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This is a review of some recent works which demonstrate how the classical equations
of gravity in AdS themselves hold the key to understanding their holographic origin
in the form of a strongly coupled large N QFT whose algebra of local operators can
be generated by a few (single-trace) elements. I discuss how this can be realised by
reformulating Einstein’s equations in AdS in the form of a non-perturbative RG flow
that further leads to a new approach towards constructing strongly interacting QFTs. In
particular, the RG flow can self-determine the UV data that are otherwise obtained by
solving classical gravity equations and demanding that the solutions do not have naked
singularities. For a concrete demonstration, I focus on the hydrodynamic limit in which
case this RG flow connects the AdS/CFT correspondence with the membrane paradigm,
and also reproduces the known values of the dual QFT transport coefficients.

Keywords: Holographic correspondence; RG flow; emergent gravity; non-perturbative
QFT; spacetime singularity.

PACS numbers: 11.25.Tq, 11.10.Gh, 04.20.Dw

1. A route to explore the holographic origin of gravity

It is widely believed that the holographic principle holds the key to merging quantum

and gravity together into a consistent framework. This principle broadly postulates

that the gravitational dynamics in a given volume of spacetime can be described

using degrees of freedom living at the boundary.1–4 Thus gravity and at least one

dimension of spacetime should be both emergent together from familiar quantum

dynamics of many-body systems living on a holographic screen, whose embedding

in the emergent spacetime should depend on the observer and the measurement pro-

cess. A precise general statement of the holographic principle is still elusive although

we do have a very concrete realisation in the form of AdS/CFT correspondence of

string theory in which certain supergravity theories with stringy corrections in anti-

de Sitter (AdS) space have been shown to have dual descriptions given by specific

types of conformal Yang-Mills theories without gravity living at the boundary.5–7

Recently, a specific approach towards understanding of the holographic principle

(specially8–11) has been developed which has been directly influenced by the broad

philosophy that the classical gravity equations themselves hold the key to unravel-

ling gravity’s holographic origin. In the context of AdS/CFT correspondence, which

1
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is the most concrete example of holography, this question can be formulated in a

precise way. Let us however state this question from a broader point of view by con-

sidering a class of gravitational spacetimes where one can naturally define a spatial

holographic direction related with a decreasing energy scale. Such spacetimes include

asymptotically anti-de Sitter (aAdS) spaces and those with horizons (such as black

holes) where this holographic direction is the radial direction associated with a wrap

factor or a blackening function. If gravity is holographic, then the holographic radial

direction should be related to a scale of precise kind of renormalisation group flow

of the dual quantum system implying that holographic screens at constant values of

this radial coordinate should contain complete information about a specific kind of

coarse-grained description of the dual quantum system. The broad question partly

is, how do we make this statement precise and also how do we relate the freedom of

choice of local coarse-graining for doing measurements in the dual quantum system

to the emergence of diffeomorphism symmetry in the gravitational theory.

In the case of AdS/CFT correspondence, the precise microscopic QFT described

by the data on the holographic screen at infinity (the boundary of the aAdS space-

time) is precisely known. Nevertheless, the precise general relation between the

scale of the QFT and the emergent radial coordinate, meaning a correspondence

between RG flow in the QFT and the radial evolution of data on holographic screens

via gravitational dynamics is still unknown. In this article, we will discuss how an

amazing lot about this mysterious map between RG flow and radial evolution can

be known by an appropriate reformulation of classical gravity equations themselves.

There is another aspect of the holographic origin of gravity which is also very

enigmatic. Typically the map between classical gravity with a few fields and a dual

QFT works only when the latter is strongly coupled.5–7 This feature has revolu-

tionised our understanding of strong coupling dynamics in quantum many-body

systems. At strong coupling, the perturbative machinery of calculations with Feyn-

man diagrams does not work and so far there is no better alternative to the holo-

graphic duality (whenever it is applicable) for calculating real-time quantum dy-

namics in presence of strong interactions. In order to calculate physical quantities

via holography, one simply solves for the asymptotic data that lead to solutions in

the dual gravity theory which are free of naked singularities. These lead to rela-

tions between the apriori independent leading (non-normalisable) and subleading

(normalisable) modes of the gravitational fields near the boundary of AdS which

satisfy two-derivative equations (such as Einstein’s equations and the covariant

Klein-Gordon equation). Each such field corresponds to an operator of the quan-

tum theory. The non-normalisable modes correspond to the sources for local op-

erators, and the normalisable modes correspond to the expectation values of the

corresponding operators. Solving for the relations between these two that lead to

dual geometries without naked singularities, we can obtain correlation functions,

transport coefficients, etc. of the dual QFT. In fact, even if the Lagrangian descrip-

tion of the dual QFT is unknown, the dual gravity description gives us a concrete

machinery to calculate all physical observables.
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The enigmatic aspect is as follows. If the classical gravity equations can be

reformulated as a RG flow, then this RG flow itself should know which microscopic

UV data should lead to dual spacetimes in the theory of gravity without naked

singularities. The RG flow is a first order evolution with the holographic radial

direction moving towards the infrared of the dual QFT. The criterion for absence

of naked singularities should be better obtained from the infrared behaviour of the

RG flow, as often the dual field theory can become weakly coupled in the ultraviolet

so that the holographic classical gravitational description may no longer be valid.12

Therefore, demanding appropriate requirements on the infrared holographic screen

where the RG flow ends should ensure absence of naked singularities in dual gravity.

Typically, this infrared holographic screen is the horizon. However, this infrared

horizon screen should not be a fixed point of the RG flow so that the microscopic

UV data can be recovered from the endpoint data by following back the first order

scale evolution. The question then is what is this infrared behaviour of RG flow

that should be specified at the endpoint (the holographic screen coinciding with the

horizon) which should lead us to the same UV data that is usually specified at the

AdS boundary to ensure that the dual spacetimes do not have naked singularities.

The data at the holographic horizon screen is expected to be very universal

and characterised by a few parameters. As for example, although the microscopic

UV data in the hydrodynamic limit consists of infinite number of transport coef-

ficients which should be specified at the AdS boundary to obtain regular future

horizons,13–15 the dynamics of the horizon is known to be characterised universally

by a non-relativistic incompressible Navier-Stokes fluid with the shear viscosity be-

ing the only parameter as demonstrated via the membrane paradigm.16, 17 There-

fore, somehow the endpoint of RG flow that reformulates classical gravitational

dynamics should be specified only by a few parameters which should determine

the infinite number of physical observables of the dual QFT. A natural implication

then is that in any fixed number of dimensions only a class of gravitational theories

(which may be constituted by finite or infinite number of higher derivative correc-

tions to Einstein’s equations) can be holographic – such gravitational theories can

be parametrised by a finite number of infrared parameters. Furthermore, this can

possibly be revealed by reformulating the classical equations of gravity in the form

of RG flows, and then finding out when the absence of naked singularities in solu-

tions of the gravitational theory can be translated into an appropriate criterion for

the endpoint of the RG flow which can be described by simple dynamical equations

involving a few parameters only.

In the following section, I will describe how such a reformulation of classical

gravity equations in AdS in the form of RG flows work and also how the infrared

criterion for the RG flow can determine the microscopic UV data of the dual field

theories. In Section 3, I will describe the construction of the RG flow in the field

theory which will also define the latter in a constructive way in special limits. Special

emphasis will be given on the hydrodynamic sector. I will conclude with an outlook.
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2. Reformulating gravity as a highly efficient RG flow

The map between gravity in AdS and RG flow can be readily understood in the

Fefferman-Graham coordinates which is well adapted for the description of the

asymptotic behaviour of the spacetime metric and other gravitational fields from

which the microscopic UV data of the dual field theory can be readily extracted.

Therefore, we first describe how the map works in the Fefferman-Graham coordi-

nates. The map can of course be expressed in any coordinate system and this will be

related to the freedom of choosing the scale of observation in the dual field theory

locally as we will show later. We will also consider pure Einstein’s gravity for most

of our discussion.

Any asymptotically AdS (aAdS) spacetime metric can be expressed in the

Fefferman-Graham coordinates in the form:

ds2 =
l2

r2
(

dr2 + gµν(r, x)dx
µdxν

)

. (1)

This coordinate system should be valid in a finite patch ending at the boundary

which is at r = 0. Also l is called the AdS radius and in the holographic correspon-

dence it provides units of measurement of bulk gravitational quantities which then

corresponds to parameters and couplings of the dual field theory. The boundary

metric g
(b)
µν defined as:

g(b)µν (x) ≡ gµν(r = 0, x) (2)

is identified with the metric on which the dual field theory lives. For the sake of

simplicity, unless stated otherwise we will assume that g
(b)
µν = ηµν so that the dual

field theory lives in flat Minkowski space. Our results of course can be generalised

readily to any arbitrary curved boundary metric.

For later purposes, it is useful to define:

zµν ≡ gµρ
∂

∂r
gρν . (3)

Einstein’s equations with a negative cosmological constant Λ = −d(d − 1)/(2l2)

in (d + 1)− dimensions in Fefferman-Graham coordinates can be written in the

following form:9

∂

∂r
zµν −

d− 1

r
zµν +Tr z

(

1

2
zµν −

1

r
δµν

)

= 2Rµ
ν ,

∇µ

(

zµν − Tr zδµν
)

= 0,

∂

∂r
Tr z −

1

r
Tr z +

1

2
Tr z2 = 0. (4)

Above, all indices have been lowered or raised with gµν or its inverse respectively.

The first equation is the real dynamical equation and the latter ones are constraints

that the data at that boundary r = 0 should satisfy. The radial dynamical evolution

preserves the constraints, and therefore if they are satisfied at r = 0, they should be
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satisfied everywhere (for further details see18). It is to be noticed that in the above

form the AdS radius l does not appear in the equations of motion.

Let us proceed now without assuming the traditional rules of AdS/CFT cor-

respondence. We only assume that corresponding to any solution of (d + 1)− di-

mensional Einstein’s equations with a negative cosmological constant that is free

of naked singularities, there should exist a state in the dual d−dimensional field

theory. The (d + 1) metric then should contain information about 〈tµν
∞〉, the ex-

pectation value of the microscopic energy-momentum tensor operator in the dual

QFT state. For later convenience of analysing the hydrodynamic limit, we will con-

sider 〈tµν
∞〉 instead of 〈tµν

∞〉. When the boundary metric is ηµν , 〈t
µ
ν
∞〉 should

satisfy the Ward identities:

∂µ〈t
µ
ν
∞〉 = 0, Tr 〈t∞〉 = 0 (5)

The first one is the local conservation of the energy-momentum tensor and the latter

comes from conformal invariance (we will later see why the dual quantum theory

should have conformal invariance). The question is of course how to extract 〈tµν
∞〉

from the dual spacetime metric. At this stage, it should be intuitively obvious that

the microscopic Ward identities (5) should be related to the constraints of Einstein’s

equations (4).

We should now see the problem of identification of 〈tµν
∞〉 from a broader per-

spective of connecting data on holographic screens at r = constant with an appro-

priate RG flow in the dual QFT. Firstly, we identify the radial coordinate r with

the inverse of the scale Λ of the dual quantum theory, i.e. we impose the relation

r = Λ−1. (6)

If the relation between r and Λ should be such that (i) it is state (i.e. solution)

independent, and (ii) that the AdS radius l which has no direct interpretation in the

dual QFT should not play a role in the mutual identifications, then the above is the

only possibility given that r = 0 corresponds to the UV. Now on holographic screens

at r = constant we must identify the following pair of data gµν(Λ) and 〈tµν(Λ)〉.

The effective metric gµν(Λ) can be seen as a generalised effective scale-dependent

coupling or rather the source for the effective operator 〈tµν(Λ)〉. We should identify

gµν(Λ) with gµν(r) that appears in the Fefferman-Graham metric (1) at r = Λ−1 for

reasons similar to those mentioned above. Firstly, as evident from (4), as a result of

this identification the evolution equations for gµν(Λ) does not involve l which has

no direct meaning in the dual QFT, and secondly the identification is also state

(solution) independent. Furthermore, gµν(Λ) coincides then with the metric ηµν on

which the dual QFT lives at Λ = ∞. In usual perturbative RG flows, we do not talk

about a background metric gµν(Λ) that evolves with the scale, however it makes

perfect sense to do so in a special limit as explained below.

At this stage, we can introduce the notion of highly efficient RG flow .10, 11 To

understand this notion, it is first useful to classify operators in a QFT as single-

trace and multi-trace operators. Single-trace operators are those which are gauge-
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invariant and which form the minimal set of generators of the algebra of all local

gauge-invariant operators. All other gauge-invariant operators, which are multi-

trace, are formed out of products of the single-trace operators and their spacetime

derivatives. It is these single-trace operators which are dual to gravitational fields

in the holographic correspondence. The large N limit (where N is usually the rank

of the gauge group in the QFT) is that in which the expectation values of the multi-

trace operators factorise into those of the constituent single-trace operators. It is

only in this limit that a QFT can have a holographic dual in the form of a classi-

cal gravity theory. Furthermore, when the QFT is strongly interacting, we expect

there to be only few single-trace operators which have small scaling dimensions,

because unless protected by symmetries there will be large quantum corrections to

the anomalous dimensions at strong coupling. The remaining single-trace operators

will decouple from the RG flow. The holographically dual classical gravity should

then have only a few fields which are dual to the single-trace operators with small

scaling dimensions.

Even in the large N and strong coupling limit, the single-trace operators can

mix with multi-trace operators along the RG flow.19 However, the RG flow can

be thought of as a classical equations for scale evolution of single-trace operators

in the sense that due to large N factorisation, the multi-trace operators can be

readily replaced by the products of the constituents single-trace operators when their

expectation values are evaluated in any state. It is expected that the gravitational

theory can be truncated to pure gravity with a (negative) cosmological constant

implying that there should be a consistent truncation of the dual RG flow equations

to

∂

∂Λ
tµν(Λ) = Fµ

ν [t
µ
ν(Λ),Λ], (7)

with Fµ
ν being non-linear in tµν(Λ) so that it mixes with multi-trace operators built

out of products of itself and it’s derivatives along the RG flow.

In the strong interaction and large N limits, it is then useful to conceive a RG

flow such that (despite tµν(Λ) mixing with multi-trace operators constructed from

products of itself and it’s derivatives) at each scale there should exist an effective

metric gµν(Λ) which is a non-linear functional of tµν(Λ) and Λ, i.e. of the form

gµν(Λ) = gµν [t
µ
ν(Λ),Λ], (8)

which is constructed in the fixed background metric ηµν such that tµν(Λ) preserves

the form of the Ward identity

∇(Λ)µt
µ
ν(Λ) = 0, (9)

with ∇(Λ) being the covariant derivative constructed from gµν(Λ). Therefore, an

evolving metric gµν(Λ) which is a classical functional of tµν(Λ) (in the sense men-

tioned before) emerges as a tool for defining an efficient RG flow which invokes an

efficient mixing of single-trace operators with multi-trace operators such that the

Ward identity for local energy and momentum conservation takes the same form at
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each scale despite coarse-graining. In order to find a dual field theory description

we need to understand precisely how such a coarse-graining can be performed. This

property of preservation of form of Ward identity for local conservation of energy-

momentum constitutes the major ingredient for defining an highly efficient RG flow.

This definition is not complete as it does not tell us how such a RG flow can be

constructed in the field theory – this will be described in the following section. Fur-

thermore, we will also discuss the utility of such a RG flow in constructing strongly

interacting large N field theories.

The major motivation of constructing a highly efficient RG flow is that it readily

gives rise to a holographically dual classical gravity theory with full diffeomorphism

invariance in one higher dimension due to the following theorem.10

Theorem 2.1. Let us consider the d−dimensional scale evolution of tµν(Λ) taking

the schematic form (7) in a fixed background metric g
(b)
µν such that there exists a

background metric gµν(Λ) which is a functional of tµν(Λ) and Λ in the same fixed

background metric g
(b)
µν as schematically represented by (8), and in which tµν(Λ)

satisfies the local conservation equation (9) at each Λ. Also let gµν(Λ) coincide with

the fixed background metric g
(b)
µν at Λ = ∞ so that tµν

∞ satisfies ∇(b)µt
µ
ν
∞ = 0

with ∇(b) being the covariant derivative constructed from g
(b)
µν .

We claim that as a consequence of the above assumptions, gµν(Λ) gives a (d +

1)−dimensional bulk metric (1) in the Fefferman-Graham gauge with r = Λ−1 such

that it solves the equations of a pure (d+ 1)−classical gravity theory with full (d+

1)−diffeomorphism invariance and a negative cosmological constant determined by

the asymptotic curvature radius l. Also g
(b)
µν is the boundary metric of this emergent

asymptotically AdS spacetime.

This theorem ensures that a (d + 1)−dimensional classical gravity with full dif-

feomorphism invariance can be rewritten as a first order scale evolution (7) of an

effective energy-momentum tensor operator.

Let us now go back and see how Einstein’s equation (4) can be reformulated into

such a form as (7). Let us consider the background metric of the dual 4 dimensional

field theory to be ηµν where the following RG flow equation10

∂tµν(Λ)

∂Λ
=

1

Λ3
·
1

2
�tµν(Λ)−

1

Λ5
·

(

1

4
δµνt

α
β(Λ)t

β
α(Λ)−

7

128
�

2tµν(Λ)

)

+
1

Λ5
log Λ ·

1

32
·�2tµν(Λ) +O

(

1

Λ7
log Λ

)

(10)

can be constructed. For the above RG flow, we can indeed construct the following
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unique gµν(Λ) as given by

gµν(Λ) = ηµν +
1

Λ4
·
1

4
ηµαt

α
ν(Λ) +

1

Λ6
·
1

24
ηµα�tαν(Λ) +

+
1

Λ8
·

(

1

32
ηµαt

α
ρ(Λ)t

ρ
ν(Λ)−

7

384
ηµνt

α
β(Λ)t

β
α(Λ)

+
11

1536
ηµα�

2tαν(Λ)

)

+

+
1

Λ8
log Λ ·

1

516
· ηµα�

2tαν(Λ) +O

(

1

Λ10
log Λ

)

(11)

as a functional of tµν(Λ) and Λ in the flat Minkowski space background such that

when it is considered as an effective background metric, the scale-dependent Ward

identity (9) is satisfied at each Λ (given that at Λ = ∞, the usual Ward identities

(5) hold). Furthermore, the 5−dimensional bulk metric (1) then satisfies Einstein’s

equations (4) with r = Λ−1 and the cosmological constant set to −6/l2. The log

term in (10) is related to the conformal anomaly.

It is to be noted that the Ward identity (9) can also be recast as an effective

operator equation, i.e. can be rewritten in a state-independent manner as an identity

in flat Minkowski space ηµν . In the above example, (9) can be readily unpacked into

∂µt
µ
ν(Λ) =

1

Λ4
·

(

1

16
∂ν

(

tαβ(Λ)t
β
α(Λ)

)

−
1

8
tµν(Λ)∂µ Tr t(Λ)

)

+

+
1

Λ6
·

(

1

48
tαβ(Λ)∂ν�tβα(Λ)−

1

48
tµν(Λ)∂µ�Tr t(Λ)

)

+

+O

(

1

Λ8

)

. (12)

We then explicitly see that the scale-dependent effective background gµν(Λ) as given

by (11) serves to absorb the multi-trace contributions that spoil the usual Ward

identity for local energy-momentum conservation. As a result, the Ward identity

preserves its form (9) at each scale in the new scale-dependent background.

It should be immediately noted that although the RG flow (10) leads to the bulk

metric in the Fefferman-Graham gauge, the classical gravity equations determining

the latter should have underlying full diffeomorphism invariance. It can be readily

argued that otherwise it is impossible that the RG flow (10) will be able to preserve

a Ward identity of the form (9). In particular, absence of diffeomorphism invariance

in the dual bulk theory that gives the evolution of gµν(Λ) will imply that there will

be other propagating degrees of freedom in addition to gµν(Λ) in which case the

Ward identity (9) should be modified.

The RG flow reformulation (10) of Einstein’s equations has been demonstrated

so far only in the asymptotic (i.e. UV) expansion. This series (10) has a finite

radius of convergence related to the scale (radius) where the Fefferman-Graham

coordinates has a coordinate singularity in the dual spacetime. In order to sum (10)
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to all orders in Λ−1, we need to assume a specific form of the energy-momentum

tensor such as the hydrodynamic form to be considered later. In the latter case,

all orders in Λ−1 can be summed at any given order in derivative expansion. The

radius of convergence is the scale corresponding to the location of the horizon at

late time and is related to the final temperature.

The immediate question is how do we derive the RG flow reformulation of the

classical gravity equations such as (10) corresponding to Einstein’s equations. In

order to answer this, it is sufficient to understand what does tµν(Λ) correspond

to in the dual gravitational theory. To do this a gauge-independent formulation of

the map between RG flow and gravitational equations is helpful. We express the

(d+ 1)−dimensional spacetime metric via ADM-like variables:20

ds2 = α(r, x)dr2 + γµν(r, x) (dx
µ + βµ(r, x)dr) (dxν + βν(r, x)dr) . (13)

in which α is the analogue of the lapse function and βµ is the analogue of the

shift vector. Specifying conditions determining these amounts to gauge-fixing the

diffeomorphism symmetry. For reasons (state independence and absence of explicit

presence of l in the evolution equations) mentioned before, the identification of Λ

and gµν(Λ) should take the following forms assuming that r = 0 is the boundary:10

r = Λ−1, gµν(Λ = r−1) =
r2

l2
γµν(r, x). (14)

Note the above is not only true for Einstein’s gravity but also for a general grav-

itational theory. In this case the form of tµν(Λ) can also be fixed up to an overall

multiplicative constant by (i) requiring it to be state (solution) independent, (ii)

demanding absence of explicit presence of l in its scale evolution, and (iii) requiring

that it satisfies the Ward identity (9). In a general gravitational theory, these imply

that tµν(Λ) should take the form:10

tµν(Λ = r−1) =

(

l

r

)d

·
(

T µ
ν
ql + T µ

ν
ct
)

, (15)

up to an overall multiplicative constant, where T µ
ν
ql is the quasi-local stress ten-

sor that is conserved via equations of motion21 and T µ
ν
ct is a sum of gravitational

counterterms built out of the Riemann curvature of γµν and its covariant deriva-

tives such that they satisfy (9) via Bianchi-type identities. Up to second order in

derivatives, T µ
ν
ct can be parametrised as:

T µ
ν
ct = −

1

8πGN

[

C(0) ·
1

l
· δµν + C(2) · l ·

(

Rµ
ν [γ]−

1

2
R[γ]δµν

)

+ · · ·

]

, (16)

with C(n)s being dimensionless constants that depend on the gravitational theory

and GN being the (d + 1)−dimensional gravitational constant. Above, the indices

have been lowered/raised by the induced metric γµν/its inverse. In the case of

Einstein’s gravity, T µ
ν
ql is the Brown-York tensor:

T µ
ν
ql = −

1

8πGN

γµρ (Kρν −Kγρν) . (17)
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Here Kµν is the extrinsic curvature of the hypersurface r = constant given by

Kµν = −
1

2α

(

∂γµν
∂r

−∇(γ)µβν −∇(γ)νβµ

)

, (18)

with βρ = γρµβ
µ, and K = Kµνγ

µν . Therefore, in the Fefferman-Graham gauge,

tµν(Λ) should take the following form for Einstein’s gravity:

tµν(Λ = r−1) =
ld−1

16πGN

[

1

rd−1
·
(

zµν − (Tr z) δµν
)

+ 2 ·
1

rd
·
(

d− 1− C(0)

)

· δµν −

−2 ·
1

rd−2
· C(2) ·

(

Rµ
ν [g]−

1

2
R[g]δµν

)

+ · · ·

]

. (19)

The overall multiplicative constant ld−1/(16πGN) has been chosen by us above and

cannot be fixed by the arguments presented before. This overall factor is actually

proportional to N2 of the dual field theory (as mentioned before l itself has no

meaning in the dual QFT but the gravitational constant measured in units where

l = 1 does have one). This overall factor can be fixed by identifying the temperature

in the field theory in a thermal state to that of the Hawking temperature of the

dual black hole. This however requires taking into account quantum effects. For

later convenience, we rescale tµν(Λ) by this overall factor (16πGN )/ld−1 so that N2

is now absorbed in the definition of tµν(Λ). There is still a genuine ambiguity in

the definition of tµν(Λ) which arises from the choice of the gravitational countert-

erm coefficients C(n)s. Fixing this ambiguity leads us to a profound and surprising

understanding of gravity itself as described below.

We first observe that the above ambiguity of choosing coefficients of gravitational

counterterms has an immediate consequence for the map between gravity and RG

flow. It implies that the equations of gravity can be reformulated into infinitely

many RG flow equations of the form (7) for any choice of gauge fixing of bulk

diffeomorphisms. Each of these formulations corresponds to a specific choice of

gravitational counterterms C(n)s. Furthermore, each such RG flow will require the

existence of the same (unique) gµν(Λ) taking the schematic form (8) in which the

effective Ward identity (9) will be satisfied, and which will lead to the same bulk

metric that satisfies the dual diffeomorphism invariant gravitational equations with

a specific gauge fixing.

It is of course desirable that at the UV fixed point, i.e. at Λ = ∞, tµν
∞ is finite.

This leads to fixing a finite number of leading counterterms, particularly22–24

C(0) = d− 1, C(2) = −
1

d− 2
, etc. (20)

It is interesting to note that tµν
∞ is completely free of ambiguities when the bound-

ary metric is ηµν , because all other counterterms, except a few leading terms, vanish

in any asymptotically AdS space because of the enhancement of symmetries in the

geometry in the asymptotic limit. We thus recover the result for tµν
∞ as in the tradi-

tional AdS/CFT correspondence. This procedure is however unsatisfactory for two
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reasons. Firstly, we still have infinite ambiguities in the form of unfixed coefficients

of the infinite number of gravitational counterterms which vanish asymptotically.

Secondly, if we can genuinely rewrite gravity as RG flow, in the latter form it should

be first order evolution so that we can either specify conditions at the UV or at

the IR, but not at both places. It is more desirable that we restrict the IR as we

need a sensible IR behaviour of the RG flow even in cases where the UV completion

is unknown. This is specially relevant for finding holographic duals of theories like

QCD where only the IR can be expected to be captured by a holographically dual

classical gravity description at large N12 – in the UV the emergent geometry can

have a singularity implying the necessity of new degrees of freedom.

This ambiguity is fixed by the following theorem stated below.9–11

Theorem 2.2. Up to an overall multiplicative constant for tµν(Λ), there is a unique

choice of the functional Fµ
ν in (7) that reformulates a pure holographic classical

gravity theory as RG flow such that the endpoint of the RG flow at Λ = ΛIR can be

converted to a fixed point in the hydrodynamic limit corresponding to non-relativistic

incompressible Navier-Stokes fluid under the universal rescaling:

Λ−1
IR − Λ−1 = ξ · λ−1 t =

τ

ξ
, (21)

(corresponding to near horizon and long time behaviour of the dual gravitational

dynamics) where ξ is taken to zero with λ and τ kept finite. This also corresponds

to fixing the gravitational counterterms in (16) uniquely so that tµν(Λ) is uniquely

identified as a functional of the ADM variables in the dual pure gravitational theory.

Even those counterterms which are necessary to cancel UV divergences are also

determined by the prescribed IR behaviour.

Remarkably, the hydrodynamic limit can fix all the ambiguities of the RG flow

which however has a state-independent formulation in terms of evolution of the

operator tµν(Λ) with the scale and which is valid even beyond this limit. Thus long

wavelength perturbations of black holes unsurprisingly play a very fundamental

role in understanding holographic correspondence as RG flow. We do not have a

complete proof of this theorem, so actually it is still a conjecture. However very

non-trivial calculations which will be sketched in the next section provide solid

supporting verifications.

It is also important that the end point of the RG flow is not really fixed point

although it becomes so after the rescaling (21) which has been first introduced in

the context of gravitational dynamics in the hydrodynamic limit in the dual the-

ory.25 As we will see in the next section, it implies that all physical parameters in

tµν(Λ) should satisfy appropriate bounds regrading how they behave at the end-

point. These bounds determine all integration constants of the first order RG flow

and thus determine the UV values of physical observables. Remarkably, these UV

values are exactly the same as those for which dual gravitational geometries are

free of naked singularities. Since the hydrodynamic limit determines the RG flow
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uniquely, all physical observables beyond the hydrodynamic limit can also be ob-

tained from the RG flow. Therefore, not only that a holographic gravitational theory

can be reformulated as a unique RG flow for every choice of gauge-fixing of diffeo-

morphism symmetry (up to an overall constant numerical factor for tµν(Λ)) , the

data which leads to regular horizons are also determined by this RG flow. This IR

criterion constitutes another crucial defining feature of a highly efficient RG flow as

exemplified by (10) for Einstein’s gravity. In the following section, we will present

more details on how this IR criterion fixes the ambiguity of gravitational couuntert-

erms leading to a unique highly efficient RG flow for each choice of gauge-fixing of

diffeomorphism symmetry in the dual classical gravity equations.

Finally, we note that the choice of gauge fixing of the diffeomorphism symmetry

is also encoded in the RG flow (which in cases other than the Fefferman-Graham

gauge may contain auxiliary non-dynamical variables corresponding to the lapse

function and the shift vector). This is due to the feature that any asymptotically

AdS metric has a residual gauge symmetry which corresponds to conformal trans-

formations for the dual theory at the boundary under which the dual theory must

be invariant (up to quantum anomalies that are related to logarithmic terms nec-

essary for regulating divergences of the on-shell gravitational action22, 23). Such

diffeomorphisms which preserve the Fefferman-Graham gauge are called Penrose-

Brown-Henneaux (PBH) transformations in the literature,26–28 and these can be

readily generalised to other choices of gauge fixing.10 These turn out to lead to

automorphism symmetry of the dual RG flow equations (7) when they are formu-

lated in a general fixed conformally flat background metric.10 We have called this

lifted Weyl symmetry. Deciphering this symmetry for a given highly efficient RG

flow readily leads us to determine the corresponding gauge fixing in the dual gravity

theory and thus also the choice of hypersurface foliation in the dual geometries used

as holographic screens at various scales.

3. The field theory perspective and the hydrodynamic limit

In the previous section, we have discussed reformulation of a holographic pure grav-

ity theory as a highly efficient RG flow which can self-determine microscopic UV

data by an appropriate IR criterion, and reproduce results of traditional holographic

correspondence where these data are determined by explicitly solving the gravita-

tional equations and demanding absence of naked singularities. In this section, fol-

lowing11 we will show how such a RG flow can be constructed in the field theory

and even define it constructively in the strong interaction and large N limits. We

will illustrate the construction briefly in the hydrodynamic limit.

In the strong interaction and large N limits, a handful of single-trace operators

(dual to the fields in the gravitational theory) can define at least some sectors of

the full theory in the sense mentioned in the previous section. Instead of using the

elementary fields to define the QFT, it then makes sense to use collective variables

which are directly measurable and which parametrise the expectation values of these
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single-trace operators in all states. Such collective variables include the hydrody-

namic variables and can be extended to include the shear-stress tensor and other

non-hydrodynamic parameters also (see for innstance29, 30, 32). At the very outset, it

is clear that such an exercise of defining quantum operators via collective variables

which parametrise their expectation values is futile except in the strong interaction

and large N limits. Unless we are in the large N limit, the expectation values of the

multi-trace operators do not factorise, therefore we need new collective variables for

defining multi-trace operators. Also if we are not in the strong interaction limit, we

will need to consider infinitely many single-trace operators. These will imply pro-

liferation of the number of collective variables required to describe exact quantum

dynamics.

The physical picture is as follows. Consider a set of microscopic single-trace op-

erators O∞
I such as the energy-momentum tensor which can be parametrised by a

set of collective variablesX∞
A such as the hydrodynamic variables. Furthermore, the

spacetime evolution of the expectation values 〈O∞
I 〉 can be captured by equations

of motions for the collective variables X∞
A such as the hydrodynamic equations with

parameters η∞M such as the transport coefficients. It is to be noted here that the

hydrodynamics being mentioned here is not referring to any kind of coarse-graining,

rather an asymptotic series involving perturbative derivative expansion (with infi-

nite number of transport coefficients) which captures the dynamics near thermal

equilibrium.33, 34 Generally speaking, we can succinctly represent the quantum op-

erators O∞
I through their expectation values 〈O∞

I 〉[X∞
A , η∞M ].

We can readily do an appropriate coarse-graining of our measurements of 〈O∞
I 〉

and proceed to define 〈OI(Λ)〉. The latter definition can be achieved via appropri-

ate coarse-grained collective variables XA(Λ) which by construction follow similar

equations as XA(∞) but with new parameters ηM (Λ). As in any RG flow, we expect

that we need fewer parameters ηM (Λ) to describe the spacetime evolution of XA(Λ)

than the number of η∞M we need to describe that of X∞
A to the same degree of ap-

proximation. In a highly efficient RG flow, we define the coarse-grained quantum

operators OI(Λ) through their expectation values 〈OI(Λ)〉[XA(Λ), ηM (Λ)] assum-

ing that the coarse-grained operators are the same functionals of the coarse-grained

collective variables at each scale (as in the UV) but with new scale-dependent

parameters. Note that there is no explicit dependence on Λ in the functionals

〈OI(Λ)〉[XA(Λ), ηM (Λ)].

In order to complete the construction we will need to define the constructive

principles for coarse-graining that defines XA(Λ) which should follow similar equa-

tions at each scale but with new scale-dependent parameters ηM (Λ). These three

principles are listed below.

(1) High efficiency:

There should exist an appropriate background metric:

gµν(Λ)[XA(Λ), ηM (Λ),Λ]

and appropriate background sources:
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J(Λ)[XA(Λ), ηM (Λ),Λ]

at each Λ such that the Ward identity

∇(Λ)µt
µ
ν(Λ) =

∑′

OI(Λ)∇(Λ)νJI(Λ) (22)

is satisfied with∇(Λ) being the covariant derivative constructed from gµν(Λ) and
∑′

denoting summation over all effective single-trace operators except tµν(Λ).

(2) Upliftability to operator dynamics:

The functionals gµν(Λ)[XA(Λ), ηM (Λ),Λ] and J(Λ)[XA(Λ), ηM (Λ),Λ] can be

uplifted to functionals of the single-trace operators. Therefore, they should as-

sume the forms

gµν(Λ)[OI(Λ),Λ] and J(Λ)[OI(Λ),Λ]

so that the effective Ward identities (22) can be promoted to operator equations

such as (12). As a consequence, it follows that the scale evolution equations for

OI(Λ) such as (10) become state-independent equations involving single and

multi-trace operators and Λ only, and thus without involving the collective

variables explicitly.

(3) Good endpoint behaviour:

The IR end point of the RG flow where most of the parameters ηM (Λ) blow

up and some collective variables XA(Λ) become singular can be made regular

under the universal rescaling (21) corresponding to near horizon and long time

limits of the dual spacetimes. In the hydrodynamic limit, the endpoint should

be converted to a fixed point corresponding to non-relativistic incompressible

Navier-Stokes equations under the stated rescaling.

Our claim is that for every realisation of a highly efficient RG flow which satisfies

the above three principles:

(1) there corresponds a unique dual gravitational theory up to a choice of gauge-

fixing of the bulk diffeomorphism symmetry that can have a dual holographic

description as a strongly interacting large N QFT, and

(2) there is unique set of UV data for (the infinitely many) ηM (Λ) which however

can be resummed in the IR so that the dynamics at the endpoint can be de-

scribed by a finite number of parameters (such as the shear viscosity of the

infrared non-relativistic incompressible Navier-Stokes fluid), and also these UV

data (such as the UV values of the infinitely many transport coefficients) are

the same as those which lead to the regularity of the future horizons in the dual

gravitational theory corresponding to the RG flow.

The infrared end point typically corresponds to the location of the horizon at late

time, and thus the highly efficient RG flow connects the AdS/CFT correspondence

with the membrane paradigm. The highly efficient RG flow gives a constructive

way to define strongly interacting large N QFTs by reformulating the holographic
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correspondence. The first two principles in our list defining highly efficient RG flows

utilise the first theorem of reformulation of diffeomorphism invariant gravity and

the third principle in our list utilises the second theorem discussed in the previous

section. However, here our list of principles also presents a generalisation which is

valid not only for the reconstruction of holographic pure gravity but also when the

latter is coupled to a finite number of matter fields. The utility of highly efficient

RG flow is actually deeper. It shows that all such QFTs and hence all holographic

gravitational theories are determined by finite amount of data that governs the

dynamics at the end point. Therefore, all holographic gravitational theories can be

parametrised by a finite number of free parameters in any given dimension. How

this parametrisation works has not been completely understood yet.

As an illustration, let us see how we construct highly efficient RG flows in the

hydrodynamic limit.11 Once again, let us revert back to the sector of states where

tµν(Λ) is the only single-trace operator with a non-vanishing expectation value for

the sake of simplicity. The expectation value of tµν(Λ) is parametrised by the (col-

lective) hydrodynamic variables uµ(Λ) and T (Λ) which thus define the quantum

operator. Furthermore, uµ(Λ) can be assumed to satisfy Landau-Lifshitz defini-

tion in which case uµ(Λ) is a timelike eigenvector of tµν(Λ) with unit norm with

respect to the background metric gµν(Λ) so that uµ(Λ)gµν(Λ)u
ν(Λ) = −1. The

hydrodynamic variables uµ(Λ) and T (Λ) should satisfy hydrodynamic equations in

the effective background gµν(Λ) with scale-dependent energy density ǫ(Λ), pres-

sure P (Λ) and transport coefficients γ(n,m)(Λ), where n denotes the order in the

derivative expansion (running from zero to infinity) and m lists the finite number of

independent parameters at each order in the derivative expansion. At the first order

in the derivative expansion, there are only two independent transport coefficients,

namely the shear and the bulk viscosities.

The coarse-graining of uµ(Λ) and T (Λ) can be expressed both in integral or

differential form. The latter form is more useful and is as shown below:

:
∂uµ(Λ)

∂Λ
: = a(0)(Λ)uµ(Λ) +

∞
∑

n=1

ns
∑

m=1

a(n,m)
s (Λ)S(n,m)(Λ)uµ(Λ) +

+

∞
∑

n=1

nv
∑

m=1

a(n,m)
v (Λ)Vµ(n,m)(Λ) ,

:
∂T (Λ)

∂Λ
: = b(0)(Λ) +

∞
∑

n=1

ns
∑

m=1

b(n,m)
s (Λ)S(n,m)(Λ). (23)

Above S(n,m) denotes the independent hydrodynamic scalars that can be con-

structed from derivatives of uµ(Λ) and T (Λ) at the n − th order in derivatives

(with independent meaning that a linear sum of these scalars do not vanish using

lower order equations of motion). When n = 1, there is only one such scalar, namely

(∂ · u). Similarly, Vµ(n,m)(Λ) denotes hydrodynamic vectors which are not parallel

to uµ(Λ) (as otherwise it can be expressed via a scalar multiplying uµ(Λ)). When

n = 1, there is only one such vector, namely (u(Λ) · ∂)uµ(Λ). The symbols : · · · :
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stand for subtracting away non-hydrodynamic contributions. The coarse-graining

actually arises from a truncation of the series (23) at a given order in the deriva-

tive expansion. So far this is the most general way to coarse-grain hydrodynamic

variables which is consistent with the hydrodynamic limit.

Furthermore, we assume that the flow of the energy density, pressure and the

transport coefficients take the form of ordinary differential equations:

dǫ(Λ)

dΛ
= K[ǫ(Λ), P (Λ),Λ],

dP (Λ)

dΛ
= L[ǫ(Λ), P (Λ),Λ],

dγ(n,m)(Λ)

dΛ
= M (n,m)[ǫ(Λ), P (Λ), γ(k≤n,p)(Λ),Λ], (24)

in which the scale evolution of transport coefficients at n−th order in derivative

expansion involves only those at the same or lower orders.

The mathematical problem of constructing highly efficient RG flows in the hy-

drodynamic limit now becomes well-defined. We simply need to solve for the param-

eters a(0), b(0), a
(n,m)
s , a

(n,m)
v , b

(n,m)
s in (23) and the functionals K, L and M (n,m)

appearing in (24) such that the three principles listed before are satisfied. Unfortu-

nately, we do not yet know how this mathematical problem can be solved directly.

Fortunately, there is a concrete algorithmic method9 (developed using some results

of8, 18) to reformulate the classical gravitational equations in the forms (23) and (24)

which can be used to solve for these parameters indirectly so that we can satisfy

the three principles and obtain all highly efficient RG flows.

The most subtle aspect of this procedure is in how we satisfy the third principle

of good infrared behaviour. As discussed in the previous section, the reformulation

of gravity as RG flow is subject to the ambiguities of undetermined counterterm

coefficients as presented in (16) before. However there are a finite number of such

terms at each order in the derivative expansion. The recipe is to proceed with these

ambiguities which lead to unknown numerical constants in (23) and (24). In order

for the endpoint to be governed by non-relativistic incompressible Navier-Stokes

equations, ǫ(Λ) must be finite at the endpoint ΛIR where γ(n,m)(Λ) should satisfy

bounds γ(n,m)(Λ) ≤ (Λ − ΛIR)
−k(n,m) with k(n,m) being appropriate numerical

constants which are independent of the RG flow or the dual gravitational theory.9

It turns out that when we actually solve for γ(n,m)(Λ) the number of terms which

diverge worse than the prescribed bounds are typically more than the number of

integration constants available unless the counterterm coefficients which have been

left undetermined so far are precisely chosen at each order in the derivative expan-

sion. Setting these counterterm coefficients to such values, we can fix all integration

constants of the RG flow and thus we can determine the UV values of all transport

coefficients uniquely.

This procedure has been explicitly implemented for Einstein’s gravity at zeroth,

first and second orders in the derivative expansion. Remarkably, the UV values of the
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equations of state and the first and second order transport coefficients determined

via this method matches exactly with the known values13–15 which are required for

the regularity of the future horizon. The methods of explicit construction of highly

efficient RG flows can be generalised beyond the hydrodynamic limit by including

non-hydrodynamic collective variables29–34 as discussed in the literature before.

We should understand how to solve for highly efficient RG flows independently

without using the theorems for reformulation of dual gravitational theories so that

we can classify all gravitational theories that are holographic and also where a

finite number of IR parameters can determine all microscopic UV data in the dual

theories.

4. Outlook

We have demonstrated that the reformulation of classical gravity as RG flow not

only reveals how the holographic duality works but also gives us a deeper under-

standing of gravitational dynamics itself, in particular relating to what kind of data

that determine the spacetime metric lead to absence of naked singularities.

An outstanding issue is to take another step to understand how to include quan-

tum corrections in gravity while mapping it to a highly efficient RG flow whose

notion also needs to be further generalised to go beyond the large N limit. In or-

der to proceed, it should be useful to understand better how the three principles

which define highly efficient RG flows themselves originate from a simpler and more

holistic principle. Such a direction seems possible as there is evidence that classical

gravity emerges from features of quantum entanglement in dual quantum systems.35

In particular, it is known that classical minimal surfaces in dual geometries encode

entanglement entropies in dual field theories.36 It has also been argued elsewhere

that efficient nonperturbative RG flows that coarse-grain quantum information ef-

ficiently such that they remove short range entanglement but preserve long range

entanglement give rise to the holographic correspondence.37 It is natural to spec-

ulate that when quantum gravity corrections are included the infrared end point

for the dual RG flow is not characterised necessarily by local order parameters, but

rather by non-local quantum order parameters related to patterns of global long

range entanglement. This point of view also has a potential for defining quantum

geometry in the emergent gravity theory.

We hold the point of view that a breakthrough in this direction is likely to come

from a reformulation of classical gravity equations themselves which uses non-local

geometric objects such as geodesics and minimal surfaces as the dynamical variables,

and also which makes a tangible connection with the local RG flow perspective

described in the present article. At present, how this can be realised seems a bit

mysterious, however it is very likely that there are hidden treasures in classical

gravity which are yet to discovered. It will not be surprising if the surface terms38, 39

introduced by T. Padmanbhan, and his novel variational principle involving these

surface terms which give classical gravitational equations in the bulk without using
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the metric as a dynamical variable, can shed some light in this direction. Another

interesting reformulation40 of classical gravity equations involving objects which are

analogous to minimal surfaces but also sensitive to the operator content in the dual

QFTs has appeared recently.

Finally, I would like to mention that the reformulation of classical gravity equa-

tions as RG flows has also informed the development of a new approach for com-

bining weak and strong coupling degrees of freedom of the quark-gluon plasma pro-

duced by heavy ion collisions self-consistently into a novel nonperturbative frame-

work.41, 42 Unravelling the holographic origin of gravity will surely revolutionise our

understanding of nonperturbative aspects of quantum dynamics in the future.
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hydrodynamics to nonequilibrium degrees of freedom in strongly interacting
quark-gluon plasma,” Phys. Rev. Lett. 113 (2014), no. 26 261601, 1409.5087.

33. M. P. Heller, R. A. Janik, and P. Witaszczyk, “Hydrodynamic Gradient Expansion
in Gauge Theory Plasmas,” Phys. Rev. Lett. 110 (2013), no. 21 211602, 1302.0697.

34. G. Basar and G. V. Dunne, “Hydrodynamics, resurgence, and transasymptotics,”
Phys. Rev. D92 (2015), no. 12 125011, 1509.05046.

35. T. Faulkner, M. Guica, T. Hartman, R. C. Myers, and M. Van Raamsdonk,



September 17, 2018 11:4 WSPC/INSTRUCTION FILE HolRGreview

20 Ayan Mukhopadhyay

“Gravitation from Entanglement in Holographic CFTs,” JHEP 03 (2014) 051,
1312.7856.

36. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from
AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, hep-th/0603001.

37. B. Swingle, “Entanglement renormalization and holography,” Phys. Rev. D 86 (Sep,
2012) 065007.

38. A. Mukhopadhyay and T. Padmanabhan, “Holography of gravitational action
functionals,” Phys. Rev. D74 (2006) 124023, hep-th/0608120.

39. T. Padmanabhan and A. Paranjape, “Entropy of null surfaces and dynamics of
spacetime,” Phys. Rev. D75 (2007) 064004, gr-qc/0701003.

40. J. de Boer, F. M. Haehl, M. P. Heller, and R. C. Myers, “Entanglement, holography
and causal diamonds,” JHEP 08 (2016) 162, 1606.03307.

41. E. Iancu and A. Mukhopadhyay, “A semi-holographic model for heavy-ion
collisions,” JHEP 06 (2015) 003, 1410.6448.

42. A. Mukhopadhyay, F. Preis, A. Rebhan, and S. A. Stricker, “Semi-Holography for
Heavy Ion Collisions: Self-Consistency and First Numerical Tests,” JHEP 05 (2016)
141, 1512.06445.


