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a b s t r a c t

This work introduces a multi-objective optimization strategy to handle conflicting set-point tracking
and economic objectives in a two-layer hierarchical control framework. A dynamic multi-objective
real-time optimizer (DMO), incorporated in the upper layer, handles multiple control objectives with
set-point tracking being the higher priority objective and computes optimal plant trajectories. This
plant-wide trajectory information is communicated to the lower-layer model predictive control (MPC)
operating at a faster sampling rate. The conventional weight-based and lexicographical method for the
DMO are discussed. A new algorithm is conceptualized based on the lexicographical method to handle
prioritized objectives. The proposed algorithm modifies the higher priority tracking objective and
establishes improved economic performance compared to the conventional techniques, with minimal
effect on the conflicting tracking objective, through a systematic choice of the preferred Pareto solution.
The proposed algorithm’s efficacy, within the hierarchical framework, is analyzed using two case
studies: A polymerization reactor and a multi-unit reactor–separator system.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Staying competitive and profitable in the current market-
driven scenario requires a control framework for optimal man-
agement of multiple conflicting objectives. Conventional control
structures employ a single plant-wide objective based on opti-
mizing economic targets for maximizing profit. However, per-
formance targets such as product quality, production goals, and
environmental norms cannot be ignored in the pursuit of prof-
itable plant operation [1]. In fact, some plant-wide objectives such
as product quality set-points may be higher priority objective(s),
since the off-spec product is not sellable [2]. Hence, there is a
need to develop multi-objective control strategies handling ob-
jectives, such as set-point tracking, in addition to the traditional
economic targets of maximizing profits. However, conflicting be-
havior of objectives and associated computational demands of
a multi-objective control problem are issues that need to be
addressed while designing the controller.

Traditionally, a plant-wide economic objective is solved at
a steady-state RTO (real-time optimization) layer based on the
process-related decisions received from the planning and schedul-
ing layer. The RTO uses a nonlinear model to compute steady-
state set-points for the underlying MPC (model predictive
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control) layer [3]. Although steady-state RTO is prevalent in
the process industry, it has several drawbacks: Long-term tran-
sients limits how often optimization can be performed [4], it
is unable to handle higher frequency disturbances or dynamic
cost parameters [3], and model inconsistency with the MPC
layer can potentially lead to infeasible solutions [5]. One type
of approach that addresses these issues are single-layered ap-
proaches, where the RTO layer is integrated with the lower-layer
MPC [6] or the economic cost function itself is solved in the
MPC layer [7]. Idris and Engell [8] demonstrated the computa-
tional issues of implementing a single-layer economic-MPC on
a pilot-scale plant. Findeisen and Allgöwer [9] discussed loss
in performance and instability due to delay in computing the
optimal solution. Although significant developments in computa-
tional power make integrated single-layer control attractive [10],
concomitant developments in process systems and the increasing
importance of process intensification in plants comprising of
multiple units present significant challenges to the single-layer
approach. Consequently, computation of the optimal trajectory
within the stipulated control interval is rendered computationally
intractable [5]. Since the focus of the current work is on multiple
conflicting control objectives, it is imperative to design a control
strategy to handle the computational demands of optimization-
based control algorithms. Hence, inspired from earlier works on
dynamic hierarchical control [4,5,11], we employ a two-layer
control framework, with the multi-objective optimization (MOO)
solved in the upper dynamic RTO layer, operating at a slower
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time-scale to handle the computational issues associated with the
MOO problem.

Several applications of MO control have been discussed in the
literature. For example, polymerization processes require man-
aging multiple process targets, such as maximizing conversion,
minimizing undesired products, and achieving the desired quality
parameters of the final polymer [12–14]. Often, the multiple
objectives are prioritized, with safety or product quality targets
being at a higher priority than economic objective. Anilkumar
et al. [15] used a lexicographic approach to handle multiple set-
point tracking objectives based on priority. He et al. [16] used
lexicographic optimization to handle a similar case of priori-
tized set-point tracking and economic objectives. A few other
applications of multi-objective optimization include fed-batch
bioreactor [17], solar refrigeration plant [18], path tracking con-
trol with predefined speed profile [19], and autonomous vehicle
control to reach the destination with minimum energy and min-
imum time [20]. Haßkerl et al. [21] formulated a weight-based
control scheme for a reactive distillation system comprising of an
economic cost function and a regularization term that penalizes
violation on product purity. The respective weight parameters
were tuned meticulously to obtain the desired trade-off between
the two objectives. Tian et al. [22] and Li et al. [23] imple-
mented a single-layer multi-objective control, where the desired
trade-off between the economic and the tracking objective is
manipulated through user-defined tuning parameter. Thus, dif-
ferent aspects of multi-objective control comprising of tracking
and economic objective were studied using single-layered control
frameworks, which requires the optimal solution be available
within a sampling instance. However, this becomes challeng-
ing as the complexity of the system increases, particularly for
multi-objective control. Secondly, most of the earlier works either
involved offline optimization or required user intervention to
select the required optimal solution. The current work addresses
these issues through a multi-layered control framework equipped
to handle the computational rigor of multi-objective problems.
Different optimization methodologies are discussed, which can be
applied depending on the nature of the control problem.

The scope of this work includes a two-layer hierarchical con-
trol framework for managing priority-based multiple objectives,
aimed at tracking a process parameter to its desired set-point and
simultaneously maximizing the profit. An upper-layer dynamic
multi-objective optimizer (DMO) computes the optimal plant
trajectory for a lower-layer MPC. MPC is preferred in the design
of the two-layer framework as it can deal with multiple variables
and process constraints [3]. We evaluate various multi-objective
optimization techniques by quantifying the performance require-
ment of the control objectives. A popular technique uses weight
to scalarize the multiple objectives into a single objective func-
tion. However, tuning these weighing parameters is a demanding
task because the objectives belong to different domains can
often lead to ill-conditioned or highly nonlinear tuning behavior
[15,24]. In contrast, the lexicographic approach can handle
priority-based optimization [17,25]. However, the optimal track-
ing solution may pose a too stringent constraint to the sub-
sequent economic optimization. Hence, a second strategy is to
minimize the tracking error only at the terminal point of the
horizon [15]. In principle, this is analogous to communicating the
desired set-point, allowing for a compromise in the performance
during the transients. To exploit the advantages of the two tech-
niques, we propose a new algorithm, which computes multiple
Pareto solutions through modifications in the tracking function.
The preferred solution is chosen online from the Pareto-optimal
set. This solution is determined based on the solution closest
to the ideal solution of the objective. It is easy to understand
that it is impossible to achieve the ideal solution of the multiple

objectives simultaneously due to their conflicting nature, and the
preferred Pareto solution offers the best trade-off. The optimal
trajectories are computed from the preferred solution and are
communicated to a lower-layer MPC.

The performance of various approaches is evaluated using two
case studies. The first investigation is a free radical polymeriza-
tion reactor [26], which involves tracking of a quality parameter
and maximizing the net profit as prioritized and conflicting objec-
tives. The second case study is a ‘‘plant-wide’’ reactor–separator
system, with a similar set of objectives.

2. Plant and control configuration

Consider a system described by the following model

ẋ = f (x, u)

y = g(x)
(1)

where x ∈ ℜn, u ∈ ℜm and y ∈ ℜp are the states, manipulated
inputs and output variables, respectively. We assume the state
feedback case and that the model is known without an error.

Fig. 1 shows a multi-layer hierarchical control structure con-
sidered in this work. The upper-layer receives criteria for product
specifications (e.g., quality or composition), production goals,
economic parameters (prices or costs), etc. from a decision-
making/ scheduling layer. These requirements are inherently
multi-objective, calling for a dynamic multi-objective optimizer
(DMO). The DMO operates at a slower sampling rate, computes
the optimal trajectory over a predefined future horizon, and
provides the trajectory to a lower-layer MPC (Model Predic-
tive Control). The MPC operates at a faster sampling rate and
implements the trajectory received from the DMO.

2.1. Dynamic multi-objective optimizer (DMO)

The DMO forms a crucial part of the proposed approach to
compute optimal plant trajectories in the presence of multiple
conflicting objectives. Specifically, the control problem of tracking
certain process variables to the desired set-point while simul-
taneously maximizing the profit is addressed. The implemen-
tation of multi-objective control online can be computationally
demanding. Hence, a hierarchical control framework (Fig. 1) is
adopted, wherein the computational demand is managed by op-
erating the DMO at a lower sampling rate than the lower-layer
MPC. The sampling time, ∆t , of the DMO is determined by the fre-
quency of RTO-relevant changes, slow-scale interaction dynam-
ics in the plant, and computational requirements in solving the
multi-objective optimization online. The dynamic multi-objective
optimization is formulated as

min
U
k

Φ =

⎡
⎢⎢⎢⎢⎣

φ1

(
Xk,Uk

)

φ2

(
Xk,Uk

)
...

φℓ

(
Xk,Uk

)

⎤
⎥⎥⎥⎥⎦

(2)

where xj+1 = xj +

∫ ∆t

0

f (x, u)dt (2a)

with xk = x(k.∆t), j =
[
k, k + No

]
(2b)

yj = g(xj) (2c)

subject to y
min

≤ yj ≤ y
max (2d)

u
min

≤ uj ≤ u
max (2e)
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Fig. 1. Schematic of the dynamic hierarchical control structure.

In the above expressions, we assume φi to be arranged in order of
their priorities, with φ1 as the highest priority objective, without
loss of generality. Each objective φi(·, ·) is a scalar-valued function
of states and inputs within the DMO horizon of size No. We use
overbars to represent DMO-relevant variables. It is easy to see
that we define

Xk =

⎡
⎢⎢⎢⎣

xk+1

xk+2

...

xk+No

⎤
⎥⎥⎥⎦ and Uk =

⎡
⎢⎢⎢⎣

uk+1

uk+2

...

uk+Mo

⎤
⎥⎥⎥⎦ (3)

as arrays of the state and input vectors of the DMO, respectively.
Here, No and Mo are the prediction and control horizons of the
multi-objective optimizer.

Various methods for handling priority-based multiple objec-
tives in the dynamic optimization framework are discussed in
Section 3. As seen in Fig. 1, the DMO operates infrequently and its
state xk is initialized as the plant state x(k.∆t) at time t = k.∆t , as
seen in Eq. (2b). The DMO receives the plant state at xk and com-
putes the optimal reference trajectories U ref and Y ref , which are
then passed on to the lower-layer MPC. Optimization is carried
out when either a decision is communicated from the scheduling
layer or when disturbances in the process cause the plant trajec-
tory to deviate substantially from Y ref . Since we consider state
feedback hierarchical control with no model-plant mismatch, the
DMO becomes active at the end of its prediction horizon, after
the implementation of the entire trajectory. Including the effect
of disturbances on the existing multi-objective control problem
can be an interesting work for the future.

2.2. Lower-layer NMPC

The upper-layer DMO communicates the computed optimal
trajectories to the lower-layer NMPC. The NMPC operates at a
faster interval than the DMO. The aim of NMPC is to track the
communicated set-point trajectories, while meeting the system

constraints. The objective function is given by:

min
Uk

ΦMPC
k = min

Uk

{Y ref

k − Yk


2

Γ y
+

U ref

k − Uk


2

Γ u
+ ∥∆Uk∥

2
Γ ∆u

}

(4)

subject to

xj+1 = xj +

∫ ∆t

0

f (x, u)dt (4a)

ymin ≤ yj ≤ ymax (4b)

umin ≤ uj ≤ umax (4c)

In the above equations, j = [k, k + P − 1], whereas

Yk =

⎡
⎢⎢⎣

yk+1

yk+2

...

yk+P

⎤
⎥⎥⎦ and Uk =

⎡
⎢⎢⎣

uk

uk+1

...

uk+M−1

⎤
⎥⎥⎦ (5)

are vectors of P-step output predictions and M-step manipulated

inputs. The lower-layer MPC operates at sampling time of ∆t and

Y ref and U ref are the reference trajectories communicated by the

DMO. Any suitable approach, such as nonlinear MPC, sequentially

linearized MPC, or linear MPC, may be used at this layer.

3. Dynamic multi-objective optimization algorithms

We now consider various algorithms to handle multi-objective

dynamic optimization where the objective functions φi(·, ·)

are organized in order of their priority. Specifically, the multi-

objective control problem of the current work is dealt by assign-

ing higher priority to the tracking objective, φtrack(·, ·), compared

to the economic objective φeco(·, ·), given as

φtrack =

No∑

i=1

xt
k+i

− θspec


2

(6)

φeco =

No∑

i=1

ϕeco,i

(
xk+i, uk+i, θeco

)
(7)

In the above, xt ⊂ x represent variables that must be tracked

(typically quality or product specifications) to the desired speci-

fications θspec ⊂ Θ . The parameters θeco ⊂ Θ stand for a set of

dynamic cost parameters. The parameters Θ may be provided to

the DMO by the decision layer.

We first discuss the standard weight-based approach

(Section 3.1), followed by the lexicographical approach in

Section 3.2. Thereafter, we modify the endpoint-based lexico-

graphic approach proposed by Anilkumar et al. [15] to the DMO

in Section 3.3. Finally, to overcome the limitations of these ap-

proaches, we propose a Pareto-based lexicographical approach in

Section 3.4.

3.1. Single objective weight-based method

The traditional weight-based approach augments the set of

objectives with relative weight, and the multi-objective con-

trol problem is formulated as a single objective scheme. The

mathematical representation of the same is given by:

Φ∗
wt = min

U
k

Φwt = min
U
k

(w1φtrack + w2φeco)

subject to constraints (2a)–(2e)

(8)

where, φtrack and φeco, are defined in Eqs. (6) and (7), and w1, w2

denote weighting parameters. Though the weight-based formu-

lation is simpler to handle, the weighting parameters of the

objective functions require meticulous tuning to arrive at the

desired results [15,24]. This becomes challenging as processes

engage objectives from different domains, and improper tuning

of weights results in sub-optimal performance. Since the weights

balance the trade-off between multiple objectives, the weight-

based method is unable to handle priority-based multi-objective

control [18].
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3.2. Lexicographic method (conventional)

We briefly describe the standard lexicographic method in this
section. An interested reader is referred to [15,17,25] for more
details. This is a multi-layered optimization approach that be-
gins with the optimization of the highest priority objective. The
optimal value of the higher priority objective(s) is subsequently
posed as constraints for the optimization of the lesser priority
objectives. This procedure is continued until the optimization
of the least priority objective, and the solution obtained thus
becomes the optimal solution of the multi-objective problem.

Thus, the tracking objective (Eq. (6)) is first solved to minimize
the tracking error over the entire horizon, No:

φ∗
track = min

U
k

φtrack

(
Xk,Uk

)

subject to constraints (2a)–(2e)

(9)

To exploit the available dynamic degrees of freedom, the solution
φtrack so obtained is posed as a constraint, and the economic

objective function is solved

φ∗
eco = min

U
k

φeco

(
Xk,Uk

)
(10)

subject to φtrack ≤ φ∗
track

and constraints (2a)–(2e)
(10a)

3.3. Lexicographic method (terminal)

Despite the conflicting nature of the objectives, the stringent
formulation of the conventional lexicographic method does not
allow any compromise on the tracking objective to improve the
economic cost function. Contrary to this methodology, Anilkumar
et al. [15] proposed modifying the tracking objective Eq. (6) to
optimize only the terminal point:

φ∗
No,track

= min
U
k

φNo,track

(
Xk,Uk

)
= min

U
k

xt
k+No

− θspec


2

subject to constraints (2a)–(2e)

(11)

Anilkumar et al. [15] used this approach for the MPC layer,
where multiple set-point tracking objectives are solved based
on predefined priorities. This approach can be adapted for the
DMO with a lower-priority economic objective. The conventional
tracking formulation explained in the previous section with the

modification in the lexicographic constraint is given by:

φ∗
eco = min

U
k

φeco

(
Xk,Uk

)
(12)

subject to φNo,track ≤ φ∗
No,track

and constraints (2a)–(2e)
(12a)

The principle behind this approach is to track the necessary
variable to the set-point at the steady-state. A compromise in the
transient tracking performance achieves improved economic cost
due to conflicting interaction between the objectives.

3.4. Proposed Pareto-optimal lexicographic method

The algorithms discussed previously present the two extremes
of the trade-off that could be achieved in the tracking objective
to enhance the economic targets. We, therefore, propose a new
approach that is aimed at finding an optimal trade-off in Pareto
sense utilizing the lexicographic method as the base algorithm.
Specifically, we propose a modification in the tracking objective
that allows the computation of multiple Pareto solutions, each
representing a different compromise between the objectives. The

best solution is chosen among the Pareto set. The set-point track-
ing objective to compute multiple trade-off solutions is modified
as:

φn,track =

No∑

i=n

xt
k+i

− θspec


2

, 1 ≤ n ≤ No (13)

With this modification, φn,track is equal to φtrack of the conven-
tional method for n = 1 and equal to φNo,track of the terminal-
lexicographic method (Section 3.3) for n = No. The economic
objective formulation remains the same as in Eq. (7). The distinct
values of n generate different optimal solutions, which lead to
different lexicographic constraints for the economic objective,
generating multiple Pareto or non-inferior solutions.

We now describe the systematic implementation of the pro-
posed algorithm to calculate the optimal plant trajectory. For a
particular value of n, the optimization for the tracking objective
is given by:

φ∗
n,track = min

U
k

φn,track

subject to constraints (2a)–(2e)

(14)

The optimal value φ∗
n,track

is retained as a lexicographic constraint
while optimizing the economic objective:

φ∗
n,eco = min

U
k

φeco

(
Xk,Uk

)

subject to φn,track ≤ φ∗
n,track

and constraints (2a)–(2e)

(15)

As n is varied for each lexicographic optimization of the economic
objective, the algorithm computes a set of No Pareto-optimal
solutions, each denoting distinct plant trajectories. Finally, we
propose an algorithm for choosing the optimal trajectory from
the set of Pareto trajectories, which leads to the best overall
performance for the given objectives.

The implementation of the algorithm to choose the optimal
trajectory is based on the standard vectorial representation of
multi-objective problem formulation [25]. Recall that the above

procedure yields a sequence of optimal input moves, U
∗

n,track

(Eq. (14)) and U
∗

n,eco (Eq. (15)), for each value of n ∈ [1,No].
The values of the tracking and economic objective functions ob-
tained from the lexicographic optimization are normalized and
expressed in a vector form as:

Φn =

[
φ̃n,track

φ̃∗
n,eco

]T

, 1 ≤ n ≤ No (16)

where,

φ̃n,track =
min

(
φn,track

)
− φn,track

min
(
φn,track

)
− max

(
φn,track

) (17a)

φn,track = φtrack

(
Xk,U

∗

n,track

)
(17b)

and max and min values represent the highest and lowest values
of φn,track among the No values. Similarly,

φ̃∗
n,eco =

max
(
φ∗
n,eco

)
− φ∗

n,eco

max
(
φ∗
n,eco

)
− min

(
φ∗
n,eco

) (18)

This ensures that all the φ̃ values lie between 0 and 1. Further-
more, since min(φn,track) and max(φ∗

n,eco
) are the best tracking and

economic objective values, respectively, the origin becomes the
ideal or the desired solution (also called the utopian point). Thus
Φid = (0, 0). Due to the conflicting nature of the objectives,
the ideal point is not realizable, and hence the optimal solu-
tion is chosen as the closest Pareto point as determined by the
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Fig. 2. Flowchart describing the procedure of the proposed algorithm in

calculating the optimal trajectory for lower-layer NMPC.

squared-norm minimization:

n
∗

= argmin
n

∥Φn − Φid∥
2 = argmin

n

∥Φn∥
2 (19)

In the above equation, the distances between the origin or the
utopian point (Φid) and each of the Pareto points (Φn) are cal-
culated. The Pareto point with minimum squared-norm value
denotes the point closest to the utopian point. Hence, the solution
corresponding to lexicographic optimization performed with n =

n
∗ is the preferred optimal solution, U ref = U

∗

n∗,eco.
The strict constraints of the conventional lexicographic

method lead to the poor economic performance. We addressed
this issue through the proposed algorithm, which generates dif-
ferent trade-off solutions at each optimization instant by varying
the prediction window (or n) of the priority objective. Eq. (19)
chooses the best solution among the computed Pareto solutions.
The procedure is summarized in Fig. 2. The optimal plant tra-
jectory, Y ref , is then calculated using the dynamic plant model

(Eqs. (2a)–(2c)) and the optimal inputs U ref = U
∗

n∗,eco. The DMO

then communicates the trajectories U ref and Y ref to the MPC layer.
For a single layer control structure, the proposed algorithm may
also be implemented at a multi-objective MPC layer.

4. Simulation studies

The proposed hierarchical control framework is demonstrated
in two case studies: an isothermal polymerization reactor and
a multi-unit reactor–separator system. In both examples, main-
taining a product quality variable at its set-point is the priority
objective while also aiming to maximize profit. The performance
of the algorithms is analyzed and compared using the root mean
squared error (RMSE) from the specification and the average
profit.

RMSE =

√∑Tf

j=1

(
xtj − θspec

)2

Tk

Average profit =

∑Tf

j=1 ϕeco

(
xj, uj, θeco

)

Tf

(20)

These are the performance indicators of quality and economic
objectives respectively. Tf denotes the total number of sample
time steps considered for the simulation study. The simulations

Table 1

Performance comparison across different methods.

Algorithm RMSE Avg. profit

w1 = 0; w2 = 1 2933.9 619.62

w1 = 1; w2 = 0 1101.2 370.00

w1 = 1; w2 = 1 1105.4 563.93

w1 = 100; w2 = 1 1101.4 434.20

Lexicographical (conventional) 1105.1 449.06

Lexicographical (terminal) 1171.2 570.64

Proposed Pareto-optimal 1111.8 600.17

E-MPC (single layer) 1501.0 318.99

are performed on an intel core-i7 workstation with 16 GB RAM.
The algorithm is coded on MATLAB 2018a, and the inbuilt opti-

mization solver, fmincon, is used for the nonlinear optimization.

4.1. Case study 1: Free radical polymerization reactor

The proposed DMO strategy is investigated on an isother-
mal free radical polymerization reactor [27]. The dynamic model

equations [26,27] are given by :

dCM

dt
= −(kp + kfm)CMP0 +

F

V
(CM,in − CM )

dCI

dt
= −kICI +

FI

V
CI,in −

F

V
CI

dD0

dt
= (0.5kτ c + kτd)P

2
0 + kfmCMP0 −

F

V
D0

dD1

dt
= Mm(kp + kfm)CMP0 −

F

V
D1

(21)

where, CM and CI are the concentration of monomer and the
initiator, D0 and D1 are the molar and mass concentrations of the

dead polymer chains, and

Mw =
D1

D0

σ = 1 −
CM

CM,in

are the number average molecular weight of the polymer chain

(Mw) and net monomer conversion, respectively. The manip-
ulated variables are FI and F , which denote the initiator and

monomer flowrates, respectively. The model parameter values
are given in Maner et al. [27].

The priority objective is to track Mw to its set-point

ϕtrack =
Mw − Mref

w

2
, (22)

whereas the lesser priority economic objective is defined by the
profit function [26,28]

ϕeco = FD1 + 3500σ 0.6 + 9 × 10−4Mw
0.65 − aFI

0.5 (23)

We consider the case where Mref
w = 2.5 × 104 and the cost

parameter a varies dynamically as:

a =

⎧
⎨
⎩

3500 if 0.25 h ≤ t < 0.8 h

3000 if 0.8 h ≤ t < 1.5 h

2500 if 1.5 h ≤ t < 2 h

(24)

The multi-objective optimization problem involving the set-
point tracking and the economic objective is dealt with in the

upper-layer DMO. The DMO manages the computational demand
by operating at a slower sampling time, ∆t = 0.03 h (108 s). The

sampling time of the lower-layer MPC is chosen as ∆t = 0.005 h

(18 s). The DMO predicts the control move for 0.3 h into the future

(i.e., DMO prediction horizon, No = 10). The prediction and the
control horizon for the NMPC are 30 and 5, respectively. The DMO

is taken online at 0.25 h.
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Fig. 3. Tracking performance of Mw implemented using (a) different weights for the weight-based method and (b) various lexicographical approaches. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The performance of different DMO algorithms is quantified in
Table 1. Initial investigations are carried out with the conven-
tional weight-based method with a different set of weights. The
tracking performance is the best for w1 = 1, w2 = 0, as indicated
by the lowest RMSE value, which is expected as only the tracking
objective is considered. This is confirmed by the trajectory of the
tracking variable (solid-blue) in Fig. 3a. However, the average
profit is the least across all methods. Conversely, for w1 = 0,
w2 = 1, which presents the other end of the spectrum where
only the economic objective is solved, the average profit is largest,
albeit with the worst performance of the tracking function (solid-
magenta line in Fig. 3a). The difficulty in choosing an optimal
value of the relative weight is evident from the analysis of the
performance indices reported for intermediate sets of weights. In
comparison with the RMSE values obtained for (w1, w2) = (100, 1)
and (1, 1), there is a slight improvement of 0.4% in the tracking
performance. However, a 23% reduction in the profit is observed.
Similarly, comparing the cases with (100, 1) and (1, 0), there is a
15% reduction in the profit even with the slightest change in the
relative weight of the economic objective (from 0.01 to 0). This
shows a highly nonlinear relationship between the weights and
the objective function values, making it challenging to tune for
the optimal weights.

Fig. 3b compares various lexicographic methods, which do not
require any tuning parameters to compute the optimal trajec-
tory. A comparison of the conventional lexicographic algorithm
with the results obtained for the weight-based approach (100, 1)
shows a slightly lesser performance for the tracking objective
with a minor improvement in profit (3.5%). Similarly, the ter-
minal lexicographic methodology reports a 31% increase in the
average profit, with some loss of set-point tracking performance
(i.e., 6% increase in the RMSE). These results indicate that the
two objectives show conflicting behavior. Hence, the proposed
Pareto-optimal lexicographic approach targets some level of com-
promise on the tracking objective in the Pareto sense to improve
the average profit. From Table 1, compared to the conventional
lexicographic method, there is a slight reduction in the tracking
performance (0.5% increase in RMSE), which is reasonably good

given that the conventional method implements strict optimiza-
tion condition for set-point tracking. As seen in Fig. 3b, there is a
negligible difference in the tracking performance of the proposed
method (solid-blue line) compared to that of the conventional
algorithm (dashed-red line). However, the average profit shows
a 34% increase, which is an excellent trade-off obtained through
a slight increase in the RMSE. A similar comparison with the
weight-based approach (100, 1) shows a 38% increase in profit
with a minimal trade-off of the tracking objective (1% increase
in RMSE). The multi-layer approach with different algorithms is
also compared with the performance of economic MPC (E-MPC).
Since an E-MPC handles a single economic objective, the tracking
performance is affected as it conflicts with the performance of
the economic objective. This results in a significantly higher RMSE
value between the process set-point and the tracking variable.

Table 2 shows the best n∗ value and the corresponding values
of Φn∗ . It can be observed that φ̃n,track = 0 for n = 1 at
all times. This is expected because φtrack is the highest priority
objective. The first column lists the various time instances and
the changes in the economic cost parameter (a, Eq. (24)) at t =
0.25, 0.8, and 1.5 h, triggers the DMO. The proposed algorithm
implemented in the DMO allows trade-off in φtrack to achieve
the best economic performance. At t = 0.8 h, we can observe
an interesting behavior where the best economic performance
(̃φn,eco = 0) is obtained at n

∗
= 5 with no trade-off from the

tracking objective. Also, it can be seen at other DMO instances
that a significant improvement in the profit is achieved with no
or very less trade-off in φtrack. Since the computation of the Pareto
front is computationally demanding, the proposed Pareto-based
lexicographic approach requires a higher computation time than
the other approaches. In the hierarchical control approach, the
reference trajectories U ref and Y ref are communicated to the MPC
after a time delay of δ seconds, where δ is an integral multiple
of MPC-sampling-time ∆t [5]. As the computational time of the
proposed method is 27 s, a delay of 2∆t is assigned in this case.
The remaining algorithms are implemented with a delay of one
sampling time of the lower-layer MPC (i.e., δ = ∆t = 18 s) as
their computational delays are less than 18 s. This delay δ could
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Table 2

Normalized optimal function and corresponding squared-norm values for different n at every DMO online instance. The best n
∗ for

each time DMO online instance is shown in bold.

n → n
∗ 1 2 3 4 5 6 7 8 9 10

Time,

h ↓

0.25 9 φ̃n,track 0 0 0.024 0.030 0.059 0.103 0.106 0.066 0.357 1

φ̃∗
n,eco

1 1 0.652 0.602 0.647 0.658 0.652 0.564 0 0.627

∥Φn∥
2 1 1 0.426 0.363 0.422 0.444 0.436 0.322 0.127 1.393

0.55 4 φ̃n,track 0 0.042 0.160 0.094 0.153 0.357 0.104 0.134 1 0.385

φ̃∗
n,eco

1 0.206 0.174 0.175 0.158 0.225 0.508 0.408 0.334 0

∥Φn∥
2 1 0.044 0.056 0.039 0.048 0.178 0.269 0.184 1.112 0.148

0.80 5 φ̃n,track 0 0 0 0 0 0 0.003 0.029 0.056 1

φ̃∗
n,eco

0.696 0.697 0.695 0.696 0 0.713 0.775 1 0.824 0.713

∥Φn∥
2 0.484 0.486 0.483 0.484 0 0.508 0.601 1.001 0.682 1.508

1.1 4 φ̃n,track 0 0.003 0.012 0.009 0.005 0.004 0.010 0.007 1 0.023

φ̃∗
n,eco

0.120 0.120 0.799 0 0.320 0.807 0.243 0.604 1 0.260

∥Φn∥
2 0.014 0.014 0.639 0 0.102 0.651 0.059 0.365 2 0.068

1.4 5 φ̃n,track 0 0.001 0.002 0.003 0.006 0.004 0.003 0.021 0.008 1

φ̃∗
n,eco

1 0.258 0.340 0.250 0 0.963 0.030 0.080 0.370 0.106

∥Φn∥
2 1 0.067 0.116 0.063 0 0.927 0.001 0.006 0.137 1.011

1.5 2 φ̃n,track 0 0 0.001 0.003 0 0 0.001 0.001 0.006 1

φ̃∗
n,eco

1 0 0.124 0.051 0.002 0.207 0.038 0.652 0.097 0.108

∥Φn∥
2 1 0 0.015 0.003 0 0.043 0.001 0.425 0.009 1.012

1.8 9 φ̃n,track 0 0.001 0.003 0.325 0.003 1 0.005 0.005 0.005 0.857

φ̃∗
n,eco

1 0.145 0.154 0.182 0.065 0.447 0.084 0.111 0 0.116

∥Φn∥
2 1 0.021 0.024 0.139 0.004 1.2 0.007 0.012 0 0.748

Table 3

Steady state parameter values of reactor–separator system.

Parameter Value Parameter Value

F1in 35 (kmol/h) Mr1 10 (kmol)

F2in 35 (kmol/h) Mr2 25 (kmol)

Qc1 75 (kmol/h) Mc1 10 (kmol)

Qc2 75 (kmol/h) Mc2 50 (kmol)

Fb 50 (kmol/h) xA0 1

R 50 (kmol/h) xB0 0

T0 360 (K) Tw 300 (K)

k10 8e10 (1/h) E1/R 9300 (1/K)

k20 2e9 (1/h) E2/R 9000 (1/K)

αA 18 ∆H1 −4e4 (kJ/kmol)

αB 9 ∆H2 −4e4 (kJ/kmol)

αC 1 cp 700 (kJ/kmol K)

P 1 (atm) cpw 76 (kJ/kmol K)

Table 4

Variation in set-point and cost parameters with time.

Time frame x
ref

B,1 βB βW

0 h ≤ t < 0.1 h 0.4347 7.5 1

0.1 h ≤ t < 0.8 h 0.6 7.5 1

0.8 h ≤ t < 1.5 h 0.6 4 0.2

1.5 h ≤ t < 2.5 h 0.7 4 0.2

2.5 h ≤ t < 3 h 0.7 5 0.5

increase depending on the complexity of the multi-objective op-
timization, which will be evident in the subsequent case study.

4.2. Case study 2: Reactor–separator system

The performance of the proposed DMO is analyzed in a multi-
unit system consisting of two CSTRs followed by a separation

column, as shown in Fig. 4. A series reaction (A
k1
−→ B

k2
−→ C) pro-

ceeds in the two reactors and the desired product B is obtained
from the bottom stream Fb of the 5-stage distillation column.
The system is characterized through 18 states which includes 4
states in each of the reactors and 10 states in the separator (tray

Fig. 4. Schematic of the reactor–separator system, comprising of two reactors

followed by a five-stage distillation.

compositions of A and B). The model equations are given in [29]
and the values of model parameters are tabulated in Table 3.

The tracking objective is to achieve the desired set-point of the
product B in the reboiler outlet and simultaneously maximizing

the overall profit:

ϕtrack =

xB,1 − x
ref

B,1


2

(25a)

ϕeco = βBxB,1Fb − βW (Qc1 + Qc2) (25b)

The manipulated variables are the coolant flowrates (Qc1,Qc2)
and Fb. For the lower-layer NMPC, the controlled variables are
T1, T2, xB,1. The variations in the cost parameters and the set-
point are tabulated in Table 4. As explained earlier,
re-optimization is carried out when these changes are commu-
nicated to the DMO.

The sampling time (∆t) chosen for the optimizer is 0.05 h
(180 s) whereas the lower-layer NMPC operates with a time (∆t)
of 0.005 h (18 s). The prediction and the control horizon for the
DMO and NMPC are (10, 3) and (40, 2) respectively. The DMO is
taken online at 0.1 h and rest of the time instances where the cost
parameters varies are represented as vertical gray lines in Fig. 5.
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Fig. 5. Tracking performance of xB,1 implemented using (a) different weights using the weight-based approach (b) lexicographic-based algorithms.

Table 5

Performance comparison across different methods.

Algorithm RMSE Avg. profit

w1 = 0; w2 = 1 0.2307 79.23

w1 = 1; w2 = 0 0.0428 −12.18

w1 = 100; w2 = 1 0.2307 79.23

w1 = 1e4; w2 = 1 0.0624 37.36

w1 = 1e6; w2 = 1 0.0412 21.91

Lexicographic (conventional) 0.0423 14.86

Lexicographic (terminal) 0.0605 30.19

Proposed Pareto-optimal 0.0451 24.51

E-MPC (single layer) 0.2293 88.94

The performance parameters of both the objectives are listed

in Table 5. Understandably, due to the conflicting set of objectives,

a weight-based approach with (1, 0) produces good set-point

tracking performance (Fig. 5a) with the least average profit. Con-

versely, simulation using the weight pairs (0, 1) shows the highest

profit and poor tracking performance. With the weights of the

tracking objective tuned from 0 to 100, we observed no change

in the tracking performance, implying the nonlinear tuning rela-

tionships. Also, it is required to explore higher tuning parameters,

(w1 = 1e6), for a satisfactory trade-off performance.

Further, the results of different lexicographic methods are an-

alyzed. Fig. 5b shows that the conventional lexicographic method

(solid-red line) shows excellent tracking performance, with a

significant improvement in average profit compared to the case

where only the higher priority tracking objective is targeted

(w1 = 1, w2 = 0). The lexicographic (terminal) tracks the

set-point poorly (dotted-magenta line), though there is a 103%

improvement in the average profit compared to the conventional

approach. Comparing the conventional lexicographic method

with the proposed Pareto-based lexicographic method, we ob-

serve that a little compromise in the tracking objective (6%

increase in RMSE). However, there is a tremendous improve-

ment in profit (65%). Visual inspection of the tracked variable in

Fig. 5b shows minimal variation between the performance of the

proposed method (solid-blue line) and the best possible tracked

trajectory, which is that of the conventional lexicographic method

(dashed-red line). The performance of the multi-layer controller

is also compared with the traditional E-MPC, which targets only
economic performance. As seen in Table 5, we can observe that
the E-MPC delivers the best economic performance with the
highest value of average profit. However, the tracking perfor-
mance is very poor, with very high RMSE value. This demon-
strates the superior performance of the multi-layer framework
for multi-objective control.

As explained previously, for every DMO online instance, the
algorithm computes the trajectories corresponding to n

∗, chosen
based on the least squared-norm values. The simulation time
required for the weight-based optimization was approximately
6 s. In comparison, the three lexicographic methods required up
to 28 s (conventional), 17 s (terminal) and 89 s (proposed). This
includes the time required for computing Y ref and U ref , which
are then communicated to the lower-layer MPC. For the proposed
method, the delay is taken as δ = 5∆t (90 s). Similarly, for
the conventional and terminal lexicographic methods, δ = 2∆t

and δ = ∆t , respectively, whereas the trajectories from weight-
based methods are communicated at the next sampling instance
(i.e., δ = ∆t).

5. Conclusion

A dynamic hierarchical control was demonstrated in this work
to handle multiple conflicting objectives comprising of set-point
tracking and maximization of profit. Optimal plant trajectories
were computed by the upper-layer DMO, which had a lower sam-
pling rate. The trajectories were communicated to the lower-layer
NMPC, which were operated at a higher sampling rate. A de-
tailed procedure for implementing the multi-layer control frame-
work was also explained with an exclusive focus on handling the
computational demand of multi-objective optimization.

Different optimization algorithms were analyzed and evalu-
ated in two case studies. The first simulation study was carried on
an isothermal single unit polymerization process, which required
optimal control action to track the average molecular weight
of the polymer to the desired set-point as well as maximize
the overall profit. The disadvantages of implementing the tradi-
tional weight-based approach were clearly demonstrated. It was
shown that the nonlinear tuning behavior of the relative weights
acts as a detrimental factor in computing optimal control action.
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Lexicographic-based methods were introduced, which did not
require explicit tuning parameters to compute optimal solutions
for multi-objective optimization. A new algorithm was also pro-
posed, and the performance benefits obtained for the economic
objective with a slight trade-off of the tracking objective was
explained.

The second study was conducted on a multi-unit system com-
prising of two CSTRs, followed by a separator connected in series.
Evaluation of different optimization methodologies was carried
out similar to the first case study. The advantages of the pro-
posed method were apparent, particularly in comparison with the
terminal point lexicographic approach due to the poor tracking
performance of the latter. Finally, the notion behind fixing the
simulation delay time is explained for each algorithm.
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