense counterpart, the

model-Bκ
d does not predict any instability at large densities but has travelling-wave instability at
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low densities (the corresponding stability diagram looks similar to that in figure 3(a) for model-

Ad and hence is not shown).

When a global equation of state for pressure is incorporated (i.e., model-Bp, see §2.2), the

phase-diagram in the (H, ν)-plane looks markedly different, especially at ν > νf , as seen in

figures 6(a) and 6(b). (Recall that the model-Bp is same as model-A, except that we use a global

equation of state for pressure, equation (2.17).) In figure 6(b), the neutral stability contour con-

tains a kink at ν ≈ 0.3 and there are two instability-lobes: the lower instability lobe is due to

travelling-waves and the upper-one is due to stationary-waves. (Similar to model-Ad, the low

density TW instability in figure 6(b) is dubbed “anomalous” since model-Bd is not valid at low

densities.) It is interesting to note in figure 6(b) that for the dense limit of model-Bp (i.e., model-

Bp
d ) the flow remains unstable to the “stationary” shear-banding instability up-to the maximum

packing density. This observation is in contrast to the predictions of model-Ad (figure 3a) and

model-Bκ
d . Therefore, we conclude that within the framework of a dense model the global equa-

tion of state for pressure induces shear-banding instabilities at large densities.

When both the global equations for pressure and thermal conductivity are incorporated, the
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(a) Full model; (b) dense limit.

phase diagrams in the (H, ν)-plane look qualitatively similar (not shown) to those for model-

Bp as in figure 6, with the only difference being slightly higher growth rates for the least-stable

mode. It is noteworthy that with the global EOS, the flow becomes unstable to shear-banding

instabilities at very small values of H for ν > νf .

From this section, we can conclude that within the framework of a “dense” constitutive model

(that incorporates only collisional contributions to transport coefficients, §2.1.2), a simple mod-

ification with a global equation of state for pressure induces new shear-banding instabilities at

large densities; however, a similar modification with a global equation of state for thermal con-

ductivity does not induce any new instability.

4.3. Results for model-C and model-D: influence of viscosity divergence

As discussed in §2.3, model-C is the same as model-A, with the viscosity divergence being at

a lower density ν = νµ < νm. On the other hand, model-D is the most general model that

incorporates the viscosity divergence at a lower density ν = νµ < νm (equation 2.23) as well

as global equations for pressure (equation 2.17) and thermal conductivity (equation 2.21). The
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stability results for these two models are found to be similar, and hence we present results only

for model-C.

Figures 7(a) and 7(b) show phase-diagrams in the (H, ν)-plane for model-C and its dense vari-

ant model-Cd, respectively; the results are shown up-to the viscosity divergence since uniform

shear is not a solution for ν > νµ. For the full model in figure 7(a), the phase-diagram looks

similar to those for model-A and model-B. For its dense counterpart in figure 7(b), the phase-

diagram is similar to that for model-Bd and model-Bp
d in the sense that all three models support

shear-banding instabilities at large densities. Therefore, for model-Cd, the viscosity divergence

induces shear-banding instabilities at large densities. This prediction is in tune with the results of

Khain & Meerson (2006) whose model is similar to our model-Cd (see § 5.3).

Within the framework of a “dense” model (§2.1.2), therefore, we can conclude about the emer-

gence of shear-banding instabilities at large densities: (1) a global equation of state for pressure

alone can induce shear-banding instabilities; (2) a viscosity-divergence at a density, ν = νµ,

lower than the maximum packing density alone can induce shear-banding instabilities.

5. Discussion: Universality of shear-banding instability and crystallization

5.1. An universal criterion for shear-banding instability

Since the shear-banding instability is a stationary (ωi = 0) mode, this instability is given by one

of the real roots (equation (3.10)) of the dispersion relation. The condition for neutral stability

(ωr = 0) can be obtained by setting ω = 0 in the dispersion relation (3.8):

a0 = 0 ⇒ k2n/H
2 =

Ψ2

Ψ1
, (5.1)

where

Ψ1 =
f4
f5

and Ψ2 =

(

f5ν
f5

+
f2ν
f2

)

f1
f1ν

− 2.
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For an instability to occur at a given density, there must be a range of ‘positive’ discrete wave-

numbers, i.e., kn/H > 0, which is equivalent to

Ψ2 > 0,

since Ψ1 is always positive. The expression for Ψ2 can be rearranged to yield (Alam 2006)

d

dν

(√
f2f5
f1

)

> 0, (with f1ν > 0) (5.2)

which must be satisfied for the onset of instability. (It should be noted that (5.2) provides a

necessary condition for instability, but the sufficient condition is tied to the thermal-diffusive

mechanism that leads to an instability length scale (5.1) which is discussed in §5.2.) The term

within the bracket in (5.2) is the ratio between the shear stress, Pxy = µγ, and the pressure, p,

for the plane Couette flow:

βd =
Pxy

p
=

µ(dudy )

p
=

f2
√
T

f1T
=

f2

f1
√
T

=
f2

f1
√

f2/f5
≡

√
f2f5
f1

, (5.3)

where γ = du/dy is the local shear rate (which is a constant for uniform shear flow). This

is nothing but the dynamic friction coefficient of the shear flow, which must increase with in-

creasing density for the shear-banding instability to occur. Note that as per Navier-Stokes-level

description, the steady fully developed plane Couette flow admits solutions for which the shear

stress and pressure are constants across the Couette gap. Hence, the dynamic friction coeffi-

cient, βd = µ(du/dy)/p = µγ/p, is a position-independent order-parameter for both “uniform”

(γ = const.) and “non-uniform” (γ = γ(y)) shear flows.

For model-A, the variation of βd with ν is non-monotonic as shown by the solid line in figure 8:

in the dilute limit βd is large whose value decreases with increasing density till a critical density

ν = νcr is reached beyond which βd increases. Recall that the onset of shear-banding instability

corresponds to dβd

dν > 0, denoted by the square-symbol in the inset of figure 8. It is clear from

this inset that the full model is unstable to shear-banding instability for ν > νcr, the dilute model

is unstable at any density (since dβd

dν > 0 for ν > 0), but the dense model is stable for all densities
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with ν: the onset of shear-banding instability corre-

sponds to
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(since dβd

dν = 0). It is worth pointing out that, for the full model-A, the critical density for the

onset of the shear-banding instability (cf. figure 1) is νcr ≈ 0.31733 which is independent of

the restitution coefficient e as confirmed in figure 9. The lower branch of the neutral contour of

figure 1 asymptotically approaches this critical density as H → ∞.

For model-B, the variation of βd with density (ν) is shown in figure 10, and the inset shows

the variation of dβd/dν with ν. (Recall that this model incorporates the global equations of

states for pressure and thermal conductivity.) In contrast to the ‘stable’ model-Ad, the model-

Bd (i.e. the dense variant of model-B) is unstable to shear-banding instabilities for all densities

(figure 6b) since dβd

dν > 0. For the full model-B, the critical density for the onset of shear-banding

instability (cf. figure 6a) is νcr ≈ 0.2351 which is also independent of the restitution coefficient

e (as in figure 9 for model-A). For models C and D, this critical density is νcr ≈ 0.2849 and

νcr ≈ 0.2207, respectively.

It should noted that there is a constraint (f1ν > 0) with our instability criterion (5.2), i.e.,
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f1 should be a monotonically increasing function of density for the instability to occur. This

constraint on f1, see equations (2.7) and (2.19), is satisfied for all four models. The consequence

of a possible non-monotonic f1 is that the shear flow remains stable over a small density range

between freezing and melting. However, the increasing dynamic friction with increasing density



Universality of shear-banding instability in granular shear flow 25

(5.2) still remains the criterion for the onset of the shear-banding instability. Even though for

an unsheared elastic system, f1 is non-monotonic (Luding 2001) between freezing and melting

density, we retain equation (2.19-2.20) for f1 since this functional form has been shown to hold

up-to the random close-packing density in simulations of plane shear flow of inelastic hard-disks

(Volfson et al. 2003).

5.1.1. Shear-banding state and crystallization

For all four models (A, B, C and D), the shear flow is stable and the system remains ho-

mogeneous at low densities, but becomes unstable to shear-banding instability beyond a critical

density (ν > νcr). This is due to the fact that for ν > νcr the flow cannot sustain the increas-

ing dynamic friction (βd) and hence breaks into alternating layers of dilute and dense regions

along the gradient direction. For ν > νcr, the associated “finite-amplitude” bifurcated solution

corresponds to a lower shear stress, or, equivalently, a lower dynamic friction coefficient. This

has been verified (Alam 2008) numerically by tracking the bifurcated solutions of the associated

steady nonlinear equations.

A representative set of such nonlinear bifurcated solutions for the profiles of density ν(y),

granular temperature T (y) and stream-wise velocity u(y) are displayed in figure 11 for three

values of the Couette gap H = 50, 75 and 125 for model-A; the related numerical procedure is

the same as described in Alam et al. (2005). For this plot, the mean density is set to 0.5 and the

restitution coefficient is 0.9; the corresponding growth-rate variation of the least stable mode can

be ascertained from figure 2(a). These nonlinear solutions bifurcate from the n = 1 mode (see,

equations 3.5 and 3.6) of the corresponding linear stability equations, and there is a pair of non-

linear solutions for each H due to the symmetry of the plane Couette flow (Alam & Nott 1998).

For mode n = 1, the density is maximum at either of the two walls, and this density-maximum

approaches the maximum packing density (νm ≈ 0.906) at H = 125 (solid line in figure 11a)

for which we have the coexistence of a “crystalline” zone and a dilute zone, representing a state
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of phase separation. Within the crystalline zone, the granular temperature approaches zero (fig-

ure 11b) and so does the shear rate (figure 11c). It is noteworthy that the shear-rate is almost

uniform and localized within the dilute zone. The resulting two-phase solution is called a “shear-

band” (or, shear-localization) since the shearing is confined within a band of an agitated dilute

region that coexists with a denser region with negligible shearing (i.e., a crystalline-region at

large enough Couette gap).

At H = 50 with parameters as in figure 11, there are two possible solutions: a “uniform-

shear” state, with the “dynamic” friction coefficient being βd ≈ 0.26965, which is unstable, and

one of two “shear-band” solutions for which βd ≈ 0.2672. The selection of the stable branch is

determined by the value of the dynamic friction coefficient being the lowest among all possible

solutions, and therefore the equilibrium state of the flow (at H = 50) corresponds to the shear-

banding state of a “lower” dynamic friction (Alam 2008).

For higher-order modes (n = 2, 3, · · ·), the shape of the nonlinear density/temperature/velocity

profiles can be ascertained from (3.5) and (3.6). For example, the density profiles for modes

n = 2 and 3 would look like the corresponding density eigenfunctions in figure 2(b). In fact, the

solution for the first mode (n = 1) serves as a “building-block” of solutions for higher modes

which has been clarified previously (Alam & Nott 1998; Nott et al. 1999; Alam et al. 2005).

At this point, we can say that an accurate constitutive model over the whole range of densities

(that incorporates both kinetic and collisional modes of transport mechanisms) should be used

since the dilute and dense regimes can coexist even at a moderately low mean density. Details

of such shear-banding solutions for other models (B, C and D) and their stability as well as the

related results from particle-dynamics simulations will be considered in a separate paper. Such

an exercise will help to identify and tune the best among the four models.
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FIGURE 11. Nonlinear shear-banding solutions for model-A for mode n = 1 with ν = 0.5 and e = 0.9:

(a) density, (b) granular temperature and (c) stream-wise velocity.

5.2. Instability length scale and the effect of dissipation

While our instability criterion, given by equation (5.2), yields a critical value for the density

above which the uniform shear flow is unstable to the shear-banding instability, it does not say

anything about the related instability length scale below which the flow is stable (cf. figures 1–7).

This issue of a dominant instability length scale is tied to the underlying diffusive mechanisms in

a granular fluid, offered by the pseudo-thermal conductivity in the energy balance equation (2.3).
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We have mentioned in §4 that the neutral contour in the (H, ν)-plane (such as in figures 1–7)

shifts towards right with increasing restitution coefficient (e), and hence the flow becomes more

stable in the elastic limit. In fact, the dependence of the neutral contour on e can be removed if

we define a normalized Couette gap as

H∗ = H
√

1− e2, (5.4)

which can be thought of as an “instability length scale” (Tan & Goldhirsch 1997; Alam & Nott

1998). This length scale appears directly from an analysis of the equation for the neutral contour

(5.1):

H2/Ψ1 = k2n/Ψ2 = f5H
2/f4 = f50(1− e2)H2/f4

⇒ H
√

1− e2 ≡ H∗ = kn

√

f4(ν)

Ψ2(ν)f50(ν)
, (5.5)

where f5(ν, e) = (1−e2)f50(ν), and f4(ν) is related to pseudo-thermal conductivity as in (2.6).

This specific functional dependence of the “instability length scale” on the restitution coefficient

is also due to the dependence of the thermal conductivity on the granular temperature which

implicitly depends on e (equation (3.2)): T ∼ f2/f5 ∼ (1− e2)−1.

In terms of the above instability length scale (5.4), the renormalized stability diagrams in the

(H∗, ν)-plane are displayed in figures 12(a), 12(b), 12(c) for model A, B, C and D, respectively.

In each panel, we have superimposed three neutral contours for e = 0.9, 0.99 and 0.999which are

indistinguishable from each other due to the underlying scaling (5.5) with e. In figure 12(b), we

compared the neutral contour of the full model-B with those for model-Bp (that incorporates the

EOS for pressure) and model-Bκ (that incorporates the global EOS for thermal conductivity). A

global equation for thermal conductivity has little influence on the stability diagram, but a global

equation for pressure significantly enlarges the domain of instability in the (H∗, ν)-plane.

Comparing figure 12(a) with figure 12(b), we find that there is a significant difference be-

tween the predictions of model-A and model-B, especially in the dense limit. In particular, with
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FIGURE 12. Renormalized stability diagrams in the (H∗, ν)-plane, showing the neutral contour that sepa-

rates stable and unstable regions: (a) model A; (b) model B; (c) model C and D; (d) model A with different

χ(ν) as explained at the end of §5.2. The outermost dotted curve in panel (d) is discussed at the end of §5.3.

In each panel, the abscissa has been renormalized as H∗ = H
√
1− e2. Note different range of vertical

axis in each panel.

accurate equations of state as in model-B, the dense flow is unstable to shear-banding instability

even for small values of the Couette gap. This is an important issue beyond the square packing

density ν > π/4 (in two-dimensions) for which the flow must reorganize internally such that a
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part of the flow forms a layered crystalline structure or banding (Alam & Luding 2003), thereby

allowing the material to shear. This reconciles well with the predictions of model-B, but not

with model-A (which uses the standard Enskog expressions for all transport coefficients, §2.1)

for H∗ < 30 (figure 12a); therefore, using an accurate equation of state over the whole range of

densities should give reasonable predictions for shear-banding solutions.

In this regard, the predictions of model-C (upper curve in figure 12c) and model-D (lower

curve in figure 12c) are also consistent for dense flows since the shear-banding instabilities persist

at small values of H for these models too. It may be recalled that these two models (C and D),

with viscosity divergence at ν = νµ < νm, do not admit “uniform” shear solution at large

densities ν > νµ. However, the related shear-banding solutions at ν < νµ can be continued to

higher densities ν > νµ by embedding the present problem into the uniform shear case such that

the shear work is vanishingly small (Khain & Meerson 2006).

Following one referee’s suggestion, we briefly discuss possible effects of Torquato’s (1995)

formula for the contact radial distribution function:

χ(ν) = (1−0.436ν)
(1−ν)2 , for 0 6 ν 6 νf ,

= (1−0.436ν)
(1−νf )2

(1−νf/νr)
(1−ν/νr)

, for νf 6 ν 6 νr,

(5.6)

which is known to be valid for an elastic hard-disk fluid over a range of densities up-to the random

packing limit νr = 0.82. When (5.6) is used instead of (2.12) in model-A, the neutral stability

curve in the (H∗, ν)-plane follows the thick line in figure 12(d). For the sake of comparison, we

have also superimposed the neutral stability curve of model-A, denoted by the thin line, with

χ(ν) being given by (2.12) with νm = νr. Clearly, a larger range in the dense regime is unstable

with Torquato’s formula (5.6), but the overall instability characteristics (the stationary nature of

instability, the magnitude of growth rate, etc.) remain similar for both (2.12) and (5.6). We have

also verified that the stability diagram looks similar to that in figure 5 (except for the presence of
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a discontinuity on the neutral contour at ν = νf , resulting in two instability lobes) when (2.20)

is used as an effective contact radial distribution function for all transport coefficients.

5.3. Discussion of some “ultra-dense” constitutive models

Focussing on the “ultra-dense” regime with volume fractions close to the close-packing density

(ν → νm), the dense limit of model-A (i.e. model Ad in § 2.1.2) can be simplified by replacing ν

with νm and retaining the dependence of the fi’s on ν via the corresponding dependence of the

pair correlation function. For this ultra-dense regime the constitutive expressions are:

f1 ≡ f c
1 (ν → νm) = 2ν2mχ

f2 ≡ f c
2 (ν → νm) =

√
π
8

(

1 + 8
π

)

ν2mχ

f3 ≡ f c
3 (ν → νm) = 2√

π
ν2mχ

f4 ≡ f c
4 (ν → νm) =

√
π
(

1
π + 9

8

)

ν2mχ

f5 ≡ f5(ν → νm) = 4√
π
(1− e2)ν2mχ.

(5.7)

This model is devoid of shear-banding instabilities since it can be verified that

dβd

dν
= 0, ∀ ν > 0.

This is similar to the predictions of model-Ad (see the dot-dash line in figure 8).

The constitutive model of Khain & Meerson (2006) can be obtained from (5.7) by replacing

the contact radial distribution function for viscosity by

χ → χµ(ν) =

(

1 +
0.037

νµ − ν

)

χ(ν)

that diverges at ν = νµ as in (2.23); the exact density at which viscosity diverges is not important

here. Interestingly, Khain & Meerson found two-phase-type solutions using their model. Since

viscosity diverges at a lower density (and hence “faster”) than other transport coefficients, it is

straightforward to verify that our instability criterion,

dβd

dν
> 0, ∀ ν > νcr,
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holds for this model. Recently, Khain (2007) also found two-phase-type solutions using a con-

stitutive model (a modified model of Khain & Meerson 2006) which is similar to our model-D,

and the predictions of his model agree well with particle simulation results; for this modified

model too, our instability criterion (5.2) holds. Therefore, the two-phase-type solutions of Khain

& Meerson (2006, 2007) are directly tied to the shear-banding instabilities of Alam et al. (1998,

2005, 2006) via the universal instability criterion (5.2). More specifically, both belong to the

same class of constitutive instability (Alam 2006).

The constitutive model of Losert et al. (2000) can be obtained from (5.7) by using the follow-

ing functional form for the contact radial distribution function

χ = (1− ν/νr)
−1

,

that diverges at the random close packing limit (νr), for all transport coefficients except the shear

viscosity, µ, that has a “stronger” rate of increase near νr:

χ → χµ(ν) = (1− ν/νr)
−7/4

.

This choice of viscosity satisfies our instability criterion, dβd/dν > 0, and, therefore, the model

of Losert et al.would yield shear-banding type solutions which is again tied to the increase of

“dynamic” friction with density for the uniform shear state.

To illustrate the quantitative effect of a stronger viscosity divergence on the shear-banding

instability, the neutral stability contour for model-A (with a stronger viscosity divergence, see

below) is shown in figure 12(d), denoted by the outermost dotted curve. For this case, the con-

stititutive model is the same as the full model-A (i.e. all transport coefficients diverge at the

same density νm) but its viscosity function f2(ν) in (2.8) is calculated using a radial distribution

function that has a stronger divergence than all other transport coefficients:

χ → χµ(ν) =
1− 7ν/16

(1− ν/νm)q
,

with its exponent q = 2.25 > 2. (It should be noted that this specific functional form of χµ may
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not be correct quantitatively at all densities, but it has simply been chosen to illustrate the possible

effects of a stronger viscosity divergence on instabilities.) Comparing the dotted contour in figure

12(d) with the thin-solid contour for model-A, we find that a larger range in the (ν,H∗)-plane

is unstable for the case of a stronger viscosity divergence. With further increase of q, the neutral

contour shifts towards the left to cover smaller values of H , leading to even larger instability

region in the (ν,H∗)-plane. In either case, however, the nature of the shear-banding instability

remains the same and we do not find any new instability as emphasized before.

5.4. Limit of elastic hard-sphere fluid: dissipation versus effective shear rate

Naively extrapolating the instability length-scale (5.5) to the elastic limit (e → 1) of atomistic

fluids results into H → ∞ that corresponds to an infinite system for shear-banding to occur

in an atomistic fluid. This is in contrast to molecular dynamics simulations of sheared “elastic”

hard-sphere fluid (Erpenbeck 1984) for which a shear-induced ordering phenomenon has been

observed at moderate densities (much below the freezing density). Similar observations of such

banding have been made in simulations for continuous potentials too (see, Evans & Morriss

1986). The key to resolve this apparent anomaly lies with the fact that the elastic limit (e = 1)

is singular since the collisional dissipation vanishes. To achieve a steady-state in simulations

of a sheared atomistic fluid, thermostats are used to take away energy from the system that

compensates the production of energy due to shear-work (P : ∇u). Otherwise the system would

continually heat up, leading to an infinite temperature. Hence, the collisional dissipation in a

granular fluid can be seen to play the role of a thermostat in an atomistic fluid.

Equating the dissipation term (either due to a thermostat in an elastic fluid, or due to inelastic

collisions in a granular fluid) with the shear-work, we obtain a scaling relation for temperature

with the shear rate and the restitution coefficient:

T̃ ∝ γ2

1− e2
∝ γ∗2, (5.8)
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where T̃ is the dimensional temperature, and

γ∗ =
γ√

1− e2
(5.9)

defined as an “effective” shear rate. For an elastic fluid, this effective shear rate, γ∗, is used to

normalize the temperature, and hence a similar criterion (5.2) is likely to hold for the onset of

shear-banding instability in an elastic fluid too. The dependence of the effective shear rate (5.9)

with inelasticity suggests that the shear-banding in atomistic fluids is likely to occur at large shear

rates, a prediction that agrees with Erpenbeck’s (1984) simulations. This needs to be checked by

determining the analytical expression for the thermostat term (which might depend on the choice

of the thermostat) in the energy equation.

While the Erpenbeck’s ordering transition has been explained (Kirkpatrik and Nieuwoudt

1986; Lutsko & Dufty 1986) as an instability of the “unbounded” shear flow of an elastic fluid,

using Navier-Stokes-level equations with wave-vector-dependent transport coefficients (i.e. gen-

eralized hydrodynamics), the latter work by Lee et al. (1996) has identified a long-wave insta-

bility (with perturbations along the gradient direction only) in the uniform shear flow for all

densities. In particular, Lee et al. showed that the Navier-Stokes-level constitutive model is the

“minimal” model to predict the robustness of this instability. The possible connection of this

instability with the present work needs to be investigated in the future.

5.4.1. Shearbanding criterion in a molecular fluid: Loose and Hess (1989)

We close our discussion by recalling a similar instability criterion for an “ordering” transi-

tion in a dense molecular fluid (Loose and Hess 1989) and its connection (Alam 2006) with

our instability criterion (5.2), along with a more general criterion for shear-banding in a shear

thinning/thickening fluid.

Using a non-Newtonian constitutive model, Loose and Hess (1989) have derived a criterion
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for the onset of shear-banding in a dense molecular fluid:

(

∂pyx
∂γ

)(

∂pyy
∂ν

)

6

(

∂pyx
∂ν

)(

∂pyy
∂γ

)

, (5.10)

where pyy and pyx are the normal and shear stresses, respectively. Assuming the following func-

tional dependence of pyy and pyx with density (ν) and shear rate (γ),

pyy = p0yy(ν)fyy(γ) and pyx = p0yx(ν)fyx(γ), (5.11)

the above instability criterion simplifies to

(

p0yx
dfyx
dγ

)

(

fyy
dp0yy
dν

)

6

(

fyx
dp0yx
dν

)

(

p0yy
dfyy
dγ

)

. (5.12)

For a granular fluid, the shear-rate dependence of stresses follows the well-known Bagnold

scaling:

fyy(γ) ∼ T ∼ γ2 and fyx(γ) ∼ γ
√
T ∼ γ2, (5.13)

where we have used the relation of the granular temperature with the shear rate, T ∼ γ2. Substi-

tuting (5.13) into (5.12), the Loose-Hess instability criterion boils down to (Alam 2006)

d

dν

(

p0yx
p0yy

)

> 0. (5.14)

The term within the bracket is the dynamic friction coefficient of a fluid, and hence the onset of

instability is again tied to the increasing value of this dynamic friction coefficient with increasing

density. This is same as our shear-banding instability criterion (5.3). For a more general case, the

shear-rate dependence of stresses can be postulated as

fyy(γ) = γ2n

fyx(γ) = γn+1,

(5.15)

where the index n is a measure of shear-thickening (n > 0) or shear-thinning (n < 0) behaviour

of the fluid. With this, the shear-banding instability criterion boils down to

p0yx
dp0yy
dν

6

(

2n

n+ 1

)

p0yy
dp0yx
dν

. (5.16)
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6. Conclusion and Outlook

To conclude, we showed that by just knowing the constitutive expressions for pressure and

shear viscosity, one can determine whether any Navier-Stokes’-level constitutive model would

lead to a shear-banding instability in granular plane Couette flow. The onset of this stationary

instability is tied to the increasing value of the “dynamic” friction coefficient, βd = µγ/p (where

µ, p and γ = du/dy are the shear viscosity, pressure and shear rate, respectively), with increasing

density for ν > νcr (equation (5.2)): the “homogeneous” shear flow breaks into alternating layers

of dilute and dense regions along the gradient direction since the flow cannot accommodate the

increasing friction to stay in the homogeneous state. For ν > νcr, the associated “nonlinear”

shear-band solution corresponds to a lower shear stress, or, equivalently, a lower dynamic friction

coefficient (Alam 2008). In other words, the sheared granular flow evolves toward a state of

“lower” dynamic friction, leading to shear-induced band formation along the gradient direction.

Note that the dynamic friction coefficient, βd = µγ/p, is a position-independent order-parameter

for both “uniform” (γ = const.) and “non-uniform” (γ = γ(y)) shear flows.

In the framework of a “dense” constitutive model that incorporates only collisional transport

mechanism (i.e. Haff’s model, 1983), we showed that an accurate global equation of state for

pressure or a viscosity divergence at a lower density (with other transport coefficients being given

by respective Enskog values) can induce shear-banding instabilities, even though the original

dense Enskog model is stable to such shear-banding instabilities. Since the prediction of the

shear-banding instability depends crucially on the form of the constitutive relations, we need to

use accurate forms of constitutive expressions over the whole range of density that incorporate

both kinetic and collisional transport mechanisms. The latter statement is important since the

dilute and dense regimes coexist even at a low mean density when the uniform shear flow is

unstable to shear-banding instability. The resulting nonlinear shear-banding solutions of all four

models (A, B, C and D) and their stability as well as the related results from particle-dynamics
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simulations will be considered in a separate paper. This will help to identify the best among these

four constitutive models, or will point towards new models. In this regard, it is recommended that

the particle-dynamics simulations be used to find out accurate expressions (valid over the whole

range of density) for all transport coefficients.

We established that the two-phase-type solutions of Khain & Meerson (2006) are directly

related to the shear-banding instabilities of Alam et al. (1998, 2005, 2006) via the universal

instability criterion (5.2), and both belong to the same class of constitutive instability (Alam

2006). In particular, the instabilities arising out of non-monotonicities of constitutive relations

with mean-fields (e.g. the coil-stretch transition is tied to non-monotonic stress-strain curve; see,

de Gennes 1974) are of constitutive origin and hence dubbed constitutive instability. The same

universal criterion (5.2) also holds for the constitutive model of Losert et al. (2000), thereby

yielding such two-phase-type solutions in their model of plane shear flow.

The onset of the ordering transition of Erpenbeck (1984) in a sheared “elastic” hard-sphere

fluid (which is close to our granular system) is accompanied by a decrease in viscosity and hence

a lower viscous dissipation. Therefore, similar to the sheared granular fluid, the state of lower

viscosity/friction is the preferred equilibrium state for a sheared atomistic fluid. Our instability

criterion (5.2) seems to provide a unified description for the shear-banding phenomena for the

singular case of hard-sphere fluids if we relate the collisional dissipation to a thermostat, leading

to an “effective” shear rate. This possible connection needs to be investigated further from the

viewpoint of a constitutive instability of the underlying field equations.

The shear-banding phenomenon is ubiquitous in a variety of complex fluids under non-equilibrium

conditions: wormlike micelles (Spenley, Cates & McLeish 1993), colloidal suspensions (Hoff-

man 1972; Ackerson & Clark 1984), model glassy material (Varnik et al. 2003), suspensions of

rod-like viruses (Lettinga & Dhont 2004), lyotropic liquid crystals (Olmsted 2008) and numerous

other systems. In the literature of non-Newtonian fluids (see, for a review, Olmsted 2008), the
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shear-banding phenomenon has been explained as a constitutive instability from the linear sta-

bility analysis of appropriate constitutive models (Greco & Ball 1997; Wilson & Fielding 2005).

The well-known “Hoffman-transition” in a colloidal suspension (banding/ordering of particles

along the gradient direction) above the freezing density is accompanied by a sharp decrease in

viscosity and has been explained in terms of a flow-instability (Hoffman 1972). A very recent

work (Caserta, Simeone & Guido 2008) on biphasic liquid-liquid systems showed that the shear-

induced banding in such systems is tied to a lower viscosity, or, equivalently, a lower viscous

dissipation. For both cases, the criterion of lower viscosity is similar to our criterion of a lower

“dynamic” friction for the band-state in sheared granular fluid. It appears that the shear-induced

banding in many complex fluids has a common theoretical description in terms of “constitutive”

instability that leads to an ordered-state of a lower viscosity/friction.
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