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Abstract

We consider two specific approaches to evaluate the black hole entropy which are known
to produce correct results in the case of Einstein’s theory and generalize them to Lanczos-
Lovelock models. In the first approach (which could be called extrinsic) we use a procedure
motivated by earlier work by Pretorius, Vollick and Israel, and by Oppenheim, and evaluate
the entropy of a configuration of densely packed gravitating shells on the verge of forming a
black hole in Lanczos-Lovelock theories of gravity. We find that this matter entropy is not
equal to (it is less than) Wald entropy, except in the case of Einstein theory, where they are
equal. The matter entropy is proportional to the Wald entropy if we consider a specific m-th
order Lanczos-Lovelock model, with the proportionality constant depending on the spacetime
dimensions D and the order m of the Lanczos-Lovelock theory as (D−2m)/(D−2). Since the
proportionality constant depends on m, the proportionality between matter entropy and Wald
entropy breaks down when we consider a sum of Lanczos-Lovelock actions involving different
m.

In the second approach (which could be called intrinsic) we generalize a procedure, previ-
ously introduced by Padmanabhan in the context of GR, to study off-shell entropy of a class
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of metrics with horizon using a path integral method. We consider the Euclidean action of
Lanczos-Lovelock models for a class of metrics off-shell and interpret it as a partition function.
We show that in the case of spherically symmetric metrics, one can interpret the Euclidean
action as the free energy and read off both the entropy and energy of a black hole spacetime.
Surprisingly enough, this leads to exactly the Wald entropy and the energy of the spacetime in
Lanczos-Lovelock models obtained by other methods. We comment on possible implications
of the result.

1 Introduction

The first indication of the connection between thermodynamics and gravity came with the work of
Bekenstein [1] who proposed the idea that a black hole should have an entropy that is proportional
to the area of its horizon. This interpretation became well established with the discovery of the
temperature of the black hole [2]. Work in the last several decades attempted to understand the
physical origin of the thermodynamic variables attributed to the horizons concentrating mostly on
black hole horizons. In spite of extensive work and different possible suggestions for the source of,
for example, entropy it is probably fair to say that we still do not quite understand the physics
behind this phenomenon.

It is probably useful to classify the different approaches to explain black hole entropy by sep-
arating them into two broad categories (i) extrinsic origin - from the entropy of matter forming
the black hole, entropy of matter fields propagating in the background metric, etc and (ii) intrinsic
origin - microscopic degrees of freedom corresponding to underlying statistical theory of quantum
gravity which are different depending on the approach. Within the context of Einstein’s gravity,
it is very difficult to discriminate between these two approaches. This is because, in Einstein’s
theory, entropy of a horizon is proportional to its area which has a simple geometrical meaning. It
is therefore very easy to come up with completely different approaches (intrinsic as well as several
extrinsic approaches) all of which will lead to S ∝ A.

On the other hand, the proportionality between horizon entropy and area does not extend
to more general class of gravitational theories in which the entropy is given by a prescription
due to Wald [3] which essentially identifies the horizon entropy with a suitably defined Noether
charge. Many of the approaches which correctly reproduces S ∝ A in the context of GR cannot
be generalized in a natural fashion to more general class of theories like, for example, Lanczos-
Lovelock models. (One such example, which does not generalize, is the entanglement entropy; see,
for example, Ref. [4]. Also see [5] which discusses the so-called universality of entropy in pure
Lovelock gravity.) Therefore, the possibility of generalization beyond GR acts as an acid test in
discriminating between the different approaches for obtaining the horizon entropy both intrinsic
and extrinsic.

In the limited context of understanding black hole entropy, one may think of these various possi-
bilities as just theoretical curiosity and may take the point of view that any one, valid, derivation is
good enough. But the entire topic has assumed a far greater significance in recent years with several
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results strongly indicating the possibility that the field equations of gravity have the same status as
the equations of fluid mechanics or elasticity. (For a recent review, see Ref. [6].) This approach has
a long history originating from the work of Sakharov [7] and interpreted in many ways by different
authors (for a incomplete sample of references, see Ref. [8]). One specific implementation of this
idea considers the field equations of the theory to be ‘emergent’ in a well-defined sense, rather than
use that term in a more speculative vein — like e.g., considering the space and time themselves
to be emergent etc. The evidence for such a specific interpretation comes from different facts like
the possibility of interpreting the field equation in a wide class of theories as thermodynamic re-
lations [9, 11], the nature of action functional in gravitational theories and their thermodynamic
interpretation [12], the possibility of obtaining the field equations from a thermodynamic extremum
principle [13], application of equipartition ideas to obtain the density of microscopic degrees of free-
dom [14], the equivalence of Einstein’s field equations to the Navier-Stokes equations near a null
surface [15, 16] etc. In such an approach, one works with local Rindler horizons as analogues of
on-shell horizons like black hole horizons and attempts to introduce the concept of entropy density
in spacetime. The precise nature of horizon entropy (whether it is intrinsic to spacetime or related
to matter degrees of freedom) assumes far greater significance in this context.

In this paper, we have studied two approaches to black hole entropy, one intrinsic and the other
extrinsic, in the general context of Lanczos-Lovelock models of gravity. Both these approaches
have been previously shown to reproduce the correct horizon entropy in Einstein’s theory. When
generalized to Lanczos-Lovelock models the extrinsic approach fails to give the correct Wald entropy
of the theory (though, for a pure m-th order Lanczos-Lovelock model it is a near miss with the
entropy being proportional to Wald entropy) while the intrinsic approach gives exactly the correct
result for not only the entropy but even the energy associated with the black hole in Lanczos-
Lovelock models!

We shall now briefly describe the two routes to the entropy which we consider in this paper. The
most natural extrinsic origin of black hole entropy would be to consider the entropy of the matter
which formed the black hole. Indeed, such an approach was taken in [17, 18] where it was shown
that when a system consisting of spherically symmetric gravitating shell, or a series of such shells
forming a star, is on the verge of forming a black hole, then its entropy is proportional to the area of
the outermost shell which is same as the area of the horizon it would form at the end of its collapse.
Further the proportionality constant was calculated to be 1/4 making the entropy of the star to be
exactly equal to the Bekenstein-Hawking entropy of the black hole. (More recent work [19] suggests
that there could be a purely kinematic reason for some of these results.) In the first part of this
paper, we extend this work to Lanczos-Lovelock models of gravity and calculate the entropy of a
spherically symmetric gravitating star on the verge of forming a black hole, in Lanczos-Lovelock
gravity. (We also compute the same for F (R) theories; the result is given in Appendix A.) We
find that the entropy of the system is, in general, not equal to the Wald entropy. However, at each
order of the Lanczos-Lovelock model, labeled by an index m, with m = 1 being Einstein’s theory,
m = 2 being Gauss-Bonnet etc., the entropy which we obtain is proportional to Wald entropy of
the black hole horizon in the corresponding theory of gravity with the proportionality constant
depending on the dimension of spacetime as well as m. So when we consider a Lanczos-Lovelock
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theory with different orders like, for example, Einstein plus Gauss-Bonnet kind of theories, the
overall proportionality breaks down. That is, for a Lanczos-Lovelock theory described by a sum
of, say, first m Lanczos-Lovelock terms, the matter entropy of the shell configuration will not even
be proportional to Wald entropy. (Unlike Lanczos-Lovelock models, the F (R) models lead to an
equality between the entropy computed by this method and Wald entropy.)

In part 2 of the paper, we turn our attention to an “intrinsic” approach to horizon entropy,
which attempts to interpret the black hole entropy as associated with statistical nature of micro-
scopic degrees of freedom of some underlying statistical theory of gravity. One such approach was
considered in [9], where a partition function was defined through a Euclideanization of the path
integral for Einstein’s gravity. Here, the Euclidean action was interpreted to be the effective action
for gravity emerging from some unknown quantum theory. It was shown that the form of the par-
tition function allows one to determine the entropy and energy associated with the horizon which
is same as determined through other approaches. However, the crucial difference between this ap-
proach and others is that here one does not use the field equations of gravity in the derivation thus
allowing us to define an entropy and energy for the horizon even off-shell. In contrast, all the other
approaches to entropy rely mainly on the field equations providing us with only a on-shell definition
of entropy. In the second part of this paper, in section 3, we consider the generalization of this
“intrinsic” approach to black hole entropy to Lanczos-Lovelock models. Surprisingly enough, we
find that the result generalizes in a nice manner to all the Lanczos-Lovelock models. We find that
the entropy and energy associated with the horizon off-shell are exactly same as the Wald entropy
and energy of a horizon as obtained through other approaches on-shell.

We shall work in D spacetime dimensions. Latin indices a, b, . . . = 0 to (D − 1), Greek indices
µ, ν, . . . = 0, 2, 3, · · · (D − 1), and capitalized Latin indices A,B, . . . = 2 to (D − 1).

2 Entropy of gravitating system

To calculate the standard thermodynamic entropy of a self gravitating system, we follow the set
up suggested by Oppenheim [18] motivated by earlier work of Israel et al [17]. (A different setup
leading to the same result in Einstein gravity is discussed in [10].) We consider a system of n densely
packed spherically symmetric shells in D dimensions, assumed to be in thermal equilibrium, and
supporting itself against its own gravity. We shall be interested in the entropy of this system when
the outermost shell is close to the event horizon of the system.

2.1 The set-up

We first describe a general set-up to study the system described above for any spherically symmetric
spacetime. This is important for two reasons. First, as we shall see, it will highlight the key
mathematical feature responsible for the entropy density S/A of the system being 1/4 for Einstein’s
theory in arbitrary dimensions. In [18], this result was obtained for D = 4 by explicitly using the
Schwarzschild form of metric functions and the expression for Hawking temperature. However, we
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shall not require any explicit expression for metric functions or Hawking temperature to obtain
the area scaling. Second, the set-up we describe can be used, without any modification, to obtain
entropy density for higher curvature gravity actions.

Let us denote the variables or parameters describing the ith shell with, say, Xi. Since the system
considered is spherically symmetric, we can write the metric outside the ith shell as

ds2 = −cifi(r)dt2 + bi(r)
−1dr2 + r2dΩ2 (1)

where dΩ2 is the metric of a unit (D− 2) sphere. At the location of the shells (given by ri =const),
the metric above must satisfy the first Israel junction condition which states that the induced metric
on the hypersurface should be continuous. This leads to the following conditions on the constants
ci:

cifi(ri+1) = ci+1fi+1(ri+1) (2)

and we shall choose cn = 1 (which fixes the interpretation of t as proper time for asymptotic
observers). Then Eq. (2) can be solved to give

ck =
fk+1(rk+1)

fk(rk+1)
.....

fn−1(rn−1)

fn−2(rn−1)

fn(rn)

fn−1(rn)
(3)

Note that when fn(rn) = 0 which is true when the outermost shell is exactly on the horizon we
have cn = 0 for all (i 6= n) which implies that

g00 = 0 ∀ i (4)

Here the condition that the g00’s vanish even for the inner-shells indicates that our assumption
regarding the staticity of the inner shells is not valid when fn(rn) is exactly zero since we know
that a particle cannot be kept at a fixed position inside a blackhole without letting it fall into the
singularity. However for the purpose of our discussion, we only need to consider the limit in which
the outer shell is very near to the horizon, that is, fn(rn) → 0, then the statement of ci’s (other than
cn) and g00 being equal to zero is just the leading order term in this approximation. Henceforth,
we shall assume that we are working in this limit and will not state it explicitly unless otherwise
needed.

We shall next use the second junction condition which relates jumps in geometric quantities
across a shell, to the matter stress tensor of the shell, t(i)µν . Denote the normal to a r =const.

surface (dropping the subscript i for convenience) by na =
(

1/
√
b
)

∂ar, so that the induced metric

becomes hµν = (gab − nanb) δ
a
µδ

b
ν in coordinates (t, θA). Within the hypersurface, we can further

define uµ =
√
cf ∂µt, and the induced metric on the level surfaces of t, qµν = hµν + uµuν. It then

follows from spherical symmetry that tµν for each shell has the general form

t(i)µν = ρiu(i)µu(i)ν + Piq(i)µν (5)
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with Ei = 4πr2i ρi is the energy of the shell. The physical interpretation of Ei and Pi is that of
energy and pressure as measured by a local observer at rest on the shell. Further, the condition for
thermal equilibrium in curved spacetime implies [20]

Ti

√

−gi00(ri) = T∞

µi

√

−gi00(ri) = µn

√

−gn00(rn) (6)

where T∞ is the temperature of the system as measured by a static observer at infinity, and µi’s
denote the chemical potential. We can thus express all the Ti’s and µi’s in terms of just two unknown
parameters T∞ and µn respectively. Further, in thermodynamic equilibrium, each shell satisfies the
Gibb’s Duhem relation

Ei = TiSi − PiAi + µiNi (7)

where Ni is the number of particles composing the ith shell and Ai is the hypersurface area of the
ith shell. Using Eqs. (6) in the above expression, we can write the total entropy Smatter of the
system in the form

Smatter =
∑

i

Si

=
∑

i

Ei + PiAi

T∞

√

−gi00(ri)−
µnN

T∞

√

−gn00(rn)

=
∑

i

Ei + PiAi

T∞

√

cifi(ri)−
µnN

T∞

√

fn(rn)

(8)

Now assuming that µnN is a finite quantity, the last term in the above expression vanishes in the
near horizon limit, since gn00(rn) vanishes (see Eq. (4)). Hence the only non-trivial contribution to
Smatter can come from the first term, which we wish to evaluate in the limit when outermost shell is
close to the horizon of the system, rn → rH (where fn(rH) = 0); we shall refer to this as the near-
horizon limit. We can “read-off” this contribution as follows. First, we note that (Ei + PiAi)/T∞
has no dependence on ci, since t(i)µν does not depend on ci (see below). Further, in the near horizon
limit, ci = 0 ∀i 6= n, cn = 1, from which it is easy to see that the only non-zero contribution to
Smatter will come from the i = n term, and in particular from those terms in (En + PnAn) which
diverge as 1/

√

fn(rn). Therefore, our strategy to calculate the entropy of the system will be to
analyze the form of En and Pn and look for such divergent factors. As we shall now demonstrate,
this strategy provides an extremely quick way to obtain the result in Einstein theory (compared
to the explicit computations in [18]), and also facilitates easy generalization to higher derivative
theories discussed in the next section.

In Einstein theory, the surface stress tensor is given by

8πt
(E)
(i)µν =

〈

Khµν −Kµν

〉

i

(9)
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where 〈. . .〉i = 〈. . .〉i+1 − 〈. . .〉i evaluated at r = ri. The extrinsic curvature of r =const surface, for
the metrics described by Eq. (1)), is given by (after dropping the subscript i for convenience)

Kµν = −
(√

bf ′/2f
)

uµuν +
(√

b/r
)

qµν

K = hµνKµν

=
(√

bf ′/2f
)

+ (D − 2)
(√

b/r
)

(10)

Note that there is no dependence on ci as stated above. Based on our strategy outlined in the
previous section, we must now find terms which, for i = n, diverge as 1/

√

fn(rn) as rn → rH . We
now specialize to the case bi(r) = fi(r) ∀i. 1 Using Eqs. (9), (10) and (8), we can immediately
write, for the divergent parts,

8π[ρn]div = 8π
[

t
(E)

(n)0̂0̂

]

div
= 8π

[

t(n)µνu
µuν

]

div
= 0

8π[Pn]div δ
A
B = 8π

[

t
(E)A
(n)B

]

div
= −K(n)

0̂0̂
δAB (11)

in the limit rn → rH , fn(rH) → 0 (here K
(n)

0̂0̂
= K

(n)
µν uµuν). Note that we have recalled the definition

of ρi’s and Pi’s from Eq. (5). Hence, we see that the main divergence comes from

[Pn]div = −
(

1

8π

)

K
(n)

0̂0̂

=

(

1

16π

)

lim
rn→r+

H

f ′
n(rn)

√

fn(rn)

=
T∞
4

lim
ǫ→0+

1
√

fn(rH + ǫ)
(12)

where we have used the definition of Hawking-Unruh temperature for a system which has collapsed
to a black hole. Using the above result in Eq. (8), we finally get

Smatter −→
rn→rH

Sn

= lim
ǫ→0+

(1/4)T∞/
√

fn(rH + ǫ)

T∞
AH ×

√

fn(rH + ǫ)

=
AH

4
(13)

1Actually, this restriction is not necessary since, in the near-horizon limit, it is automatically satisfied for all the
cases in which the horizon has no curvature singularity.
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Hence, we see that the entropy of the configuration, as the outermost shell approaches the event
horizon of the system, is dominated by the Bekenstein-Hawing entropy. The crucial factor of 1/4
comes from the last line of Eq. (12), which can be recast as

[Pn]div/Tn = 1/4 (14)

Interestingly, this same relation was recently arrived at in the context of an action based derivation
of Navier-Stokes equations and its relation to emergent gravity paradigm [16].

In what follows, we shall repeat the above analysis for two specific class of higher curvature
gravity theories, namely Lanczos-Lovelock gravity and F (R) models (which we put in Appendix A
since it is only a slight variation of the calculation in Einstein gravity discussed above), and show
that the correspondence between shell entropy as calculated above, and the black hole entropy as
given by Wald formula (which is a generalization of Bekenstein-Hawking entropy to higher derivative
gravity actions) does not always hold.

3 Higher derivative theories and comparison with Wald en-

tropy

We now proceed to the Lanczos-Lovelock case taking exactly the same route as in Einstein case
described above. We will also point out (in the final subsection) that our result has a curious
interpretation in terms of “equation of state” of the horizon degrees of freedom, and also a very
direct mathematical connection with the membrane paradigm for black hole horizons (explored
more fully in a separate publication [21]).

3.1 Lanczos-Lovelock gravity

The mth order Lanczos-Lovelock lagrangian Lm is given by completely anti-symmetrised product
of m curvature tensors

L(D)
m =

1

16π

1

2m
δa1b1...ambm
c1d1...cmdm

Rc1d1
a1b1

· · ·Rcmdm
ambm

(15)

For m = 1, Lm reduces to (16π)−1R, which is the Einstein-Hilbert lagrangian. The surface stress
tensor in the mth order Lanczos-Lovelock theory is given by [22]

8π
(

t ν
(m)µ

)

i
=

m!

2m+1
αm

〈

m−1
∑

s=0

Cs(m)

(

πs(m)

)ν

µ

〉

i
(

πs(m)

)ν

µ
= δ

[νν1···ν2m−1]
[µµ1···µ2m−1]

R̂µ1µ2

ν1ν2
· · · R̂µ2s−1µ2s

ν2s−1ν2s
Kµ2s+1

ν2s+1
· · ·Kµ2m−1

ν2m−1
(16)

where the coefficients Cs(m) are given by

Cs(m) =
m−1
∑

q=s

4m−q qCs(−2)q−s

q! (2m− 2q − 1)!!
(17)
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Here R̂µρσν etc. indicates that these quantities are to be evaluated for the induced metric hµν .
One can check that for m = 1 and m = 2, the above expression reduces to that of the surface
stress tensor in Einstein’s gravity (see Eq. (9)) and Gauss-Bonnet Gravity [23] (see Eq. (43) in the
appendix) respectively. To calculate the matter entropy of the system of n shells, we proceed in
the manner similar as in the case of Einstein’s gravity described in the previous section, that is, by

finding
[

t ν
(n)µ

]

div
. We note that, in the near horizon limit (and assuming that the intrinsic Riemann

tensor of horizon surface is finite), the only divergence in the stress tensor will come from the K 0̂
0̂

component of the extrinsic curvature of the r = rnth shell, which diverges as (1/
√
fn) as can be

seen from Eq. (10). The transverse components KA
B vanish as (

√
fn/r). Further, note that the

determinant tensor has the property

δ0α1α2···αn

0β1β2···βn
= δA1A2···An

B1B2···Bn
×

(

δα1

A1
δB1

β1
. . . δαn

Anδ
Bn

βn

)

(18)

That is, the presence of 0 in each row of the determinant tensor forces all the other indices to take
the values 2, 3, · · · (D − 1). Thus, at the most, we can have only one K0

0 present in any term of
Eq. (16) which shows that the maximum possible divergence is O(1/

√
fn) even though the surface

stress tensor is a (2m − 1)th degree polynomial in K. Further, from the structure of Eq. (16), it
is easy to see that only the s = (m − 1) term gives this divergent contribution while all the other
terms being of O(

√
f) or higher vanish. Further, from Eq. (18), it is again obvious that only the

transverse component of the surface stress tensor will contribute. Thus we get

8π[ρn]div = 8π
[

t
(n)0̂0̂

]

div
= 8π

[

t(n)µνu
µuν

]

div
= 0

8π[Pn]div δ
A
B = 8π

[

tA(n)B
]

div
=

mαm

2m−1
δ
AA1···A2m−2

BB1···B2m−2

ˆ̂
RB1B2

A1A2
· · · ˆ̂RB2m−3B2m−2

A2m−3A2m−2
K 0̂

0̂
(19)

where in the second line we have used Cm−1 = 4/(m−1)! from its definition in Eq. (17), and replaced

R̂AB
CD with the intrinsic curvature

ˆ̂
RAB

CD defined completely in terms of the induced metric qAB of
the constant t, constant r surface. Such a replacement is valid since the corresponding extrinsic
curvature vanishes. We can now obtain the pressure easily using the fact that qAB is maximally
symmetric (see Eq. (5)), and hence

[Pn]div =
1

(D − 2)
qAB

[

t(n)AB

]

div
=

2mαm

(D − 2)

1

16π

1

2m−1
δ
AA1···A2m−2

AB1···B2m−2

ˆ̂
RB1B2

A1A2
· · · ˆ̂RB2m−3B2m−2

A2m−3A2m−2
K 0̂

0̂

=

(

D − 2m

D − 2

)

2mαmL
(D−2)
m−1 K 0̂

0̂
(20)

In arriving at the second equality, we have used the following two relations concerning Lanczos-
Lovelock actions of order m in D dimensions [11]

Gi
j(m) = −1

2

1

16π

1

2m
δia1b1...ambm
jc1d1...cmdm

Rc1d1
a1b1

· · ·Rcmdm
ambm

Gi
i(m) = −D − 2m

2
LD
m (21)
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where Gi
j(m) is the equation of motion tensor for Lanczos-Lovelock action; for e.g., for m = 1,

Gi
j(1) = (16π)−1Gi

j where Gi
j is the Einstein tensor. Hence, once again we find that the only non-

zero contribution to matter entropy comes from the pressure term as in the case of Einstein gravity
(see Eq. (11)). No further computation needs to be done, since we can simply obtain the entropy by
comparing expression (20) with the first of Eqs. (12) in Einstein theory. This immediately allows
us to “read-off” the matter entropy as

S
(m)
matter =

(

D − 2m

D − 2

)

4πmαmL
(D−2)
m−1 AH (22)

where AH is the D− 2 dimensional hypersurface area of the horizon. On the other hand, the Wald
entropy for general Lanczos-Lovelock theory can be shown to give

S
(m)
Wald = 4πmαmL

(D−2)
m−1 AH (23)

which leads to the following relation

S
(m)
matter =

(

D − 2m

D − 2

)

S
(m)
Wald (24)

Thus we find that the matter entropy in Lanczos-Lovelock theory is proportional to the correspond-
ing Wald entropy of the black hole. We also see that Smatter ≤ SWald with the equality holding only
in Einstein’s gravity m = 1. This inequality strongly suggests that the microscopic degrees of free-
dom responsible for the entropy of the black hole are certainly not the extrinsic (matter) degrees of
freedom forming the black hole. Further, since a general Lanczos-Lovelock theory will be described
by lagrangian of the form L =

∑

m αmLm, the total matter entropy in such theories would be

Smatter =

[D−1)/2]
∑

m=0

(

D − 2m

D − 2

)

S
(m)
Wald (25)

which has no simple relation, even proportionality to the Wald entropy

SWald =

[D−1)/2]
∑

m=0

S
(m)
Wald (26)

3.2 Equation of state

As pointed out above in the case of Einstein gravity as well as in the Lanczos-Lovelock models, it
is only the pressure term which leads to a non-zero contribution to the matter entropy and hence,
in the near horizon limit, we find that the following relation holds

Smatter

AH
=

[Pn]div
Tn

≡ P

Tn
(27)
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where for the sake of brevity, we have replaced [Pn]div by P . Thus the scaling property of entropy
with the horizon radius rH , as well as the proportionality constant, is completely determined by
the relation between P and T , which is to say that the equation of state P = P (T ) determines
the matter entropy. In the case of Lanczos-Lovelock gravity, we can read off the equation of state
P = P (T ) = [t θ

(n)θ]div from Eq. (20) by using the relation K0̂0̂ = −K 0̂
0̂
= −f ′

H/(2
√
f) = −2πTn to

get

P

Tn
=

(

D − 2m

D − 2

)

4πmαmL
(D−2)
m−1 (28)

Using Eq. (24), the above relation can also be written in terms of Wald entropy

PAH

Tn
=

(

D − 2m

D − 2

)

S
(m)
Wald (29)

Further, it is also interesting to note that the pressure that one obtains in the context of the
membrane paradigm for both Einstein and Gauss Bonnet black holes is exactly the same as given
by Eq. (28) for m = 1 and m = 2 respectively [24]. In fact, we have presented an investigation of
the full membrane paradigm for Lanczos-Lovelock theories in a separate publication [21], obtaining
not only the membrane pressure but also other transport coefficients from the near-horizon surface
stress tensor.

4 The partition function for Lanczos-Lovelock gravity

All the analysis in the literature regarding the definitions of S and E of a black hole uses the field
equations of the corresponding theory of gravity. In our analysis in preceding section, although the
bulk field equations were not used, the relation between geometric quantities describing the surface
and the matter stress tensor on the surface can be viewed as equations of motion for the boundary
variables. We will now discuss a second aspect of black hole entropy (and energy), in the context of
spherically symmetric horizons in Lanczos-Lovelock theory, based on a quantum picture of gravity
which does not involve the field equations of the theory. Such an approach was first suggested in [9]
in the case Einstein’s theory, and our analysis is a generalization of the same to Lanczos-Lovelock
theories. More specifically, we shall show that the Euclidean action A

(e)
LL describing spherically

symmetric Lanczos-Lovelock models gives the free energy and has the structure

A
(e)
LL = βF = βE − S(e) (30)

from which one can “read-off” the entropy S(e) and energy E. We shall show that these match
exactly with Wald entropy (i.e., S(e) = SWald) and energy derived by independent methods for these
theories.

We again consider spherically symmetric spacetimes in D dimensions

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 (31)

11



such that f(r) vanishes at some surface r = a, say, with f ′(a) (= B, say) remaining finite. Since
the metric is static, Euclidean continuation is trivially affected by t → τ = it and to avoid conical
singularity at r = a, τ must be periodic with period β = 4π/|B|, corresponding to the temperature
T = |B|/4π. The class of metrics in Eq. (31) with the behaviour [f(a) = 0, f ′(a) = B] constitute a
canonical ensemble at constant temperature since they all have the same temperature T = |B|/4π.
The partition function for this ensemble is given by the path integral sum

Z(β) =
∑

gǫS

exp(−A(e)
LL(g))

=
∑

gǫS

exp

(

−
∫ β

0

dτ

∫

d3x
√
gELm[f(r)]

)

(32)

where m denotes the m−th Lovelock term. The sum in Eq. (32) is restricted to the set S of
all metrics of the form in Eq. (31) with the behaviour [f(a) = 0, f ′(a) = B] and the Euclidean
Lagrangian is a functional of f(r). No source term or cosmological constant (which cannot be
distinguished from certain form of source) is included since the idea is to obtain a result which
depends purely on the geometry. The spatial integration will be restricted to a region bounded by
(D − 2)-spheres r = a and r = b, where the choice of b is arbitrary except for the requirement
that within the region of integration the Lorentzian metric must have the proper signature with
t being the time coordinate. To evaluate the integral in Eq. (32), we first express the Lanczos-
Lovelock lagrangian as functional in terms of f(r). The Lanczos-Lovelock lagrangian Lm is given
by completely anti-symmetrised product of m curvature tensors

Lm =
1

16π

1

2m
δa1b1...ambm
c1d1...cmdm

Rc1d1
a1b1

· · ·Rcmdm
ambm

(33)

For m = 1, the Lm reduces to R, the Einstein-Hilbert lagrangian. For metrics of the type in
Eq. (31), the Lanczos-Lovelock lagrangian has a very nice compact form, and can in fact be written
as a total derivative [25] (see Appendix C)

rD−2Lm =
d

dr

[

(D − 2)!

(D − 2m− 1)!
(1− f)mrD−2m−1

]

− d

dr

[

(D − 2)!

(D − 2m)!
mf ′(1− f)m−1rD−2m

]

(34)

Thus we have the functional dependence of Lm on f(r). A straight forward calculation shows that

−Aem =
βΩ

16π

∫ b

a

dr

{

[

(D − 2)!

(D − 2m− 1)!
(1− f)mrD−2m−1

]′

−
[

(D − 2)!

(D − 2m)!
mf ′(1− f)m−1rD−2m

]′
}

=
βΩ

16π

[

(D − 2)!

(D − 2m− 1)!
aD−2m−1 − (D − 2)!

(D − 2m)!
mBaD−2m

]

+Q[f(b), f ′(b)] (35)
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where Ω is the area of a unit (D− 2)-sphere, Q depends on the behaviour of the metric near r = b
and we have used the conditions [f(a) = 0, f ′(a) = B]. The sum in Eq.(32) now reduces to summing
over the values of [f(b), f ′(b)] with a suitable (but unknown) measure. This sum, however, will only
lead to a factor ZQ which we can ignore in deciding about the dependence of Z(β) on the form of
the metric near r = a. Using β = 4π/B (and taking B > 0 for the moment) the final result can be
written in a very suggestive form:

Z(β) = ZQ exp

[

(D − 2)!

(D − 2m)!

mΩ

4
aD−2m − β

(

(D − 2)!

(D − 2m− 1)!

Ω

16π
aD−2m−1

)]

∝ exp
[

S(e)(a)− βE(a)
]

(36)

with the identifications for the entropy and energy being given by:

S(e) =
(D − 2)!

(D − 2m)!

mΩ

4
aD−2m (37)

E =
(D − 2)!

(D − 2m− 1)!

Ω

16π
aD−2m−1 (38)

Comparing the expression of entropy with that of Wald entropy of the black-hole in the correspond-
ing Lanczos-Lovelock theory [26],

SWald =

∫

H

dΣLD−2
m−1 =

(D − 2)!

(D − 2m)!

mΩ

4
aD−2m

= S(e) (39)

which is the result we wanted to demonstrate. In fact, one may even compare E with energy of
horizons in Lanczos-Lovelock theories known in the literature [26]. The latter is given by

E =

∫

da

∫

H

dΣLD−2
m =

(D − 2)!

(D − 2m− 1)!

Ω

16π
aD−2m−1

(40)

which is exactly same as the energy in Eq. (38) obtained above through the analysis of the path
integral. For m = 1 in four dimensions, we recover the known result E = a/2 for Einstein’s gravity.
Thus, it is very interesting to note that the simple path integral approach, which does not involve
the field’s equations describing the theory, leads us to the same expressions of Wald entropy and
energy of the horizon obtained through other complicated means! Similar result for Wald entropy
has been obtained earlier in [27] for specific black hole solutions in Einstein-Gauss-Bonnet gravity
and in Riemann squared gravity.

There are couple of points which need to be stressed regarding this result vis-a-vis previous
approaches to computation of entropy.
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We begin by noting that there exist several different prescriptions in the literature which allow
us to calculate black hole entropy in Einstein’s theory of gravity (and some of which generalize to
higher curvature theories of gravity as well). Examples include: (i) Computation based on hawking
radiation of external fields quantized in black hole spacetime by integrating dS = dM/T (M). (ii)
Using the relation between the Noether charge associated with the diffeomorphism symmetry of the
theory and black hole entropy as proposed by Wald in [3]; this is often taken to be the definition of
entropy associated with the horizon in higher curvature theories. (iii) From the Euclidean action
of the theory evaluated on-shell for a stationary spacetime with a horizon; this also leads to the
expression of Wald entropy [28]. (We will say more about the relation between this approach and
ours towards the end of this section.) (iv) The surface term (analogous to the Hawking-Gibbons
term in GR) in the action, when evaluated over the horizon surface is equal to the corresponding
expression of Wald entropy in the theory [28]. (v) The entanglement entropy associated with the
quantum fields in the background spacetime with a horizon is related to the black hole entropy
in GR. (vi) The algebra associated with the Noether charge and diffeomorphisms which leave the
horizon geometry intact is known to be same as the Virasoro algebra and hence allows us to calculate
the horizon entropy using Cardy formula [29].

The approach taken in this paper provides us with an additional prescription to calculate horizon
entropy, introduced and described earlier in [9]. It has several interesting features not shared by
others: (a) We evaluate an off-shell partition function for a class of geometries having a black hole
and do not use field equations anywhere. This is in contrast with many other prescriptions listed
above. (b) We obtain both the energy and entropy at one stroke. This is not possible — as far as
we know — in any of the previous approaches. (c) We do not use the surface term in the action
(neither the Gibbons-Hawking term or some equivalent in Lanczos-Lovelock models. [Note that
approaches (i),(ii) (v) and (vi) listed in the previous para do not use the surface term either.]

Let us elaborate a little on the last point. Previous work has clearly demonstrated the holo-
graphic relationship between the surface and bulk terms in the action, which tells us that the same
information is contained in both [12]. So it should not come as a surprise that we can get the result
without using the surface term. In fact, it was shown in [9] that by manipulating the Einstein
Hilbert lagrangian R

√−g, it is possible to express it as a total derivative for a subclass of metrics
as given by Eq.(31). One can then integrate the lagrangian to obtain the Euclidean action and
hence the path integral in the form of Eq.(36) to read off the energy and entropy of the horizon in
Einstein’s gravity. We did not need to use the Gibbons-Hawking term in the action in this case. It
is, however, important to see whether the result generalizes to Lanczos-Lovelock models. This is
because, in Einstein’s gravity, the entropy of a horizon is proportional to its area which has a sim-
ple geometrical meaning and therefore very easy to come up with completely different approaches
which will lead to S ∝ A. In such a situation, the robustness of any prescription can then be
checked by working in a regime other than Einstein’s gravity where the relation between entropy
and a geometric property of the horizon is not trivial. We have now shown that the path integral
approach considered above is indeed a good prescription to calculate the horizon entropy if one is
working within Lanczos-Lovelock theories of gravity. Also, one gets the expression for quasi-local
energy as a bonus alongwith the horizon entropy. In a way, this is nice because the surface term
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which need to be added to gravitational action — even in GR — is not unique (see [30]), a fact
which is not often appreciated in the literature.

Finally, we mention that the scope, procedure and the spirit of the result described above is
quite different from some of the previous work using Euclidean action, like e.g., the work by Iyer
and Wald [28]. We will briefly highlight the differences for placing the current work in proper
perspective.

• The usual Euclidean approach (like the one in [28]) essentially evaluates path integral for
an action with a surface term in the saddle-point-approximation. (The paper [28] does not
explicitly refer to the path integrals but the only context in which the value of classical action
can be interpreted as a thermodynamic variable is in the saddle-point-approximation to the
path integral. So this is implicit in the work.) The classical value of the action for a particular
solution is used to obtain the thermodynamic interpretation. In contrast, we do not use the
saddle point approximation or assume validity of classical field equations anywhere; therefore
our result captures at least certain aspects of the off-shell physics. Of course, since the exact
path integral is intractable we also need to make some approximation; we evaluate the sum
over a subset of geometries which possess a horizon. This is quite different mathematically
and conceptually from approximating the path integral by a saddle point value since we do
not have to assume the validity of field equations or a classical solution for our evaluation.

• For the same reason, we use the expression for the off-shell Noether charge; that is, we do
not assume equations of motion to set part of this Noether charge to zero, unlike in the
approach taken by [28]. The Noether charge we use is identically conserved off shell (due to
diffeomorphism invariance of the lagrangian) without our assuming the validity of equations
of motion [6].

• We do not add any surface term (analogous to K
√
h in the case of general relativity) to the

Lanczos-Lovelock action while the previous Euclidean approaches depended on the addition
of the surface term. This is important because the geometric nature and uniqueness of surface
term for Lanczos-Lovelock models is unclear. Even in GR, the surface term is not unique. The
main purpose of the surface term is to cancel off the time derivatives of the metric variations
at the spacetime boundary arising from the variation of the action. There are several surface
terms in GR other than K

√
h which satisfy this criteria. Although K

√
h turns out to be

the simplest among them, it is not well understood why it should be equal to entropy when
evaluated on the horizon. It is interesting that we do not have to use any surface term.

• We were able to evaluate the sum over the restricted class of metrics (without resorting to
saddle point approximation) only because the lagrangian turns out to be a total derivative
for the class of metrics considered. This, by itself, is a deep result and could not have been
guessed a priori for the Lanczos-Lovelock models. Performing the path integral, we find
contributions to the action both from a quasi-local energy term and a entropy term which
allows us to clearly identify both the energy and entropy of the system separately and the
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partition function appears as the exponential of the free energy. The previous approaches,
instead, obtained only the entropy of the system.

These aspects make our analysis complementary to the approaches based on the saddle-point-
approximation.

5 Conclusions

We have analyzed two aspects of black hole entropy for higher curvature theories of gravity, one
from the point of view of matter entropy, and other in terms of a Euclidean path integral defining
a partition function. These issues have already been studied in Einstein theory described by the
conventional Einstein-Hilbert action, and our aim in this note was to generalize the analyses for
Lanczos-Lovelock models (and F (R) gravity) and see how the entropy so obtained matches with
Wald entropy, which is generally accepted as the correct definition of entropy for bifurcate Killing
horizons in arbitrary theories of gravity.

As explained in the introduction, our motivation goes beyond a mere generalization of certain
known results to modified actions and higher dimensions. (In fact, we do not presume that the class
of modified actions we have considered would have any practical relevance in realistic situations.)
Rather, the aim here is to use these more general results to better understand the origin of horizon
entropy in Einstein theory itself. We are somewhat handicapped in discriminating between different
approaches to calculate the entropy within the limited context of Einstein’s theory because an
entropy proportional to area can easily arise in completely different contexts. For example, it is
known that entanglement entropy associated with a bounded region of space would always scale
as area of the boundary of that region, and similarly area scaling also arises independently of field
equations, from purely kinematic considerations, when one analyses the phase space available to
ordinary thermal systems near a horizon [19]. The only acid test for the validity of any particular
approach for calculating horizon entropy is that it should reproduce the Wald entropy of, say, at
least Lanczos-Lovelock models which are natural generalizations of Einstein’s theory. It is with this
motivation that we studied the two different approaches in this paper.

We found that if one evaluates the entropy of matter which is on the verge of collapsing to a
black hole, then this matter entropy does not necessarily match with Wald entropy. For a Lanczos-
Lovelock model of order m, the entropy is proportional to Wald entropy with the proportional-
ity constant depending on order m of the Lanczos-Lovelock polynomial. Hence when we add up
Lanczos-Lovelock actions of different orders, the overall proportionality breaks down. (However,
the entropy matched with Wald entropy for the F (R) models.) In the second part of this paper, we
considered another approach which attempts to look at an “intrinsic” approach to horizon entropy,
by showing that the Euclidean action for Lanczos-Lovelock models, in spherical symmetry, becomes
a total derivative and can be written as an expression for free-energy from which entropy S and
energy E can be read-off. The expression for S then matches with Wald entropy, and E reduces to
the quasi-local expressions known for special cases in the literature.
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The main implication of this note is that matter entropy of a system is not necessarily the only
contribution to entropy of a black hole formed from collapse of that system. Although there exists
in the literature several entropy bounds on matter entropy, our model calculation gives precise
expressions for matter entropy and its relation to Wald entropy, rather than just an inequality.
Besides that, our analysis also highlights a possible connection between horizon entropy and the
“equation-of-state” P (T ) satisfied by the degrees of freedom residing on the horizon surface. This
relation is worth investigating further. Moroever, as was indicated in the text, the pressure which
we obtain in the horizon limit is precisely the pressure encountered in the membrane paradigm. In
fact, in a subsequent publication, we shall present the full set of transport coefficients determining
the dynamics of a perturbed horizons, as is done in the membrane paradigm.
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Appendix:

A F (R) gravity

In the main text of this paper, we calculated the matter entropy of gravitating shells in Lanczos-
Lovelock models of gravity. However, the same procedure involved can be used to determine the
matter entropy in F (R) theories of gravity which we will briefly discuss below.

The F (R) theories of gravity are characterized by the lagrangian of the form L = F (R) where
F (R) is a well behaved (infinitely differentiable) function of Ricciscalar R. Spherically symmetric
black hole solutions in such theories have been studied in the literature, but we shall not need
detailed form of these solutions for the analysis. The Wald formula for black hole entropy in such
theories is given by

SWald =
F ′(R(rH))

4
AH (41)

where the F ′ = dF/dR and AH is the (D− 2) dimensional area of the black hole horizon. We wish
to compare this expression for Wald entropy with the entropy of the system on the verge of forming
a black hole, as described in the previous section.
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The junction conditions in F(R) gravity are given by [31]

8πsµν =

〈

F ′(R) (Khµν −Kµν) + hµνF
′′(R)nk∂kR

〉

i

which is to be supplemented by an additional condition of continuity of Ricciscalar across a given
surface. In fact, if one assumes that the function F (R) is well behaved, then one can immediately
write down the final result for entropy of this configuration, simply by comparing it with the Einstein
case discussed in detail above. This immediately yields the result that, in the near horizon limit,

Smatter = SWald (42)

and hence the correspondence between matter and Wald entropy holds for F (R) theories. Although
the extrinsic approach lead to the exact expression of Wald entropy for the matter entropy, in
general the intrinsic approach considered in the second half of the paper will not hold for F (R)
theories. This is because although R can be expressed as a total divergence for metrics of the form
Eq. (31), any arbitrary function of R will not be a total divergence. This also highlights the special
status of Lanczos-Lovelock theories in the sense that results in Einstein gravity easily generalize to
Lanczos-Lovelock theories whereas in the case of F (R) theories they do not.

B Einstein-Gauss-Bonnet (EGB) gravity

In this appendix, we will show the explicit calculation of matter entropy in the case of (m = 2)
Einstein-Gauss-Bonnet gravity (for known black hole solutions, see [32]). The surface stress tensor
in EGB theory is given by [23]

8πtµν = 8πt(E)
µν − 2α

〈

Jhµν − 3Jµν + 2P̂µρσνK
ρσ

〉

Jµν =
1

3

[

2KKµρK
ρ
ν +Kµν

(

trK2 − (trK)2
)

− 2KµρK
ρσKσν

]

P̂µρσν = R̂µρσν + 2R̂ρ[σhν]µ − 2R̂µ[σhν]ρ + R̂hµ[σhν]ρ (43)

where R̂µρσν etc. indicates that these quantities are to be evaluated for the induced metric hµν .
After a lengthy but straightforward computation, one can show that

3Jµν − Jhµν = j1uµuν + j2qµν (44)
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where

j1 = −(D − 3)(D − 4)

3(D − 2)2
K3

⊥

j2 =

[

−K0̂0̂ +
(D − 5)

3(D − 2)
K⊥

]

(D − 3)(D − 4)K2
⊥

(D − 2)2

(45)

andK⊥ = qµνKµν = (D−2)
√
b/r. We therefore note that both j1 and j2 are finite (in fact vanishing)

at f = 0 = b. Hence these will not contribute to entropy. Indeed, the only relevant contribution
comes from the P̂µρσνK

ρσ term in tµν . Using the fact that r =const. surfaces are R × S
D−2, this

term evaluates to:

P̂µρσνK
ρσ =

(D − 3)(D − 4)

2r2

[

K⊥uµuν +

(

K0̂0̂ −
D − 5

D − 2
K⊥

)

qµν

]

(46)

We now have all the quantities needed to evaluate the divergent contributions to tµν . By
inspection of above expressions, we see that divergences go as 1/

√
f (despite the GB contribution

being cubic in extrinsic curvature), and the divergent pieces can be extracted out as:

8π[ρn]div = 8π [t0̂0̂]div = 8π [tµνu
µuν ]div = 0

8π[Pn]div δ
a
B = 8π

[

t A
(n)B

]

div
= −K0̂0̂δ

A
B − [4αP̂Aρ

σBK
ρ
σ]div

= −K0̂0̂

[

1 +
2α(D − 3)(D − 4)

r2

]

δAB (47)

Hence, the only non-zero contribution to the matter entropy comes only from the pressure term
as in the case of Einstein gravity (see Eq. (11)). No further computation needs to be done, since
we can simply obtain the entropy by comparing the above expressions with Eqs. (11) in Einstein
theory. This immediately allows us to “read-off” the matter entropy as

Smatter =
AH

4

[

1 +
2α(D − 3)(D − 4)

r2

]

(48)

On the other hand, the Wald entropy for EGB theory can be shown to give

SWald =
AH

4

[

1 +
2α(D − 3)(D − 2)

r2

]

= Smatter +
(D − 3)αAH

r2
(49)

We see that SWald > Smatter (assuming α > 0).

19



C Lanczos-Lovelock lagrangian as a total derivative for spher-

ically symmetric spacetimes

Consider a D dimensional spacetime MD, which is a direct product of a two dimensional manifold
M2 with a (D − 2) maximally symmetric sub-manifold KD−2 with sectional curvature k = ±1, 0
and coordinates zA. The metric can be written as

ds2 = gab(y)dy
adyb + r2(y)qABdz

AdzB (50)

where a, b = 0, 1; i, j = 2, ..., D − 1 and r(y) is a scalar on M2. Then for this metric the Lanczos-
Lovelock lagrangian of an arbitrary order m can be written in a very compact form [33]

Lm =
(D − 2)!

(D − 2m)!
Ψm (51)

where

Ψm = (D − 2m)(D − 2m− 1)ψm − 2(D − 2m)m

[

D2r

r

]

ψm−1

+ 2m(m− 1)

[

(D2r)2 − (DaDbr)(D
bDar)

r2

]

ψm−2 +m 2R ψm−1

ψ =
k − (Dr)2

r2
(52)

Here Da is a metric compatible linear connection on M2, (Dr)2 := gab(Dar)(Dbr), D
2r := DaDar

and 2R is the Ricci scalar on M2. We can now use the above expression with metric Eq. (31)
to express the Lanczos-Lovelock action in a compact form. We have, (Dr)2 = f(r), D2r = f ′,
(DaDbr)(D

bDar) = f ′2/2 and 2R = −f ′′, which leads to

Ψm = (D − 2m)(D − 2m− 1)ψm − 2(D − 2m)m

[

f ′

r

]

ψm−1 +m(m− 1)

[

f ′2

r2

]

ψm−2 −mf ′′ψm−1

ψ =
1− f

r2
(53)

Further, using (with q = 1− f)

− d

dr

{

mf ′qm−1rD−2m
}

= − mf ′′qm−1rD−2m +m(m− 1)f ′2qm−2rD−2m

− m(D − 2m)f ′qm−1rD−2m−1

and

d

dr

{

(D − 2m)qmrD−2m−1
}

= (D − 2m)(D − 2m− 1)qmrD−2m−2

− m(D − 2m)f ′qm−1rD−2m−1 (54)

we can easily write the Lanczos-Lovelock lagrangian as a total derivative as given in Eq. (34).
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