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The lack of detailed balance in active colloidal suspensions allows dissipation to determine
stationary states. Here we show that slow viscous flow produced by polar or apolar active
colloids near plane walls mediates attractive hydrodynamic forces that drive crystallization.
Hydrodynamically mediated torques tend to destabilize the crystal but stability can be regained
through critical amounts of bottom-heaviness or chiral activity. Numerical simulations show that
crystallization is not nucleational, as in equilibrium, but is preceded by a spinodal-like instability.
Harmonic excitations of the active crystal relax diffusively but the normal modes are distinct from
an equilibrium colloidal crystal. The hydrodynamic mechanisms presented here are universal and
rationalize recent experiments on the crystallization of active colloids.
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In active colloidal suspensions [1, 2], energy is continu-
ously dissipated into the ambient viscous fluid. The bal-
ance between dissipation and fluctuation that prevails in
equilibrium colloidal suspensions [3, 4] is, therefore, ab-
sent. Nonequilibrium stationary states in active suspen-
sions, then, are determined by both dissipative and con-
servative forces, quite unlike passive suspensions where
detailed balance prevents dissipative forces from deter-
mining phases of thermodynamic equilibrium. In this
context, it is of great interest to enquire how thermody-
namic phase transitions driven by changes in free energy
are modified in the presence of sustained dissipation.

In two recent experiments disordered suspensions of ac-
tive colloids have been observed to spontaneously order
into two-dimensional hexagonal crystals when confined
at a plane wall. Bottom-heavy synthetic active colloids
which catalyze hydrogen peroxide when optically illumi-
nated are used in the first experiment [1] while chiral fast-
swimming bacteria of the species Thiovulum majus are
used in the second experiment [2]. Given this remarkably
similar crystallization in two disparate active suspensions
it is natural to ask if the phenomenon is universal and to
search for mechanisms, necessarily involving dissipation,
that drive it.

Our current understanding of phase separation in
particulate active systems is derived from the coarse-
grained theory of motility-induced phase separation
(MIPS) where active particles are advected by a density-
dependent velocity [5–8]. Microscopic models with kine-
matics consistent with MIPS also show phase separa-
tion and crystallization of hard active disks have been
reported in two dimensions [9–12]. However, these mod-
els ignore exchange of the locally conserved momentum of
the ambient fluid with that of the active particles and are,
thus, best applied to systems where such exchanges can
be ignored. Fluid flow is an integral part of the physics
in [1, 2] and a momentum-conserving theory, currently
lacking, is essential to identify the dissipative forces and
torques that drive crystallization.

In this Letter we present a microscopic theory of ac-
tive crystallization that connects directly to the experi-
ments described above. Specifically, we account for the
three-dimensional active flow in the fluid and the effect
of a plane wall on this flow. Representing activity by
slip in a thin boundary layer at the colloid surface [13–
15] we rigorously compute the long-ranged many-body
hydrodynamic forces and torques on the colloids. Thus
we estimate Brownian forces and torques to be smaller
than their active counterparts by factors of order 102 (for
synthetic colloids in [1]) to 104 (for bacteria in [2]) mak-
ing them largely irrelevant for active crystallization. We
integrate the resulting deterministic balance equations
numerically to obtain dynamical trajectories.

Our main numerical results are summarized in Fig.
(1). Panels (a)-(c) show the spontaneous destabiliza-
tion of the uniform state by attractive active hydrody-
namic forces, the formation of multiple crystallites, and
their coalescence into a single hexagonal crystal at late
times. Panels (d)-(f) show the structure factor at cor-
responding times. The route to crystallization is not
through activated processes that produce critical nuclei,
but through a spinodal-like instability produced by the
unbalanced long-ranged active attraction. The uniform
state is, therefore, always unstable and crystallization oc-
curs for all values of density, in contrast to the finite
density necessary for crystallization in MIPS models [8].
Active hydrodynamic torques tend to destabilize the or-
dered state but stability is regained when these are bal-
anced by external torques (from bottom-heaviness in [1])
or by chiral activity (from bacterial spin in [2]). Crystal-
lites of chiral colloids rotate at an angular velocity that
is inversely proportional to the number of colloids con-
tained in them, as shown in panel (g). This is in excellent
agreement with the experiment [2]. The critical values of
bottom-heaviness and chirality above which orientational
stability, and, hence, positional order, is ensured is shown
in panel (h). We now present our model and detail the
derivation of our results.
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Figure 1. Panels (a)-(c) are instantaneous configurations dur-
ing the crystallization of 1024 active colloids of radius b at a
plane wall. The colloids are colored by their initial positions.
Panels (d)-(f) show the structure factor S(k) at correspond-
ing instants. Wavenumbers are scaled by the modulus of the
reciprocal lattice vector k0 and the contribution from k = 0
is discarded. Panel (g) shows the variation of the angular
velocity Ωc of a crystallite with the number N of colloids
in it. A typical configuration is shown in the inset. Panel
(h) is the state diagram for orientational stability in terms of

the measure of chirality V
(3a)
0 and bottom-heaviness T0 (see

text). Each dot represents one simulation. Here vs is the self-
propulsion speed of an isolated colloid, τ = b/vs, and ǫ is the
scale of the repulsive steric potential.

Model: We consider N spherical active colloids of ra-
dius b near a plane wall with center-of-mass coordinates
Ri, orientation pi, linear velocity Vi, and angular veloc-
ity Ωi, where i = 1 . . . N . Activity is imposed through
a slip velocity vA

i which is a general vector field on the
surface Si of the i-th colloid satisfying

∫
ρ̂i·v

A
i dSi = 0

[16], where ρi is the vector from the center of the colloid
to a point on its surface. The fluid velocity v is subject
to slip boundary conditions

v(Ri + ρi) = Vi +Ωi × ρi + vA
i (ρi). (1)

on the colloid surfaces, to a no-slip boundary condition
v = 0 at the plane wall located at z = 0, and to a qui-
escent boundary condition at large distances from the
wall. The slip is conveniently parametrized by an expan-

sion vA(Ri + ρi) =
∑∞

l=1
1

(l−1)!(2l−3)!! V
(l)
i · Y(l−1)(ρ̂i)

in irreducible tensorial spherical harmonics Y(l)(ρ̂) =
(−1)lρl+1∇(l)ρ−1, where ∇(l) = ∇α1

. . .∇αl
. The ex-

pansion coefficients V
(l)
i are l-th rank reducible Cartesian

tensors with three irreducible parts of ranks l, l− 1, and
l− 2, corresponding to symmetric traceless, antisymmet-
ric and pure trace combinations of the reducible indices.

We denote these by V
(ls)
i , V

(la)
i and V

(lt)
i respectively.

The leading contributions from the slip,

vA
i (ρi) = −VA

i + 1
15V

(3t)
i ·Y(2)

︸ ︷︷ ︸
achiral, polar

− 1
9ε ·V

(3a)
i ·Y(2)

︸ ︷︷ ︸
chiral, apolar

+ V
(2s)
i ·Y(1)

︸ ︷︷ ︸
achiral, apolar

−ΩA
i ×ρi −

1
60ε ·V

(4a)
i ·Y(3)

︸ ︷︷ ︸
chiral, polar

(2)

have coefficients of polar, apolar and chiral symmetry.
Here ε is the Levi-Civita tensor. The retained modes
have physical interpretations: for a single colloid in an
unbounded fluid, VA (lσ = 1s) and ΩA (lσ = 2a)
are the linear and angular velocities in the absence of
external forces and torques, V(2s) is the active contri-
bution to the stresslet, while V(3a),V(3t), and V(4a)

are strengths of the chiral torque dipole, polar vector
quadrupole, and chiral octupole respectively. The ten-
sors are parametrized uniaxially, VA

i = vspi, Ω
A
i = ωspi,

V
(2s)
i = V

(2s)
0 (pipi −

I

3 ) and so on, where vs and ωs are

the speeds of active translation and rotation and V
(2s)
0

positive (negative) corresponds to a pusher (puller). The
relation of these modes to exterior fluid flow and Stokes
multipoles is explained in [17].

The synthetic active colloids in [1] are polar and achiral
(they self-propel but do not spin) while the bacteria in
[2] are polar and chiral (they self-propel and spin). Both
these cases are included in the leading contributions. In
[13] a procedure is outlined for estimating the leading
coefficients from experimentally measured flows and it is
shown that the active flow produced by flagellates and
green algae can be modeled by slip. Our model is of
sufficient generality, then, to include both synthetic and
biological active colloids, and situations where swirling
and time-dependent slip may be necessary [18–21].

Active forces and torques: Newton’s equations of mo-
tion for the colloids reduce, when inertia is negligible, to
instantaneous balance of forces and torques

FH
i + FP

i + ξTi = 0, TH
i +TP

i + ξRi = 0. (3)

Here FH
i =

∫
f dSi, F

P and ξT are respectively the hy-
drodynamic, body and Brownian forces while, TH

i =∫
ρi×f dSi, T

P
i and ξRi are, corresponding torques, σ is

the Cauchy stress in the fluid and f = ρ̂i · σ is the trac-
tion. The linearity of the Stokes equation implies that
these must be of the form

FH
i =− γTT

ij ·Vj − γTR
ij ·Ωj −

∞∑

lσ=1s

γ
(T, lσ)
ij ·V

(lσ)
j , (4a)

TH
i =− γRT

ij ·Vj − γRR
ij ·Ωj −

∞∑

lσ=1s

γ
(R, lσ)
ij ·V

(lσ)
j , (4b)
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Figure 2. Distortion of the flow produced by leading polar (lσ = 1s) and apolar (lσ = 2s) slip terms in Eq.(2) as an active
colloid of radius b, shown in green, approaches a plane wall. Tracer colloids are show in white. The streamlines of the fluid
flow have been overlaid on the pseudocolor plot of logarithm of the magnitude of local flow normalised by its maximum. The
flow in (c) results when the colloid is brought to rest near the wall. Hydrodynamic forces attract nearby colloids, as shown by
the thick white arrows, leading to crystallization. Hydrodynamic torques tend to reorient the colloids as shown by the curved
red arrows. The remaining graphs show quantitative variation of the active forces and torques from modes in Eq. (2) scaled by
FA = 6πηbvs and TA = 8πηb2vs respectively as a function of height h of the colloid from the wall and distance, rij = Ri −Rj ,
from other colloids . Solid and dotted lines represent analytical and numerical results respectively (see text). Here ‖ and ⊥
indicate directions parallel and perpendicular to the wall at z = 0.

where repeated particle indices are summed over. The
γ
αβ
ij , with α, β = T,R, are the usual friction matrices as-

sociated with rigid body motion and γ
(α, lσ)
ij are friction

tensors associated with the irreducible modes of the ac-
tive slip. They are of rank l+1, l, and l−1, respectively,
for σ = s, a, t. The forces and torques depend on relative

position (through the γ
(α, lσ)
ij ) and on relative orientation

(through the V
(lσ)
j ). Their signature under time-reversal

shows that the active contributions are dissipative.

We calculate the friction tensors using a Galerkin dis-
cretization of the boundary integral equation [14, 15] with
the Lorentz-Blake Green’s function [22] which, by con-

struction, vanishes at the plane wall. The γ
(T, lσ)
ij decay

as r
−(l+1)
ij and r

−(l+2)
ij in the directions parallel and per-

pendicular to the wall. The γ
(R, lσ)
ij decay one power of rij

more rapidly. While the force and torque so obtained are
sufficient to study colloidal motion, additional insight is
obtained from studying the flow, which we compute from
its boundary integral representation. Further details are
given in [17].

The modes lσ = 1s and lσ = 2a contribute most
dominantly to forces and torques and they attain their
lower bounds far away from the wall, where their mag-
nitudes are F = 6πηbvs and T = 8πηb3ωs. The bac-
teria in [2] have radius b ∼ 4µm, swimming speed
vs ∼ 500µm/s and angular speed ωs ∼ 50 s−1 in a fluid
of viscosity η = 10−3 kg/ms. This gives an estimate of
F ∼ 40 × 10−12 N andT ∼ 10−16 Nm. For the syn-

thetic colloids in [1], b ∼ 2µm, vs ∼ 10µm/s, which
corresponds to F ∼ 10−13 N. Typical Brownian forces
and torques are of order O (kBT/b) ∼ 10−15 N, and
O (kBT) ∼ 10−21 Nm respectively. Thus active forces
and torques overwhelm Brownian contributions by fac-
tors of 100 or more in these experiments and, hence-
forth, we neglect their effects. Trajectories are obtained
by integrating the kinematic equations Ṙi = Vi and
ṗi = Ωi × pi, where Vi and Ωi satisfy Eq. (3) with
Brownian contributions removed. Integration methods
and parameter choices are detailed in [17].

Crystallization kinetics: The kinetics of crystallization
obtained from numerical solutions is shown in Movie 1
[17], together with the evolution of the structure factor
S(k). The uniform state is destabilized, most notably
for any initial density, by attractive active hydrodynamic
forces. Steric repulsion between particles balances these
to produce crystallites with hexagonal positional order.
Rings in the structure factor first appear at wavenumbers
that correspond to Bragg vectors of the lattice, reminis-
cent of a spinodal instability, representing the averaged
scattering from randomly oriented crystallites. These
sharpen into Bragg peaks as the crystallites coalesce and
orientational order grows. Finally particles assemble into
a single crystallite which continues to rotate, while the
structure factor shows a clear sixfold symmetry. In Movie
2 [17] we show the formation of a hexagonal unit cell from
the simulation of seven polar and chiral active colloids.
The crystallite rotates with an angular velocity parallel
to the chiral axis of the colloids.
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Universal mechanisms: To better understand the
mechanisms behind active crystallization we show, in Fig.
(2) , the active flow near a wall and the dominant con-
tributions to the flow-mediated forces and torques. The
top three panels show the increasing distortion of the
flow produced by the leading polar (lσ = 1s) and apolar

(lσ = 2s) modes for pi normal to the wall and V
(2s)
0 < 0.

The flow develops a monopolar character as the colloid
is brought to rest at a height h by the balance of hy-
drodynamic attraction, Fig. (2d), and steric repulsion
from the wall. The induced monopole on the colloids
leads to attractive forces between them below a critical
height h from the wall as shown in Fig. (2f). Nearby
colloids entrained in this flow are attracted towards the
central colloid as shown in the rightmost panel and in
Movie 3 [17]. The balance of the hydrodynamic attrac-
tion and steric repulsion determines the lattice spacing d.
We note that even an apolar colloid is attracted to the
wall, Fig. (2d), and induces hydrodynamic attractive
forces. Thus, unlike MIPS [8], polarity is not necessary
for crystallization. The induced monopole also tends to
reorient the colloids, by generating a torque in the plane
of wall, as shown by the curved red arrows in Fig. (2c)
and quantified in Fig. (2g). Their destabilizing effect
can be nullified by external torques TP

i = T0(ẑ × pi)
in the plane of the wall due, for example, to bottom-
heaviness. The orientation can also be stabilized by the
chiral terms in Eq. (2), which produce torques ⊥ to the
wall, as shown in Fig. (2e). This chiral torque acting ⊥
to the wall, when combined with destabilizing torque ‖
to the wall, induces active precession of the orientation
about the wall normal, thereby stabilizing the orienta-
tions. The role of each of the six terms in Eq. (2) in
generating positional order, orientational order and crys-
tal rotation is tabulated in [17]. Activity and body forces
pointing away from the wall are necessary for positional
order while bottom-heaviness or chirality is necessary for
orientational stability.

Harmonic excitations: We now study harmonic exci-
tations ui of a perfect hexagonal crystal by expanding
the positions as Ri = R0

i + ui around the stationary
state R0

i = (X0
i , Y

0
i , h) and ignoring orientational fluc-

tuations. Force balance to leading order gives

− γTT
ij · u̇j+

(
∇jγ

TT
ij ·VA −Dij

)
· uj = 0, (5)

where Dij = −∇j∇iU
∣∣
0

and U is the sum of all steric
potentials. This shows that relaxation is determined by
both activity and elasticity, unlike in an equilibrium col-
loidal crystal where elasticity alone relaxes strains. The
normal modes of relaxation can be obtained by Fourier
transforming in the plane and in time. The dispersion is
found from the solutions of

det
∣∣∣− iωγTT

k
+ ikγTT

k
·VA −Dk

∣∣∣ = 0. (6)

Here k = (k1, k2) is the wavevector restricted to the first
Brillouin zone [17], ω is the frequency and Dk is the

Figure 3. Branches of the dispersion relation for the two pla-
nar normal modes of relaxation of a hexagonal active crystal.
The curves in upper panel show the dispersion along high
symmetry directions of the Brillouin zone (first inset). The
surfaces in the second and third insets show the dispersion
over the entire Brillouin zone. Polar plots in the lower panel,
have comparisons of full numerical solution of Eq. (6) with
the approximate solution at small k of Eq. (7) for k = 0.01k0
(left panel) and k = 0.3k0 (right panel).

dynamical matrix. The pair of dispersion relations for
motion parallel to the wall are shown in Fig. (3). The
dispersion for k ≪ k0, where k0 is the magnitude of the
reciprocal lattice vector, is quadratic in wavenumber

ω± = −i
γT
⊥
hvs

2γT f±(θ) k
2, (7)

where f±(θ) are angular factors, γT and γT
⊥ are one-

body frictions parallel and perpendicular to the wall, and
tan θ = k2

k1

. The small-k approximation is compared with
the numerical solution in Fig. (3) and it is found to hold
for k . 0.1k0. These can be interpreted as overdamped
phonon modes of the active crystal [23]. The presence of
the active term ikγTT

k
·VA in Eq. (6) makes them differ

from phonon modes of a colloidal crystal.
Discussion: In this work, we have considered only hy-

drodynamic forces and torques, unlike the case of MIPS
[5–8] where Brownian torques drives reorientations [9–
12]. We have shown that the latter are at least two orders
of magnitude weaker than the former for experiments in
the class of [1, 2]. However, it is conceivable that thermal
fluctuations will play a more significant role when the ac-
tivity is comparatively weak, modifying both the nature
of crystallization transition and the stability of the crys-
talline phase. The spinodal-like instability appears due to
the uncompensated long-ranged attractive active forces.
These can be compensated by entropic forces to stabilize
the disordered phase at finite temperatures. A nucle-
ational route to crystallization, with activity-enhanced
rates, is then possible in the regime where the active
forces reduce the nucleation barrier without driving it
to zero. In the crystalline phase, thermal fluctuations
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will excite both phonon and topological modes. Phonon
fluctuations will destroy long-range translational order
[24, 25], but due to the activity-enhanced stiffness of
these modes, large system sizes (compared to equilib-
rium) will be needed to observe the power-law decay of
correlations. Topological defects will be excited at higher
temperatures and a defect unbinding transition [26–30],
modified by activity, may destroy translational order en-
tirely, producing instead an “active” hexatic phase. These
present exciting avenues for future research. We remark
that wall-bounded clustering phenomena in algae [31]
and charged colloids [32] are mediated by specific forms of
the universal hydrodynamic mechanisms presented here.

Finally, we suggest that the flow-induced phase separa-
tion found here may provide a paradigm, complementary
to MIPS, in which theoretical and experimental studies
of momentum-conserving driven [33] and active matter
[34–39] may be situated.

We thank M. E. Cates, P. Chaikin, D. Frenkel, D. J.
Pine, A. Laskar and T. V. Ramakrishnan for helpful dis-
cussions and IMSc for computing resources on the Nan-
dadevi clusters.
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Supplemental information

Appendix A: Active force, torque and flow

We derive, in this section, the expressions for the ac-
tive forces, torques, and exterior flow in a suspension of
N active colloids bounded by a plane wall. The system
of coordinates is shown in Fig. (4). The spheres are cen-
tered at Ri and their velocities and angular velocities are
Vi and Ωi respectively. pi denotes the orientation of the
particle while points on the boundaries of the spheres is
given by si = Ri + ρi, where ρi is the radius vector.
To ensure no-slip on the wall, we associate am image
centered at R∗

i with the i-th colloid [22], and a similar
correspondence for all other quantities of the colloid and
its image.

We closely follows our previous work [14, 15] where a
boundary integral formulation has been used to solve the
Stokes equation with arbitrary boundary conditions. The
principal difference here is in the choice of the Green’s
function which satisfies the no-slip condition at the plane
wall [22]. In the interest of being self-contained, we re-
peat certain key steps en route to the solution. A clear
expression of the linearity of Stokes flow is found in its in-
tegral representation, where the flow in the bulk is given
in terms of integrals of the tractions and velocities at the
boundaries [41–44],

vα(r) =−

∫
GW

αβ(r, sj)fβ(sj) dSi

+

∫
KW

βαγ(r, sj)ρ̂γvβ(sj) dSi, (A1)

where repeated particle indices are summed over, sj =
Rj + ρj is a point on the surface of j-th particle and

GW
αβ(r, sj) is the Green’s function of the Stokes sys-

tem satisfying no-slip condition, v = 0 on the wall at
z = 0. The stress tensor KW

αβγ(r, sj) and the pres-

sure vector PW
α (r, sj) satisfy KW

αβγ(r, sj) = −δαγP
W
β +

η
(
∇γG

W
αβ +∇αG

W
βγ

)
and −∇αP

W
β (r, r′) + η∇2GW

αβ =

−δ (r− r′) δij respectively.
We solve the Fredholm integral equation of Eq.

(A1) by expanding the boundary fields in irreducible
tensorial spherical harmonics, Y(l), which are or-
thogonal basis function on the surface of the sphere

1
4πb2

∫
Y(l)(ρ̂)Y(l′)(ρ̂) dS = δll′

l! (2l−1)!!
(2l+1) ∆(l), where ∆(l)

is tensor of rank 2l, projecting any l-th order tensor to
its symmetric irreducible form [45, 46]. The boundary

velocity including active slip and its expansion in this
basis has been provided above. The orthogonality of the
basis functions gives the expansion coefficients in terms
of surface integrals of traction and velocity as [13, 47],

F
(l)
i =

1

(l − 1)!(2l − 3)!!

∫
f(Ri + ρi)Y

(l−1)(ρ̂i) dSi,

V
(l)
i =

2l − 1

4πb2

∫
vA(Ri + ρi)Y

(l−1)(ρ̂i) dSi. (A2)

The coefficients of the traction and velocity are tensors
of rank l and can be written as irreducible tensor of rank
l, l − 1 and l − 2 [14]. The first term in the traction ex-

pansion is the force F
(1)
i = FH

i , while the antisymmetric

part of the second term is the torque bε ·F
(2)
i = TH

i . The

first term in the velocity expansion is V
(1)
i = −VA

i and

the antisymmetric part of the second term is 1
2bε ·V

(2)
i =

−ΩA
i . Here VA

i = − 1
4πb2

∫
vA(ρi) dSi denotes the self-

propulsion, while ΩA
i = − 3

8πb4

∫
ρi × vA(ρi) dSi de-

notes the self-rotation of an isolated active colloid in
unbounded flow. The expression for fluid flow can be
obtained in terms of coefficients of traction and velocity,

v(r) =

∞∑

l=1

(
−G

(l)
j · F

(l)
j +K

(l)
j ·V

(l)
j

)
, (A3)

where the boundary integrals G
(l)
j and K

(l)
j can be writ-

ten in terms of Green’s function and its derivatives (Ap-
pendix E). We multiply the fluid velocity by the l-th ten-
sorial harmonic and integrate over the i-th boundary. Us-
ing the orthogonality of these basis functions, we obtain
an infinite-dimensional linear system of equations for the
unknown traction coefficients [14],

1
2 V

(l)
i =

∞∑

l′=1

(
−G

(l, l′)
ij · F

(l′)
j +K

(l, l′)
ij ·V

(l′)
j

)
, (A4)

where the matrix elements G
(l, l′)
ij and K

(l, l′)
ij can be eval-

uated in terms of the Green’s function and its derivatives,
as given in Appendix E.

The traction and velocity coefficients are reducible and
their irreducible decomposition is given as [48, 49],

F
(ls)
i = F

(l)
i , F

(la)
i = ε · F

(l)
i , F

(lt)
i = δ · F

(l)
i ,

V
(ls)
i = V

(l)
i , V

(la)
i = ε ·V

(l)
i , V

(lt)
i = δ ·V

(l)
i .

Here the operator (. . . ) = ∆(l)(. . . ) extracts the symmet-
ric irreducible part of the tensor it acts on. We use these
irreducible coefficients and the linear system of equations
to solve for the unknown traction in terms of the known
boundary velocity [15]. The relations between the ir-
reducible coefficients of the traction and velocity, then,
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Figure 4. Coordinate system used to describe active spherical
particles and its images near a no-slip wall. The i-th particle
and its image is shown. See text for description.

becomes [15],

F
(lσ)
i =− γ

(lσ, 1s)
ij ·Vj − γ

(lσ, R)
ij ·Ωj

−

∞∑

l′σ′=1s

γ
(lσ, l′σ′)
ij ·V

(l′σ′)
j . (A5)

This infinite set of equations, called the traction laws [15],
manifestly shows the linear relation between the traction
and velocity coefficients and defines the friction tensors.
The expressions for the friction tensors can be obtained
by an iterative scheme [15]. We use the one-body solution
as the initial guess for the iteration,

FH
i = −γT (Vi−VA

i ), TH
i = −γR(Ωi−ΩA

i ), (A6)

where γT and γR are one particle friction corresponding
to translation and rotation. Near a wall no-slip wall, they
are, γT = γT

⊥ẑ + γT (x̂+ ŷ) and γR = γR
⊥ ẑ + γR(x̂+ ŷ)

[44]. Here and ⊥ subscripts indicating directions par-
allel and perpendicular to the wall. The expressions af-
ter one iteration, corresponding to the “first reflection” in
Smoluchowski’s classical method, are shown in Appendix
F.

Appendix B: Crystalline steady states

In this section we work out the steady states of the
active crystals using the leading terms of the force and
torque equations. Using the leading order force balance
for i-th particle, the steady state condition for position
is given as

γTT
ij ·VA

j + FP
i = 0. (B1)

Here VA
i = −vsẑ is self-propulsion of the colloid at a

speed vs, assumed to be moving ⊥ to the wall. The body

force FP
i = −∇Ri

U is due to a short-ranged repulsive
potential U, which depends on displacement rij = Ri −

Rj and is given as, U(rij) = ǫ
(

rmin

rij

)12
−2ǫ

(
rmin

rij

)6
+ ǫ,

for rij < rmin and zero otherwise [50], where ǫ is the
potential strength. The same potential has been used to
model colloid-colloid repulsion FPP

i and the colloid-wall
repulsive force FPW

i .

One- and two-body dynamics: To estimate the height
at which the particle is brought to rest close to the wall,
we use the z−component of the force balance, −γT

⊥vs =
FPW
3 . Here FPW

3 is the repulsive force from the wall in ẑ

direction, while γT
⊥vs is the attractive force of the colloid

to the wall in same direction. The balance between the
attraction and repulsion sets the height h at which the
colloid is brought to rest. We now consider force balance
for a pair of particles in planar direction,

−vsγ
T γT

⊥F
0
iF

0
jG

W
α3(Ri,Rj) + FPP

α = 0, (B2)

where

F l
i =

(
1 + b2

4l+6∇
2
Ri

)
, (B3)

is an operator encoding the finite size of the sphere and
α may takes either of the values 1 or 2 corresponding to
two equivalent directions parallel to wall. We have used
results provided in Appendix F, to write the expression
for friction. The solution of this equation gives the lattice
spacing d. For fixed particle-wall potential, increasing vs
decreases the resting height h and separation between
pairs, d, as show in Fig. (5).

Rotational dynamics: In Fig. (1), we show the state
diagram, obtained from simulation, which shows that the
crystal is stable over a critical strengths of either bottom-
heaviness or chirality. For an initially symmetric distri-
bution, a crystal stabilized by external torque alone does

not rotate, while the crystal stabilized by chirality does ro-

tate. When the crystal is rotating at an angular velocity
Ωc about its center of mass Rc, the velocity the i-th col-
loid at position Ri can be then written as Ṙi = Ωc×Ri.
Force balance parallel to the wall is then

γTT
ij · [Ωc × (Rj −Rc

0)] + γTR
ij ·Ωj = 0. (B4)

The angular speed perpendicular to wall is Ω = ΩA
i . This

implies that in absence of chiral self-rotation there is no

rotation of the crystal. The angular velocity of the crystal
can be obtained by power counting - γTT

ij scales as r−3
ij

in direction parallel to wall while γTR
ij scales as r−4

ij . The

angular velocity of the crystal, then, scales as Ωc ∝ 1/R2
c .

In Fig. (1) we show that rotation period of a crystal
scales inversely as number of particles N in the crystal
for an assembly of chiral particles, which is an excellent
agreement with a recent experiment [2].
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Figure 5. Steady states of active crystallization. Left panel
has the plot of leading terms for the analytical solution of
height h, shown in solid line, along with the full numerical
result, shown as dotted curve. Right panel has similar set of
plots for lattice spacing d. The leading order estimates are
found to be in agreement with the numerical solution.

Appendix C: Harmonic excitations

In this section we study harmonic excitations ui of
the crystal about a stationary state R0

i = (X0
i , Y

0
i , h),

such that Ṙ0
i = 0 and Ω0

i = 0 at this location. The
force balance condition is then γTT

ij · VA
j

∣∣
0
+ FP

i

∣∣
0
= 0.

We, now, consider a small displacement about this state
Ri = R0

i + ui. Expanding the friction tensors about the
stationarity point, we have,

γTT
ij = γTT

ij

∣∣
0
+ (ui ·∇Ri

− uj ·∇Rj
)γTT

ij

∣∣
0
+O(u2).

The force can be expanded in a similar way FP
i =

FP
i

∣∣
0
−Dij · uj , where Dij = −∇Rj

∇Ri
U
∣∣
0
. Using the

equations of motion and considering terms linear in the
displacement, the equation becomes

−γTT
ij · u̇j+

(
∇Rj

γTT
ij ·VA −Dij

)
· uj = 0.

We seek a solution of the form ui(t) = uk(t) e
ik·Ri . Using

this, the force balance condition becomes,

− γTT
k

· u̇k +
(
ikγTT

k
·VA −Dk

)
· uk = 0. (C1)

Here Dk is the Fourier transform of Dij and γTT
k

is the
Fourier transform of the friction tensor

Dk =

N∑

i=1

Di1 e
ik·(Ri−R1),

γTT
k

=

N∑

i=1

γTT
i1 eik·(Ri−R1).

Here, Dk is called the dynamical matrix [51]. We now
write γTT

i1 in terms of its planar Fourier transform

γTT
i1 =

∫
γ̂TT
k

(k; h)e−ik′·(Ri−R1)
d2k′

(2π)2
,

to obtain an expression for γTT
k

,

γTT
k

(k; h) =
∑

i

∫
γ̂TT
k

(k; h)e−i(k′−k)·(Ri−R1)
d2k′

(2π)2
,

=
1

Ac

∑

λ

γ̂TT
k

(k+ qλ; h). (C2)

Here we have used the identity

∑

i

e−ik·Ri =
(2π)2

Ac

∑
δ(k− qλ), (C3)

where Ac is area of the unit cell and qλ are reciprocal
lattice vectors. We now identify two parts of γTT

k
,

γTT
k

(k; h) = γ̂TT
k0

(k; h) +
∑

λ′

γ̂TT
kq

(k+ qλ; h)

Here γ̂TT
k0

(k; h) corresponds to the qλ = 0 and terms at

arbitrary non-zero q are denoted by γ̂TT
kq

(k; h). Their
leading order forms can be written as

γ̂TT
k0

(k; h) = γT I+
γT γT

Ac
Fk ĜW (k; h),

γ̂TT
kq

(k; h) =
γT γT

Ac
Fk

∑

λ′

ĜW (k+ qλ; h).

Here Fk = 1 − b2k2/3 and ĜW (k; h) is the two-
dimensional Fourier transform of GW (see Appendix G).
The prime on the summation on the right indicates that
λ = 0 is excluded from the sum. We now turn to the
calculation of the dynamical matrix,

Dk =
N∑

i=1

(
I

r2
U ′ +

r r

r4
U ′′

)

0

(
1− eik·Ri

)
.

Here U ′ = −12ǫ
[
(rmin/d)

12
− (rmin/d)

6 ]
and U ′′ =

12ǫ
[
14 (rmin/d)

12
−8 (rmin/d)

6 ]
. We evaluate the above

in the nearest neighbor approximation in the direction
parallel to the wall. The expression for Dk and γTT

k
can

be evaluated numerically by summing over the reciprocal
lattice vectors. The sum is unconditionally and rapidly
convergent as the Green’s function decays as r−3

ij in the
direction parallel to the wall. The dispersion is obtained
numerically from Eq. (C1) and is shown in Fig. (3).

Long-wavelength approximation: Analytical expres-
sion for the normal modes can be obtained in the k → 0
limit. Keeping terms of the O(k2), Eq. (C1) becomes

(
u̇k1

u̇k2

)
= −

hγT
⊥vs k

2

γT
f(θ)

(
uk1

uk2

)
,

f(θ) =

(
c1 cos

2 θ + C2 sin
2 θ c3 sin θ cos θ

c3 sin θ cos θ c4 sin
2 θ + c5 cos

2 θ

)
.

Here k1 = k cos θ, k2 = k sin θ and ci are positive
constants that can be determined in terms of the pa-
rameters of the steric potential and the friction ten-
sors: c1 = γT

⊥h/2ηAc +
(
3
2U

′ + 9
8U

′′+
)
/hγT vs, c2 =(

3
2U

′ + 3
8U

′′+
)
/hγT vs, c3 = γT

⊥h/2ηAc +
3
4U

′′/hγT vs,

c4 = γT
⊥h/2ηAc + 3c5 and c5 =

(
1
2U

′ + 3
8U

′′+
)
/hγT vs.

We can now diagonalize this matrix equation to obtain
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the relaxation of the overdamped modes after Fourier
transforming in time. The eigenvalues of the resulting
equations give the dispersion relation

ω± = −i
γT
⊥
hvs

2γT f±(θ) k
2, (C4)

in terms of an angular factor, f±(θ) = c15 cos
2 θ +

c24 sin
2 θ ± [(c15 cos

2 θ + c24 sin
2 θ)2 − 4(c1c5 cos

4 θ +
c2c4 sin

4 θ−c23 cos
2 θ sin2 θ+(c1c4+c2c5) cos

2 θ sin2 θ)]1/2,
with c15 = c1 + c5 and c24 = c2 + c4. The comparison
of the long wavelength solution with the full numerical
solution has been plotted in Fig. (3). For k . 0.1k0, the
approximate solution shows excellent agreement.

Appendix D: Numerical method

In this section, we outline the method used to simulate
the dynamics of active colloidal particles near a no-slip
wall. We invert Eq. (A5) to obtain rigid body motions in
terms of the known slip modes, body forces and torques
[15]. This gives the “mobility” formulation,

Vi = µTT
ij · FP

j + µTR
ij ·TP

j +

∞∑

lσ=2s

π
(T,lσ)
ij ·V

(lσ)
j +VA

i ,

Ωi = µRT
ij · FP

j + µRR
ij ·TP

j +
∞∑

lσ=2s

π
(R, lσ)
ij ·V

(lσ)
j +ΩA

i .

The mobility matrices µ
αβ
ij , with (α, β = T,R), are in-

verses of the friction matrices γ
αβ
ij [44]. The propulsion

tensors π
(α, lσ)
ij , first introduced in [14], relate the rigid

body motion to modes of the active velocity. They are
related to the slip friction tensors by [15],

−π
(T, lσ)
ij = µTT

ik · γ
(T, lσ)
kj + µTR

ik · γ
(R, lσ)
kj ,

−π
(R, lσ)
ij = µRT

ik · γ
(T, lσ)
kj + µRR

ik · γ
(R, lσ)
kj .

We retain modes corresponding to lσ = 1s, 2s, 2a, 3a, 3t
and 4a in the active slip. The role of these individual
modes is summarized in Table (I). The mobilities are cal-
culated using the PyStokes [52] library. The initial dis-
tribution of particles is chosen to be the random packing
of hard-spheres [53]. We use an adaptive time step inte-
grator using the backward differentiation formula (BDF)

to integrate these equations of motion [54]. In Table (II)
of Appendix, we present the parameters used to generate
the figures.

As the V
(lσ)
i are irreducible tensors, it is natural to

parametrize them in terms of the tensorial spherical har-
monics. The uniaxial parametrizations used here are:

V
(2s)
i = V

(2s)
0 Y(2)(p), V

(3t)
i = V

(3t)
0 Y(1)(p), V

(3a)
i =

V
(3a)
0 Y(2)(p) and V

(4a)
i = V

(4a)
0 Y(3)(p) where

Y (1)
α (p) = pα, Y

(2)
αβ (p) = pαpβ − 1

3δαβ ,

Y
(3)
αβγ(p) = pαpβpγ − 1

5 [pαδβγ + pβδαγ + pγδαβ ].

The flow due to the modes retained in the minimal trun-
cation are shown in Fig. (6). The force-free motion of a
sphere far away from wall is described by the mode VA

i

or V
(3t)
i . Though near a wall more interesting things are

expected, which is especially relevant for our study, as
near a wall, the image flow from modes other than VA

i

or V
(3t)
i can lead to particle motion. In particular, the

V
(2s)
i mode, whose far field is that of a symmetric irre-

ducible dipole, can produce motion near a wall, due to
image interactions. This is clear from the streamlines in
panel (b) of Fig. (6).

Slip
mode

Positional
clustering

Orientational
stability

Cluster
rotation

V
a Yes No No

Ω
a No Yes No

V
(2s) Yes No No

V
(3t) Yes No No

V
(3a) No Yes Yes

V
(4a) No Yes Yes

Table I. Role of different terms in truncation of the slip ex-
pansion as given in Eq. (2). It should be noted the rotation
column is for a completely symmetric cluster. A cluster with
any degree of asymmetry will rotate, irrespective of stability
by bottom-heaviness or chirality.
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Figure # of colloids vs V
(3a)
0 /vs T0/ǫ Wall WCA Inter-particle WCA

1 (1-f) 1024 0.1 100 0 rmin = 3.4b, ǫ = 0.083 rmin = 5b, ǫp = 0.004

1 (g) - 0.01 100 0 rmin = 3.4b, ǫ = 0.083 rmin = 5b, ǫp = 0.004

1 (h) 256 0.01 - - rmin = 3.4b, ǫ = 0.083 rmin = 5b, ǫp = 0.004

2 1 and 2 0.1 100 - - -

3 - 0.1 - - - rmin = 5b, ǫp = 0.004

Table II. Simulation parameters used to study the active crystallization. Throughout the paper: radius of particle b =1,

η = 1/6, the strength of the modes, V
(2s)
0 = 0.01 and V

(3t)
0 = 1. Ω

A
i and V

(4a)
0 are non-zero only for Fig. (2e), where they are

of unit strength. All the simulations are in three space dimensions.

Appendix E: Expression for boundary integrals and matrix elements

The boundary integrals in fluid flow, Eq. (A3), can be solved exactly. The resulting solution is given in terms of
the Green’s function, Eq. (G1), and its derivatives [14],

G
(l)
j (r,Rj) =

2l − 1

4πb2

∫
GW (r,Rj + ρj)Y

(l−1)(ρ̂j) dSi = blF l−1
∇

(l−1)
Rj

GW (r,Rj),

K
(l)
j (r,Rj) =

1

(l − 1)!(2l − 3)!!

∫
KW (r,Rj + ρj) · nY

(l−1)(ρ̂j) dSi =
4πbl+1

(l − 2)!(2l − 1)!!
F l−1

∇
(l−2)
Rj

KW (r,Rj).

The integrals appearing in the linear system of the equations, Eq. (A4), are,

G
(l, l′)
ij (Ri,Rj) =

(2l − 1)(2l′ − 1)

(4πb2)2

∫
Y(l−1)(ρ̂i)G

W (Ri + ρi, Rj + ρj)Y
(l′−1)(ρ̂j) dSi dSj

K
(l, l′)
ij (Ri,Rj) =

2l − 1

4πb2 (l − 1)!(2l − 3)!!

∫
Y(l−1)(ρ̂i)K

W (Ri + ρi, Rj + ρj) · nY
(l′−1)(ρ̂j) dSi dSj .

These integrals are solved exactly to give matrix elements in terms of the Green’s function and its derivatives [14],

G
(l, l′)
ij (Ri,Rj) =

{
G
(l, l′)
ii + bl+l′−2F l−1

i F l′−1
j ∇

(l−1)
Ri

∇
(l′−1)
Rj

G∗(Ri,Rj); j = i,

bl+l′−2F l−1
i F l′−1

j ∇
(l−1)
Ri

∇
(l′−1)
Rj

GW (Ri,Rj); j 6= i,

K
(l, l′)
ij (Ri,Rj) =





− 1
2δll′∆

(l−1) +
4πb(l+l′−1)

(l′ − 2)!(2l′ − 1)!!
F l−1

i F l′−1
j ∇

(l−1)
Ri

∇
(l′−2)
Rj

K∗(Ri,Rj); j = i,

4πb(l+l′−1)

(l′ − 2)!(2l′ − 1)!!
F l−1

i F l′−1
j ∇

(l−1)
Ri

∇
(l′−2)
Rj

KW (Ri,Rj); j 6= i,

G
(l, l′)
ii = δll′

2l − 1

2πb

∫
Y(l−1)(ρ̂) (I− ρ̂ρ̂)Y(l−1)(ρ̂) dΩ.

Appendix F: First order off-diagonal approximation for friction tensors

The expressions for the friction tensor can be calculated from the solution of the linear system, provided above,
using the Jacobi method [15]. The first order approximation to friction tensors used in this work are provide below,

(
γ
(TT )
ij

)[1]
= γT γT F0

i F
0
j GW (Ri,Rj),

(
γ
(RT )
ij

)[1]
= 1

2γ
T γR

∇Ri
×GW (Ri,Rj),

(
γ
(TR)
ij

)[1]
= 1

2γ
T γR

∇Rj
×
(
GW (Ri,Rj)

)
,
(
γ
(RR)
ij

)[1]
= 1

4γ
RγR

∇Ri
×
(
∇Rj

×GW (Ri,Rj)
)
,
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(
γ
(T, 2s)
ij

)[1]
=

28πηb2

3
γT F0

i F
1
j ∇Rj

GW (Ri,Rj),
(
γ
(R, 2s)
ij

)[1]
=

28πηb2

6
γR

∇Ri
×
(
∇Rj

GW (Ri,Rj)
)
,

(
γ
(T, 3a)
ij

)[1]
=

13πηb3

9
γT

∇Rj
(∇Rj

×GW (Ri,Rj)),
(
γ
(R, 3a)
ij

)[1]
=

13πηb3

18
γR

∇Ri
×
(
∇Rj

(∇Rj
×GW (Ri,Rj))

)
,

(
γ
(T, 3t)
ij

)[1]
= −

4πηb3

5
γT

∇
2
Rj
GW (Ri,Rj),

(
γ
(T, 4a)
ij

)[1]
= −

121πηb4

10
γT

∇Rj
∇Rj

(∇Rj
×GW (Ri,Rj)),

(
γ
(R, 4a)
ij

)[1]
= −

121πηb4

20
γR

∇Ri
×
(
∇Rj

∇Rj
(∇Rj

×GW (Ri,Rj))
)
,
(
γ
(R, 3t)
ij

)[1]
= 0.

Appendix G: Fourier transform of the Lorentz-Blake Green’s function

In this section, we derive the Fourier transform of the Green’s function for a fluid flow bounded by a plane infinite
wall. Blake [22] has derived the Green function of the Stokes equation which satisfies no-slip condition on the wall,

Gw

αβ(Ri, Rj) = Gαβ(Ri, Rj) +G∗
αβ(Ri, R

∗
j ) = Gαβ(Ri, Rj)−Gαβ(Ri, Rj) +G′

αβ(Ri, Rj) (G1)

= Gαβ(r
∗
ij)−Gαβ(r

∗
ij)− 2h∇r

∗
ij
Gα3(r

∗
ij)Mβγ + h2∇2

r
∗
ij
Gαγ(r

∗
ij)Mβγ .

Here rij = Ri −Rj , r
∗
ij = Ri −R∗

j and M = I− 2ẑẑ. G is the Green’s function in the unbounded fluid flow,

G(Ri, Rj) =
1

8πη

(
I

rij
+

rijrij

r3ij

)
.

We define the Fourier transform in the plane of the wall as,

ϕ̂(k1, k2, r3) = F [ϕ] =
1

(2π)2

∫
ϕ(r1, r2, r3)e

i(k1r1+k2r2) dr1dr2.

The Fourier transform of G′
ij , last term of Eq. (G1), is then [22],

Ĝ′
αβ(k; h) =

h

2ηk

[
ikα1

(δα3δjα1
+ δβ3δαα1

) + h
(
ikkα1

{δα3δjα1
− δβ3δαα1

} − kα1
kα2

δαα1
δβα2

− δα3δβ3k
2
)]

e−2kh,

where α1 and α2 only take values 1 or 2 corresponding to directions parallel to wall. The rest of terms in Eq. (G1),

can be transformed using the relation F
[
1
r

]
= 2π e−kz

k . The two-dimensional Fourier transform of the wall Green’s
function for a source at height h from the wall is then, with E = 1− e−2kh,

ĜW (k; h) = 1
4ηk3




Ek22 + 2hkk21e
−2kh −Ek1k2 − 2hkk1k2e

−2kh −i2hk2k1e
−2kh

−Ek1k2 − 2hkk1k2e
−2kh Ek21 + 2hkk22e

−2kh −i2hk2k2e
−2kh

−i2hk2k1e
−2kh −i2hk2k1e

−2kh Ek2 − 2hk3e−2kh




+ Ĝ′(k; h). (G2)
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Figure 6. Irreducible axisymmetric and swirling components of fluid flow induced by an active colloid at a height h from the
wall. The streamlines of the fluid flow have been overlaid on the pseudo-color plot of the normalized logarithmic flow speed.
The first column is the flow due to source alone while second column has the flow from the image, and their sum is plotted
in the third column for all the irreducible modes, panel (a)-(e), used in this work. The first two rows show flow produced by
a force monopole and a force dipole respectively. Third row is the flow due to a vector quadrupole, while the last two rows
(panel d and e) are the swirling flows due to a torque dipole and antisymmetric octupole respectively. The torque-dipole and
octupole induces a net rotation of colloids near a wall. The orientation of the colloid, in all these plots, is chosen to be along
the wall normal. A linear combination of panel (a-c) has been used to plot the Fig. 1(a)-(c) .
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