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TORIC CO-HIGGS BUNDLES ON TORIC VARIETIES

INDRANIL BISWAS, ARIJIT DEY, MAINAK PODDAR, AND STEVEN RAYAN

Abstract. Starting from the data of a nonsingular complex projective toric va-
riety, we define an associated notion of toric co-Higgs bundle. We provide a Lie-
theoretic classification of these objects by studying the interaction between Kly-
achko’s fan filtration and the fiber of the co-Higgs bundle at a closed point in the
open orbit of the torus action. This can be interpreted, under certain conditions,
as the construction of a coarse moduli scheme of toric co-Higgs bundles of any
rank and with any total equivariant Chern class.

1. Introduction

We begin with an algebraic or, equivalently, holomorphic vector bundle V over
a nonsingular complex projective variety X with tangent bundle TX . Then, a co-

Higgs field for V is a holomorphic section φ of the twisted endomorphism bundle
End(V )⊗TX , subject to the integrability condition that the quadratic section φ⊗φ
is symmetric — that is, that the section φ ∧ φ of End(V ) ⊗ Λ2TX vanishes iden-
tically. A pair (V, φ) satisfying the above conditions is referred to as a co-Higgs

bundle. Co-Higgs bundles were introduced simultaneously by Hitchin [11] and the
fourth-named author [15] in the context of generalized complex geometry. The name
co-Higgs speaks to a duality with Higgs bundles in the sense of Hitchin [9, 10] and
Simpson [18], where the Higgs fields are T ∗X-valued.

Co-Higgs bundles have been classified and/or constructed on P1 [16, 5], P2 [17],
P1 × P1 [20], and logarithmic curves [2], for example. Over singular varieties, they
have been used to some effect towards establishing inequalities related to vector-
valued modular forms [7]. At the same time, there are “no-go” theorems for the
existence of nontrivial co-Higgs bundles in some instances, such as over the moduli
space of stable bundles on a nonsingular complex curve of genus at least 2 [4]. Re-
cently, the first-named and fourth-named authors classified homogeneous co-Higgs
bundles on Hermitian symmetric spaces [6]. The goal of the present work is to ex-
tend this to toric varieties. Accordingly, we define below a natural notion of toric
co-Higgs bundle.
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We classify toric co-Higgs structures for a fixed toric bundle V using Klyachko’s
seminal work on classification of toric vector bundles [12]. We recall from [12, Theo-
rem 2.2.1] that the category of toric bundles on X with equivariant homomorphisms
is equivalent to the category of compatible Σ-filtered vector spaces, where Σ is the
fan of X . Our strategy for classifying toric co-Higgs bundles (V, φ) is thus to reduce
the data of (V, φ) to that of a tuple of commuting Σ-filtered endomorphisms of the
fiber Vx0

, where x0 is a closed point in the open orbit of T in X . This is the content
of Theorem 3.2, which is the main theorem in this note.

Similar to the symmetric space case [4], the resulting classification is Lie-theoretic
in nature and admits an interpretation as a moduli construction. Subject to certain
conditions (namely, the freeness of a certain group action), we identify a scheme that
parametrizes toric co-Higgs bundles of fixed rank and total equivariant Euler char-
acteristic in the sense of [13]. This scheme fibers over an associated moduli scheme
of toric bundles constructed in [14].

We also wish to point out similar work in [1], completed independently and at
roughly the same time.

2. Set-up and examples

2.1. Basic notions. Throughout, X is a nonsingular complex projective variety.
Assume that X admits an algebraic (equivalently, holomorphic) action of a complex
torus T ∼= (C∗)n so that it is a toric variety in the sense of [8]. Furthermore, fix
a holomorphic vector bundle V and suppose that it admits a lift of the action of T
from X which is fiber-wise linear. In other words, V is equipped with the structure
of a T -equivariant vector bundle. We will refer to V simply as a toric bundle.

There is subsequently an induced action of T on the vector space of global holo-
morphic sections of V :

(t · s)(x) = ts(t−1x) (2.1)

for all s ∈ H0(X, V ) and t ∈ T . A section s ∈ H0(X, V ) is said to be semi-

invariant if there exists a character χ of T such that

t · s = χ(t)s (2.2)

for all t ∈ T . A semi-invariant section s is said to be invariant if the associated
character χ(t) is trivial, meaning

t · s = s (2.3)

for all t ∈ T . Combining (2.1) and (2.3), we conclude that

ts(t−1x) = s(x) (2.4)

for any invariant section s.



TORIC CO-HIGGS BUNDLES ON TORIC VARIETIES 3

2.2. T -equivariant structures and toric co-Higgs bundles. Now, a T -equivariant
structure on V induces a T -equivariant structure on End(V ) in the following way.
Given an element ψ in the fiber (End(V ))x = End(Vx) over x ∈ X , we define tψ in
End(Vtx) by

(tψ)(v) = t(ψ(t−1v)) (2.5)

for every v ∈ Vtx and t ∈ T . Then, by (2.4), a holomorphic section φ of End(V ) is
invariant if and only if

tφ(t−1x) = φ(x) (2.6)

for all x ∈ X and t ∈ T . By (2.5), equation (2.6) is equivalent to

t ◦ φ(t−1x) = φ(x) ◦ t

for all x ∈ X and t ∈ T . In other words, φ is an invariant section of End(V ) if and
only if φ is a T -equivariant endomorphism of V .

At the same time, the tangent bundle TX has a natural T -equivariant structure
that is simply the linearization of the T -action on X . Together with the above T -
action on End(V ), we have an induced T -equivariant structure on the twisted bundle
End(V )⊗ TX . This allows us to formulate the following:

Definition 2.1. A toric co-Higgs bundle on a toric variety X is a pair (V, φ), where
V −→ X is a toric bundle and φ ∈ H0(X, End(V )⊗ TX) is an invariant co-Higgs
field.

2.3. Examples. The tangent bundle TX of a nonsingular projective toric variety
X always admits a nonzero invariant holomorphic section s. Let us take the tensor
product of such a holomorphic vector field with the identity homomorphism 1 of any
toric bundle V . Call this product φ. It follows immediately that

φ ∧ φ = (s⊗ 1) ∧ (s⊗ 1) = [s, s]⊗ (1 ∧ 1) = 0 .

In other words, φ is a nontrivial invariant co-Higgs field on V , and hence every toric
vector bundle on any toric variety is equipped with a family of invariant co-Higgs
fields induced by the invariant holomorphic vector fields on X .

Another example, similar in spirit but for a specific bundle, is given by choosing
V = TX ⊕OX with its natural toric structure, where OX is the structure sheaf of
X . We can equip this V with the co-Higgs field

φ =

(

0 1
0 0

)

,

where 1 is interpreted as the identity morphism on TX , which serves as the part
of the co-Higgs structure that acts as TX −→ OX ⊗ TX . Because φ is built from
just the identity map, the co-Higgs field automatically has the required invariance.
It satisfies the vanishing condition φ ∧ φ = 0 since, as a matrix, φ is nilpotent.
More generally, this example is present on any complex variety — it is the so-called
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canonical co-Higgs bundle — and it is discussed in some detail from the point of
view of slope stability and deformation theory in Chapter 6 of [15].

For contrast, we conclude with an example of a co-Higgs structure on a vector
bundle that is not directly related to toric geometry. We briefly recall the definition
of the jet bundle of a holomorphic vector bundle E on a projective variety Y . Let

pj : Y × Y −→ Y, j = 1, 2

be the natural projection to the j-th factor. Let ∆ be the diagonal of Y × Y . For
any non-negative integer k, consider the k-th jet bundle of E defined as

Jk(E) = p1∗(p
∗
2(E)/(p

∗
2E ⊗OY×Y (−(k + 1)∆) −→ Y

One can check that the higher direct image of the above right hand side vanishes,
which makes Jk(E) a vector bundle. We have the following exact sequence

0 // E ⊗ ΩY

f
// J1(E)

g
// J0(E) // 0

The composition homomorphism (g ⊗ 1ΩY
) ◦ f defines a nonzero co-Higgs structure

on J1(E). Even when Y itself is toric, this gives examples of non-toric co-Higgs
bundles by taking E to be non-toric. For further examples of non-toric co-Higgs
bundles on toric varieties, we refer the reader to [1].

In the next section, we classify toric co-Higgs structures on a fixed toric bundle.

3. Toric co-Higgs bundles and the Klyachko fan filtration

3.1. Σ-filtrations. LetX be a nonsingular complex projective toric variety equipped
with an action of T (cf. [8]). Let Σ denote the fan of X , and let Σ(d) be the set of
d-dimensional cones in Σ. For any toric bundle V on X , Klyachko [12] constructed
a compatible family of full filtrations of decreasing subspaces of the fiber E = Vx0

,
where x0 is a closed point in the open orbit of T in X . We will subsequently refer to
x0 simply as a “closed point for T”. The family is indexed by the T -invariant divisors
or equivalently by |Σ(1)|, the set of integral generators of the one-dimensional cones
of Σ. In other words, we have a family of filtrations

{Eρ(i) | ρ ∈ |Σ(1)|, i ∈ Z} .

Note that “decreasing” means

Eρ(i+ 1) ⊆ Eρ(i)

for all i. For brevity, such a family of filtrations will be called a Σ-filtration. The com-
patibility condition mentioned above refers to the existence of cone-wise T -module
structures on E giving rise to the Σ-filtration. We give below a short review of
the construction of the Σ-filtration in the case of a projective toric variety. In this
case, the description is slightly simpler as it suffices to consider only the cones of
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dimension n in the fan.

Let M and N denote the dual lattices of characters and co-characters of T , re-
spectively. Let σ be a maximal cone of Σ and Xσ the corresponding affine toric
variety. Denote by Vσ the restriction of V to Xσ. It was shown by Klyachko [12,
Proposition 2.1.1] that there exists a framing (which is not unique) of Vσ by semi-
invariant sections. Fix such a framing (s1, . . . , sr). Let Sσ be the T -submodule of
H0(Xσ, Vσ) generated by the semi-invariant sections s1, . . . , sr. Evaluation at x0
gives an isomorphism of vector spaces evx0

: Sσ −→ E. This isomorphism induces
a T–module structure on E, or equivalently, a decomposition

E =
⊕

u∈M

Eσ
u . (3.1)

The decompositions (3.1) may depend on the choice of the semi-invariant framing
of Vσ. However, Klyachko showed that for each ρ ∈ |Σ(1)|, the subspaces

Eρ(i) :=
⊕

u∈M,u(ρ)≥i

Eσ
u , where σ ∈ Σ(n) is such that ρ ∈ |Σ(1)|

⋂

σ , (3.2)

are independent of the choice of σ containing ρ and the choice of the framing.

A morphism of compatible Σ-filtered vector spaces {Eρ(i)} and {F ρ(i)} is a vector
space map φ : E −→ F such that φ(Eρ(i)) ⊆ F ρ(i) for all ρ and i. We call such
a morphism a filtered linear map of Σ-filtered vector spaces. Proposition 2.1.1(iii)
of [12] proves that equivariant morphisms between two toric vector bundles over X
correspond to filtered linear maps between their Σ-filtrations. Note that any lin-
ear map between the fibers at x0 extend uniquely to a T -equivariant morphism of
vector bundles over the open T -orbit. The regularity of such an extension over the
boundary of the open orbit is naturally and intimately related to the weights of the
T -action and the defining inequalities of the Σ-filtrations.

The discussion above can be summarized as following celebrated theorem of Kly-
achko.

Theorem 3.1 ([12, Theorem 2.2.1]). The category of toric vector bundle over a toric

variety X with fan Σ is equivalent to the category of complex vector spaces E with a

family of decreasing filtrations

{Eρ(i) | ρ ∈ |Σ(1)|, i ∈ Z} ,

which satisfy following compatibility condition :

For each σ ∈ Σ(n), there exists a M-grading E =
⊕

u∈M Eσ
u for which

Eρ(i) :=
⊕

u∈M,u(ρ)≥i

Eσ
u , where σ is such that ρ ∈ |Σ(1)|

⋂

σ.
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3.2. The main theorem. Having built up necessary language around Σ-filtrations,
we now pose the main theorem of this article.

Theorem 3.2. Let X be a nonsingular complex projective toric variety equipped with

an action of T ∼= (C∗)n, let V by any toric bundle on X, and let x0 ∈ X be a closed

point for T . Then, there is a 1 : 1 correspondence between invariant co-Higgs fields

φ and n-tuples of pairwise-commuting filtered linear maps of E = Vx0
that respect

the Klyachko Σ-filtration.

Before proving Theorem 3.2, we need to understand the integrability condition
φ ∧ φ = 0 locally. In [15, 11, 17], a local criterion for the vanishing of φ ∧ φ is
identified. Suppose that {z1, . . . , zn} is a holomorphic coordinate system on an
affine chart U in a nonsingular variety X . We can write

φ|U =

n
∑

i=1

φi

∂

∂zi
,

where each φi ∈ H0(U, End(V )). Then

φ ∧ φ = 0 on U ⇐⇒ [φi, φj] = 0 on U ∀ 1 ≤ i, j ≤ n . (3.3)

With this observation in hand, we can proceed with the proof of the main theorem.

Proof of Theorem 3.2. Let (t1, . . . , tn) be coordinates on T corresponding to an in-
tegral basis of Lie(T ). We identify these with coordinates on the open dense T -orbit
in X ; this should not cause any confusion. To conform to (2.1), we consider the
action of T on OT (and OX) given by

(t · f)(x) := f(t−1x) . (3.4)

Observe that the character ti, and the derivation ∂
∂ti

, have weights t−1
i and ti respec-

tively under this action. The corresponding invariant vector fields ti
∂
∂ti

are naturally

T -invariant on the open orbit in X . By [3, Theorem 3.1], these vector fields admit
T -invariant holomorphic extensions to the whole of X . In fact, by Lie theory, any
T -invariant vector field on X is a complex linear combination of these fields.

Now, let A1, . . . , An be pairwise-commuting linear endomorphisms of Vx0
that

respect the Σ-filtration. Then by Klyachko’s theorems [12, Proposition 2.1.1, The-
orem 2.2.1], these define T -equivariant endomorphisms φ1, . . . , φn of V such that
φj(x0) = Aj . Therefore, each φj is an invariant section of End(V ). Applying
equation (2.4) to φj we see that

{tφj(t
−1x0) = φj(x0)} =⇒ {φj(t

−1x0) = t−1φj(x0)}

for all t ∈ T . It then follows from (2.5) that the φj(t
−1x0)’s commute with each

other for every t ∈ T . In other words, they commute mutually on the open dense
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T -orbit in X . Therefore, by continuity, the φj’s commute on entire X .

Next, we define φ ∈ H0(X, End(V )⊗ TX) by

φ =
∑

j

φj tj
∂

∂tj
. (3.5)

Consider any affine toric chart on X with coordinates (z1, . . . , zn). By [3, Lemma
3.1] we have

tj
∂

∂tj
=

∑

k

cjk(z1, . . . , zn)
∂

∂zk
, (3.6)

where the cjk’s are holomorphic functions. Substituting (3.6) in (3.5), we have the
following representation of φ in the (z1, . . . , zn) coordinates:

φ =
∑

k

ψk

∂

∂zk
,

where ψk =
∑

j cjk(z1, . . . , zn)φj. Since the φj’s commute and the cjk’s are scalars,

the ψk’s also mutually commute. Thus by (3.3), φ defines a co-Higgs structure on
V . Hence, given a tuple (A1, . . . , An) of commuting filtered endomorphisms of V ,
we obtain an equivariant co-Higgs structure on V .

In the other direction, given any equivariant co-Higgs structure φ on V , we may
write φ, on the open orbit, as in (3.5). We use the fact any torus-equivariant vector
bundle is trivial over the open orbit. As the vector fields tj

∂
∂tj

are T -invariant, the

φj’s are also T -invariant. Moreover, as the open orbit is an affine toric chart, and φ is
a co-Higgs field, the φj’s commute mutually by (3.3). Then we define Aj = φj(x0).
As φj is a T -equivariant endomorphism of V , the endomorphisms Aj respect the
Klyachko Σ-filtration.

It is now straightforward to check that the above association is a bijection. �

3.3. Examples for the theorem. As an example, we take V to be the tangent
bundle TX . We will describe the toric co-Higgs fields on V for certain toric varieties
X , and also some co-Higgs fields that are not invariant but only semi-invariant. Let
ρ1, . . . , ρm denote the elements of |Σ(1)|. We may assume without loss of generality
that ρ1, . . . , ρn form an integral basis of the co-character lattice of T . We choose the
closed point x0 in the open orbit to correspond to the identity element of T . Then
the underlying vector space E = Vx0

of the Klyachko Σ-filtration may be identified
with

C

〈

∂

∂t1
, . . . ,

∂

∂tn

〉

∼= C〈ρ1, . . . , ρn〉 .
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Recall that under the action (3.4) the derivation ∂
∂tj

has weight tj. It then follows

from (3.2) that the Klyachko filtration on TPn (cf. [12, p. 350]) is given by

Eρj (i) =







0 if i > 1
C〈ρj〉 if i = 1
E if i ≤ 0 .

Now, let X = Pn. Then, we have m = n + 1 and ρn+1 = −
∑n

j=1 ρj . In this
case, the only filtered endomorphisms of E are constant multiples of the identity
map. Thus, any toric co-Higgs field on TPn is of the form s⊗ 1 where s =

∑

ajtj
∂
∂tj

for some aj ∈ C. However, TPn admists others co-Higgs fields. For instance, each
∂
∂tj

is a global semi-invariant section of TPn with weight tj . Thus, ∂
∂tj

⊗ 1 is a

semi-invariant co-Higgs field on the bundle TPn, which is not toric according to our

definition. Moreover,
(

∂
∂t1

+ ∂
∂t2

)

⊗ 1 is a co-Higgs field on TPn, for n ≥ 2, which is

not even semi-invariant.

More generally, we obtain a larger class of filtered endomorphisms of E when X
is the product of projective spaces. For instance, let X = P1 × P1. In this case,
|Σ(1)| = {ρ1, . . . , ρ4} where ρ1 = (1, 0) = −ρ3 and ρ2 = (0, 1) = −ρ4. Thus,
E ∼= C〈ρ1〉 ⊕C〈ρ2〉 and filtered endomorphisms of E are given by diagonal matrices
with respect to this decomposition. Since any two diagonal matrices commute, a
toric co-Higgs field on TX is of the form φ1t1

∂
∂t1

+ φ2t2
∂
∂t2

where φ1 and φ2 are
arbitrary filtered endomorphisms of E.

4. Existence of a moduli scheme

We fix a toric bundle V on a non-singular toric variety X of dimension n with fan
Σ. Let x0 be a closed point of T and put E = Vx0

as in the preceding section. We
use Hρ to refer to the parabolic subgroup of GL(E) that preserves the filtration Eρ

on E. Then, the group of endomorphisms of the Σ-filtration {Eρ(i)} coincides with
the group HV :=

⋂

ρH
ρ. Notice that the group HV contains the center of GL(E).

Denote by HV [n] the set of n-tuples of pairwise-commuting elements of the group
HV . Now, Theorem 3.2 can be recast as:

Corollary 4.1. If X is a nonsingular complex projective toric variety and V is any

toric bundle on X, then invariant co-Higgs fields φ for V are in 1 : 1 correspondence

with elements of HV [n].

Now, we wish to consider all isomorphism classes [V ] of toric bundles on X hav-
ing fixed rank r and fixed T -equivariant Chern classes. These classes can be defined
explicitly within the equivariant Chow cohomology ring of X in terms of Klyachko’s
filtration as per [13]. As per [14], let Vfr

X (r, ψ) be the fine moduli space of rank-r
toric vector bundles framed at x0 and with total equivariant Chern class ψ. It is
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then a result of Payne [14, Corollary 3.11] that if PGL(r) acts freely on Vfr
X (r, ψ),

then there exists an associated coarse moduli scheme VX(r, ψ) of toric bundles on X
with that total equivariant Chern class. In light of this, our result gives rise to:

Corollary 4.2. When the group PGL(r) acts freely on Vfr
X (r, ψ), there exists a

scheme

CX(r, ψ)
π

−→ VX(r, ψ),

with fibers π−1([V ]) ∼= HV [n], that can be identified with a quasiprojective coarse

moduli scheme of toric co-Higgs bundles on X of fixed rank r and total equivariant

Chern class ψ.

We take the opportunity now to mention a few natural questions for further study.
First, assuming the fibration π exists, when is it flat? Recall that flat morphisms,
in reasonable circumstances, have strong topological properties. For instance, the
fibers of a surjective, faithfully flat morphism of irreducible varieties will have the
expected dimension, which is the difference in the dimensions of the ambient schemes.

Second, does CX(r, ψ) inherit arbitrarily bad singularities from VX(r, ψ), as per
the “Murphy’s Law” for toric bundles in [14, Section 4], and under which condi-
tion(s) does it becomes smooth? It is known that in the rank-2 case that the framed

moduli Vfr
X (2, ψ) is smooth. It is natural to ask whether this holds for co-Higgs case.

Moreover, it would be desirable to understand the relationship of this construction
to either Mumford-Takemoto or Gieseker stability for co-Higgs bundles in general.
In particular, Simpson’s moduli space of Λ-modules [19], where Λ is a coherent
sheaf of OX -modules, produces a moduli space of Gieseker-stable coherent co-Higgs
sheaves on X when Λ = Sym•(T ∗X) (cf. [17, Section 2] for further details on this
correspondence in the co-Higgs setting). Interpreting the variation of toric structures
on V with regards to the moduli problem for Λ-modules is an interesting direction
for further exploration. Finally, classifying toric co-Higgs bundles over singular toric
varieties is a natural problem to explore.
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