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The well known Douglas Lemma says that for operators A, B on Hilbert space that 
AA∗ −BB∗ � 0 implies B = AC for some contraction operator C. The result carries 
over directly to classical operator-valued Toeplitz operators simply by replacement 
of operator by Toeplitz operator throughout. Free functions generalize the notion of 
free polynomials and formal power series and trace back to the work of J. Taylor in 
the 1970s. They are of current interest, in part because of their connections with free 
probability and engineering systems theory. In this article, for given free functions 
a and b with noncommutative domain K defined by free polynomial inequalities, we 
obtain a sufficient condition in terms of the difference aa∗ − bb∗ for the existence of 
a free function c taking contractive values on K such that b = ac. The connection 
to recent work of Agler and McCarthy and their free Toeplitz Corona Theorem is 
expounded.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Free functions can be traced back to the work of Taylor [27,28] and generalize formal power series which 

appear in the study of finite automata [26]. More recently they have been of interest for their connections with 

free probability and engineering systems theory, see for instance, [34,33,32,7,14,16,1,22,23,21,24,20,2–4,6].

This article provides a conceptually different proof of a result in [2] of a sufficient condition for the 

existence of a factorization b = ac, for free functions a, b and a free contractive-valued function c on a free 

domain determined by free polynomials. In the classical context, this is the problem of Leech. See [17]. As 

a consquence of our main result, the Toeplitz Corona Theorem of [2] is obtained. For more on the Corona 

and the Toeplitz-Corona problems, see [2,9,10,18,19,25,29,31,12,5,8,30].

All Hilbert spaces considered in this article are complex and separable. Let Cn×n denote the set of 

n × n complex matrices and Cd
∞ denote graded set ((Cn×n)d)n, where (Cn×n)d is the set of d-tuples 

X = (X1, . . . , Xd) of n × n matrices. Observe that the graded set Cd
∞ is closed with respect to direct sums 

and unitary conjugations.
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More generally, a non-commutative set L = (L(n))n is a graded set where L(n) ⊂ (Cn×n)d such that for 

X ∈ L(m), Y ∈ L(n) and a unitary matrix U ∈ C
m×m,

(i) X ⊕ Y = (X1 ⊕ Y1, . . . , Xd ⊕ Yd) ∈ L(m + n); and

(ii) U∗XU = (U∗X1U, . . . , U∗XdU) ∈ L(m).

It is to be noted that a non-commutative set is defined using property (i) only, in [16].

Let B(H, E) denote the set of bounded operators from the Hilbert space H to the Hilbert space E . We 

will use the notation B(H) for B(H, H).

A B(H, E)-valued non-commutative function defined on the non-commutative set L is a function such 

that for X ∈ L(m), Y ∈ L(n),

(i) f(X) ∈ B(H ⊗ C
m, E ⊗ C

m).

(ii) f(X ⊕ Y ) = f(X) ⊕ f(Y ).

(iii) f(S−1XS) = (IE ⊗ S−1)f(X)(IH ⊗ S) whenever S ∈ C
m×m is invertible and S−1XS ∈ L(m).

We will say that such a function is bounded if supn∈N En < ∞, where En = supX∈L(n) ‖f(X)‖. Henceforth 

we will use the abbreviation “nc” for “non-commutative”.

A typical example of an nc function is a free polynomial in the d non-commuting variables x1, . . . , xd, 

which is defined as follows.

Let Fd be the semigroup of words formed using the d-symbols x1, . . . , xd and the empty word ∅ denote 

the identity element of Fd. A B(Ck)-valued free polynomial in the non-commuting variables x1, . . . , xd is 

a finite formal sum of the form 
∑

w∈Fd
pww, where pw ∈ B(Ck). For w = xj1

xj2
. . . xjm

, the evaluation 

of p at X ∈ (Cn×n)d, is given by p(X) =
∑

w∈Fd
pw ⊗ Xw ∈ B(Ck ⊗ C

n), where Xw = Xj1
Xj2

. . . Xjm
. 

For 0 ∈ (Cn×n)d, p(0) := p∅ ⊗ In. It is easy to see that p is a B(Ck)-valued nc function defined on the nc 

set C
d
∞.

Let ǫ and δ be B(Ck)-valued free polynomials in x1, . . . , xd and let K denote the graded set (K(n))n, 

where

K(n) = {X ∈ (Cn×n)d : ∃ c > 0 such that ǫ(X)ǫ(X)∗ − δ(X)δ(X)∗ ≻ c(Ik ⊗ In)}. (1)

Observe that the graded set K = (K(n))n is an nc set. Throughout this article, we will consider this nc set 

with the additional assumption that 0 ∈ K(1). Our main result is the following.

Proposition 1. Let E1, E2, E3 be Hilbert spaces and suppose that a and b are bounded B(E2, E3) and B(E1, E3)

valued nc-functions on K. There exists a B(E1, E2) valued nc-function f such that, for all n and X ∈ K(n),

(i) ‖f(X)‖ ≤ 1; and

(ii) a(X)f(X) = b(X),

if there exists a B(ℓ2 ⊗ C
k, E3)-valued nc function h defined on K such that

a(T )a(R)∗ − b(T )b(R)∗ = h(T )[Iℓ2 ⊗ (ǫ(T )ǫ(R)∗ − δ(T )δ(R)∗)]h(R)∗ (2)

for all n ∈ N and R, T ∈ K(n).

A key ingredient in the proof is the existence of a left-invariant Haar probability measure on the compact 

group of unitary matrices in Cn×n.
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Observe that if ǫ = Ik∅, where ∅ ∈ Fd is the empty word, then K is the domain Gδ = (Gδ(n)) considered 

in [2], where

Gδ(n) = {X = (X1, . . . , Xd) : ‖δ(X)‖ < 1} ⊂ (Cn×n)d, (3)

with the additional assumption that 0 ∈ Gδ(1). The following theorem for the domain Gδ has been proved 

in [2].

Theorem 1. Let E1, E2, E3 be finite-dimensional Hilbert spaces and suppose that a and b are bounded B(E2, E3)

and B(E1, E3) valued nc-functions on K = Gδ. The following are equivalent.

(i) There exists a B(ℓ2 ⊗ C
k, E3) valued nc-function h defined on K such that

a(T )a(R)∗ − b(T )b(R)∗ = h(T )[Iℓ2 ⊗ ((Ik ⊗ In) − δ(T )δ(R)∗)]h(R)∗

for all n ∈ N and R, T ∈ K(n).

(ii) There exists a bounded B(E1, E2) valued nc-function f such that ‖f(X)‖ ≤ 1 and a(X)f(X) = b(X), 

for all n ∈ N and X ∈ K(n).

(iii) a(X)a(X)∗ − b(X)b(X)∗ � 0 for all n ∈ N and X ∈ K(n).

It is immediate that a proof of the implication (i) =⇒ (ii) of Theorem 1, follows from Proposition 1

by taking ǫ = Ik∅. Thus the proof given here of Proposition 1, exploiting the Haar measure, provides an 

alternate and conceptually different proof of (i) =⇒ (ii) than the one given in [2].

The article is organized as follows. Section 2 contains some preliminary lemmas that will be used in the 

sequel. Section 3 contains the proofs of Proposition 1 (the main result of this article) and Theorem 1. The 

article ends with the Toeplitz-Corona theorem of [2] for the nc domain K = Gδ with 0 ∈ K(1).

2. Preliminaries

Lemma 1. Let X , Y be separable Hilbert spaces and W ∈ B(X ⊗C
n, Y ⊗C

n). If W = (IY ⊗ V )W (IX ⊗ V ∗)

for all unitaries V ∈ C
n×n, then there exists an operator W ∈ B(X , Y) such that W = W ⊗ In.

Proof. The result is an embodiment of the fact that the only n × n matrices which commute with all n × n

matrices are multiples of the identity. Since (IY ⊗V )W = W (IX ⊗V ) for every unitary V ∈ C
n×n, it follows 

that

(IY ⊗ X)W = W (IX ⊗ X) (4)

for every X ∈ C
n×n. Let {e1, . . . , en} denote an orthonormal basis for Cn and let Ej,k = eje∗

k denote the 

resulting matrix units. Write W =
∑

Wj,k ⊗ Ej,k for operators Wj,k : X → Y. Choosing, for 1 ≤ α, β ≤ n, 

the matrix X = eαe∗
β , from Eq. (4) it follows that

∑

k

Wβ,k ⊗ eαe∗
k =

∑

j

Wj,α ⊗ eje∗
β .

Hence, Wβ,k = 0 for k �= β, Wj,α = 0 for j �= α and Wα,α = Wβ,β and the result follows by taking 

W = Wα,α. ✷
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Lemma 2. Let H be a Hilbert space and suppose A, B ∈ B(H). If AA∗ − BB∗ ≻ cI for some c > 0, then 

there exists a unique E ∈ B(H) such that B∗ = E∗A∗ and ‖E∗‖ ≤ 1. Moreover, if H is finite dimensional, 

then E is unique and ‖E∗‖ < 1.

Proof. The Douglas lemma [11] implies the existence of a contraction E such that B = AE assuming 

only that AA∗ − BB∗ � 0. Since the hypotheses imply that AA∗ � cI is invertible, in the case that H is 

finite dimensional, it follows that A is invertible and E = A−1B is uniquely determined. Moreover, since 

A(I − EE∗)A∗ � cI and A is invertible, E is a strict contraction. ✷

3. The proofs

Let G(n) = {U ∈ C
n×n : U∗U = I}. It is well known that G(n) is a compact group with respect to 

multiplication. Hence there exists a unique left-invariant Haar measure h(n) on G(n) such that h(n)(G) = 1

and

∫

G(n)

f(U)dh(n)(U) =

∫

G(n)

f(V U)dh(n)(U), (5)

for all continuous functions f : G(n) → C and U, V ∈ G(n). For more details see [9].

Recall the nc set K defined in (1) and the assumption that 0 ∈ K(1).

Proof of Proposition 1. Fix n ∈ N. For all R, T ∈ K(n), rearranging (2) yields,

a(T )a(R)∗ + h(T )[Iℓ2 ⊗ δ(T )δ(R)∗]h(R)∗

= h(T )[Iℓ2 ⊗ ǫ(T )ǫ(R)∗]h(R)∗ + b(T )b(R)∗. (6)

Consider the closed subspaces:

D(n) = span

{[

(Iℓ2 ⊗ δ(R)∗)h(R)∗

a(R)∗

]

x : x ∈ E3 ⊗ C
n, R ∈ K(n)

}

,

R(n) = span

{[

(Iℓ2 ⊗ ǫ(R)∗)h(R)∗

b(R)∗

]

x : x ∈ E3 ⊗ C
n, R ∈ K(n)

}

of (ℓ2 ⊗ C
k ⊗ C

n) ⊕ (E2 ⊗ C
n) and (ℓ2 ⊗ C

k ⊗ C
n) ⊕ (E1 ⊗ C

n) respectively.

Let W (n) : D(n) → R(n) be the linear map obtained by extending the map

[

(Iℓ2 ⊗ δ(R)∗)h(R)∗

a(R)∗

]

x →

[

(Iℓ2 ⊗ ǫ(R)∗)h(R)∗

b(R)∗

]

x

linearly to all of D(n). It follows from Eq. (6) that Wn : D(n) → R(n) is an isometry (and hence the map 

is indeed well defined). Since the dimensions of D(n)⊥
and R(n)⊥

are equal (to infinity), it follows that 

W (n) : D(n) → R(n) can be extended to a unitary V (n). Thus

V (n) :=

(

A(n) B(n)

C(n) D(n)

)

: (ℓ2 ⊗ C
k ⊗ C

n) ⊕ (E2 ⊗ C
n) → (ℓ2 ⊗ C

k ⊗ C
n) ⊕ (E1 ⊗ C

n)

and satisfies

(

A(n) B(n)

C(n) D(n)

) (

(Iℓ2 ⊗ δ(R)∗)h(R)∗

a(R)∗

)

=

(

(Iℓ2 ⊗ ǫ(R)∗)h(R)∗

b(R)∗

)

(7)
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i.e.

k
∑

ℓ=1

A(n)(Iℓ2 ⊗ δ(R)∗)h(R)∗ + B(n)a(R)∗ = (Iℓ2 ⊗ ǫ(R)∗)h(R)∗, (8)

C(n)(Iℓ2 ⊗ δ(R)∗)h(R)∗ + D(n)a(R)∗ = b(R)∗. (9)

The rest of the proof will only use the fact that V (n) is a contraction (although it is in fact unitary). Let 

U ∈ G(n). Observe that U∗RU ∈ K(n). Moreover,

(Iℓ2 ⊗ δ(U∗RU)∗)h(U∗RU)∗ = (Iℓ2 ⊗ Ik ⊗ U∗)(Iℓ2 ⊗ δ(R)∗)h(R)∗(IE3
⊗ U),

a(U∗RU)∗ = (IE2
⊗ U∗)a(R)∗(IE3

⊗ U) and

b(U∗RU)∗ = (IE1
⊗ U∗)b(R)∗(IE3

⊗ U).

Thus replacing R in Eqs. (8) and (9) by U∗RU yields,

A(n)(Iℓ2 ⊗ Ik ⊗ U∗)(Iℓ2 ⊗ δ(R)∗)h(R)∗(IE3
⊗ U)

+ B(n)(IE2
⊗ U∗)a(R)∗(IE3

⊗ U) = (Iℓ2 ⊗ Ik ⊗ U∗)(Iℓ2 ⊗ ǫ(R)∗)h(R)∗(IE3
⊗ U), (10)

and

C(n)(Iℓ2 ⊗ Ik ⊗ U∗)(Iℓ2 ⊗ δ(R)∗)h(R)∗(IE3
⊗ U)

+ D(n)(IE2
⊗ U∗)a(R)∗(IE3

⊗ U) = (IE1
⊗ U∗)b(R)∗(IE3

⊗ U). (11)

Multiplying Eq. (10) on the left by (Iℓ2 ⊗ Ik ⊗ U) and on the right by (IE3
⊗ U∗) and Eq. (11) on the left 

by (IE1
⊗ U) and on the left by (IE3

⊗ U∗) yields,

(Iℓ2 ⊗ Ik ⊗ U)A(n)(Iℓ2 ⊗ Ik ⊗ U∗)(Iℓ2 ⊗ δ(R)∗)h(R)∗

+ (Iℓ2 × Ik ⊗ U)B(n)(IE2
⊗ U∗)a(R)∗ = (Iℓ2 ⊗ ǫ(R)∗)h(R)∗, (12)

and

(IE1
⊗ U)C(n)(Iℓ2 ⊗ Ik ⊗ U∗)(Iℓ2 ⊗ δ(R)∗)h(R)∗

+ (IE1
⊗ U)D(n)(IE2

⊗ U∗)a(R)∗ = b(R)∗. (13)

Let Ã(n), B̃(n), C̃(n) and D̃(n) denote the bounded (in fact, contractive) operators that satisfy

〈Ã(n)x, y〉 =

∫

G(n)

〈A(n)(Iℓ2 ⊗ Ik ⊗ U∗)x, (Iℓ2 ⊗ Ik ⊗ U∗)y〉 dh(n)(U)

〈B̃(n)a, b〉 =

∫

G(n)

〈B(n)(IE2
⊗ U∗)a, (Iℓ2 ⊗ Ik ⊗ U∗)b〉 dh(n)(U)

〈C̃(n)z, w〉 =

∫

G(n)

〈C(n)(Iℓ2 ⊗ Ik ⊗ U∗)z, (IE1
⊗ U∗)w〉 dh(n)(U)

〈D̃(n)g, h〉 =

∫

G(n)

〈D(n)(IE2
⊗ U∗)g, (IE1

⊗ U∗)h〉 dh(n)(U) (14)
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for all x, y, b, z ∈ ℓ2 ⊗C
k ⊗C

n; a, g ∈ E2 ⊗C
n; w, h ∈ E1 ⊗C

n. Moreover, for x ∈ E3 ⊗C
n and y ∈ ℓ2 ⊗C

k ⊗C
n, 

u ∈ E3 ⊗ C
n and v ∈ E1 ⊗ C

n, it follows from Eqs. (14), (12) and (13) that

〈

[Ã(n)(Iℓ2 ⊗ δ(R)∗)h(R)∗ + B̃(n)a(R)∗]x, y
〉

=

∫

G(n)

〈

[(Iℓ2 ⊗ Ik ⊗ U)A(n)(Iℓ2 ⊗ Ik ⊗ U∗)(Iℓ2 ⊗ δ(R)∗)h(R)∗

+ (Iℓ2 ⊗ Ik ⊗ U)B(n)(IE2
⊗ U∗)a(R)∗]x, y

〉

dh(n)(U)

=

∫

G(n)

〈(Iℓ2 ⊗ ǫ(R)∗)h(R)∗x, y〉 dh(n)(U)

= 〈(Iℓ2 ⊗ ǫ(R)∗)h(R)∗x, y〉 (15)

as well as

〈

[C̃(n)(Iℓ2 ⊗ δ(R)∗)h(R)∗ + D̃(n)a(R)∗]u, v
〉

=

∫

G(n)

〈

[(IE1
⊗ U)C(n)(Iℓ2 ⊗ Ik ⊗ U∗)(Iℓ2 ⊗ δ(R)∗)h(R)∗

+ (IE1
⊗ U)D(n)(IE2

⊗ U∗)a(R)∗]u, v
〉

dh(n)(U)

=

∫

G(n)

〈b(R)∗u, v〉 dh(n)(U).

= 〈b(R)∗u, v〉 (16)

Eqs. (15) and (16) together imply that

(

Ã(n) B̃(n)

C̃(n) D̃(n)

) (

(Iℓ2 ⊗ δ(R)∗)h(R)∗

a(R)∗

)

=

(

(Iℓ2 ⊗ ǫ(R)∗)h(R)∗

b(R)∗

)

.

Also, observe that 

(

Ã(n) B̃(n)

C̃(n) D̃(n)

)

is a contraction. Lastly, for V ∈ G(n), the left invariance property of the 

Haar measure h implies that Ã(n), B̃(n), C̃(n) and D̃(n) are invariant under conjugation by I ⊗ V and hence

Ã(n) = (Iℓ2 ⊗ Ik ⊗ V )Ã(n)(Iℓ2 ⊗ Ik ⊗ V ∗)

B̃(n) = (Iℓ2 ⊗ Ik ⊗ V )B̃(n)(IE2
⊗ V ∗)

C̃(n) = (IE1
⊗ V )C̃(n)(Iℓ2 ⊗ Ik ⊗ V ∗)

D̃(n) = (IE1
⊗ V )D̃(n)(IE2

⊗ V ∗).

It follows from Lemma 1 that there exist bounded operators A(n), B(n), C(n), and D(n) such that Ã(n) =

A(n) ⊗ In, B̃(n) = B(n) ⊗ In, C̃(n) = C(n) ⊗ In and D̃(n) = D(n) ⊗ In, where A(n) ∈ B(ℓ2 ⊗ C
k), B(n) ∈

B(E2, ℓ2 ⊗ C
k), C(n) ∈ B(ℓ2 ⊗ C

k, E1) and D(n) ∈ B(E2, E1). Moreover,

(

A(n) B(n)

C(n) D(n)

)

: (ℓ2 ⊗ C
k) ⊕ E2 → (ℓ2 ⊗ C

k) ⊕ E1

is a contraction.
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Let H = (ℓ2 ⊗ C
k) ⊕ E2 and E = (ℓ2 ⊗ C

k) ⊕ E1. Observe that H ⊕ E is separable. At this point, it has 

been proved that there exists an operator V ∈ B(H, E) such that ‖V‖ ≤ 1 and

V ⊗ In

(

(I ⊗ δ(R)∗)h(R)∗

a(R)∗

)

=

(

(I ⊗ ǫ(R)∗)h(R)∗

b(R)∗

)

. (17)

Let

Ln =

{(

0 0

V 0

)

: ‖V‖ ≤ 1 and (V ⊗ In) solves (17)

}

⊂ B(H ⊕ E).

The argument above implies that Ln �= ∅ for each n ∈ N. It is also the case that Ln is a WOT-closed 

subset of the WOT-compact unit ball of B(H ⊕ E). Thus Ln is WOT-compact for each n ∈ N. Moreover 

since 0 ∈ K(1), it follows that Ln ⊃ Ln+1. By the nested intersection property of compact sets, 
⋂

n∈N

Ln

is non-empty. Say 

(

0 0

V 0

)

∈
⋂

n∈N

Ln, where V =

(

A B

C D

)

with A ∈ B(ℓ2 ⊗ C
k), B ∈ B(E2, ℓ2 ⊗ C

k), 

C ∈ B(ℓ2 ⊗ C
k, E1) and D ∈ B(E2, E1).

For all n ∈ N and R ∈ K(n), we have,

(A ⊗ In)(Iℓ2 ⊗ δ(R)∗)h(R)∗ + (B ⊗ In)a(R)∗ = (Iℓ2 ⊗ ǫ(R)∗)h(R)∗ (18)

(C ⊗ In)(Iℓ2 ⊗ δ(R)∗)h(R)∗ + (D ⊗ In)a(R)∗ = b(R)∗. (19)

By Lemma 2, for each n ∈ N and R ∈ K(n) there exists a uniquely determined strict contraction 

γ(R) ∈ B(Ck ⊗ C
n) such that

δ(R)∗ = γ(R)∗ǫ(R)∗. (20)

Since ‖A ⊗ In‖ ≤ 1 and ‖γ(R)∗‖ < 1, rearranging Eq. (18) and using (20) yields,

(Iℓ2 ⊗ ǫ(R)∗)h(R)∗ = {Iℓ2 ⊗ Ik ⊗ In − (A ⊗ In)(Iℓ2 ⊗ γ(R)∗)}−1(B ⊗ In)a(R)∗. (21)

Using (21) and (20) in (19) yields,

[(C ⊗ In)(Iℓ2 ⊗ γ(R)∗){Iℓ2 ⊗ Ik ⊗ In

− (A ⊗ In)(Iℓ2 ⊗ γ(R)∗)}−1(B ⊗ In) + (D ⊗ In)]a(R)∗ = b(R)∗. (22)

For n ∈ N, R ∈ K(n), define the function f on K by

f(R) = [(C ⊗ In)(Iℓ2 ⊗ γ(R)∗){Iℓ2 ⊗ Ik ⊗ In

− (A ⊗ In)(Iℓ2 ⊗ γ(R)∗)}−1(B ⊗ In) + (D ⊗ In)]∗ (23)

Thus f is a B(E1, E2)-valued graded function which satisfies a(R)f(R) = b(R). Moreover, for R ∈ K(n) and 

S ∈ K(m), since γ(R ⊕ S) = γ(R) ⊕ γ(S), it follows that,

f(R ⊕ S) = [(C ⊗ In+m)(Iℓ2 ⊗ γ(R ⊕ S)∗){Iℓ2 ⊗ Ik ⊗ In+m

− (A ⊗ In+m)(Iℓ2 ⊗ γ(R ⊕ S)∗)}−1(B ⊗ In+m) + (D ⊗ In+m)]∗

= f(R) ⊕ f(S).

i.e. f preserves direct sums.
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Finally, to show that f is an nc function, suppose R ∈ K(n) and S is an invertible n × n matrix 

such that S−1RS ∈ K(n). We need to show that f(S−1RS) = (IE2
⊗ S−1)f(R)(IE1

⊗ S). Observe that 

γ(R)∗ is uniquely determined by (20), since ǫ(R)∗ is invertible. From the form of f , it is enough to show 

γ(S−1RS) = (Ik ⊗ S−1)γ(R)(Ik ⊗ S). To this end, observe that,

(Ik ⊗ S∗)δ(R)∗(Ik ⊗ (S∗)
−1

) = δ(S−1RS)∗

= γ(S−1RS)∗ǫ(S−1RS)∗

= γ(S−1RS)∗(Ik ⊗ S∗)ǫ(R)∗(Ik ⊗ (S∗)
−1

). (24)

Thus

(Ik ⊗ S∗)γ(R)∗ǫ(R)∗(Ik ⊗ (S∗)
−1

) = γ(S−1RS)∗(Ik ⊗ S∗)ǫ(R)∗(Ik ⊗ (S∗)
−1

).

Since ǫ(R)∗(Ik ⊗ (S∗)
−1

) is invertible, taking adjoints, it follows that

(Ik ⊗ S−1)γ(R)(Ik ⊗ S) = γ(S−1RS).

The proof is complete if we show that ‖f(R)‖ ≤ 1 for every n ∈ N and R ∈ K(n). Recall that for all n ∈ N, 

V ⊗ In =

(

A B

C D

)

=

(

A ⊗ In B ⊗ In

C ⊗ In D ⊗ In

)

is a contraction. Thus there exist bounded operators P and Q

such that

(

P∗P P∗Q

Q∗P Q∗Q

)

=

(

Iℓ2⊗Ck⊗Cn 0

0 IE2⊗Cn

)

−

(

A∗ C∗

B∗ D∗

) (

A B

C D

)

� 0. (25)

For notational convenience, let Γ(R) := (Iℓ2 ⊗ γ(R)∗), Δ(R) := (Iℓ2 ⊗ Ik ⊗ In − AΓ(R)) and Φ(R) :=

Δ(R)−1. We have f(R)∗ = D + CΓ(R)Φ(R)B. Using Eq. (25), for n ∈ N and X ∈ K(n), we have, as in [13],

(IE2
⊗ In) − f(R)f(R)∗ = (IE2

⊗ In) − D∗D − B∗Φ(R)∗Γ(R)∗C∗D

− D∗CΓ(R)Φ(R)B − B∗Φ(R)∗Γ(R)∗C∗CΓ(R)Φ(R)B

= Q∗Q + B∗B + B∗Φ(R)∗Γ(R)∗(A∗B + P∗Q)

+ (B∗A + Q∗P)Γ(R)Φ(R)B

− B∗Φ(R)∗Γ(R)∗(I − A∗A − P∗P)Γ(R)Φ(R)B

= B∗Φ(R)∗[Δ(R)∗Δ(R) + Γ(R)∗A∗Δ(R) + Δ(R)∗AΓ(R)

− Γ(R)∗(I − A∗A)Γ(R)]Φ(R)B

+ Q∗Q + B∗Φ(R)∗Γ(R)∗P∗Q + Q∗PΓ(R)Φ(R)B

+ B∗Φ(R)∗Γ(R)∗P∗PΓ(R)Φ(R)B

= B∗Φ(R)∗[I − Γ(R)∗Γ(R)]Φ(R)B

+ (Q + PΓ(R)Φ(R)B)∗(Q + PΓ(R)Φ(R)B)

� 0. ✷
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Proof of Theorem 1. (i) implies (ii): Follows from Proposition 1, by letting ǫ = Ik∅.

(ii) implies (iii): Observe that for each n ∈ N and X ∈ K(n),

a(X)a(X)∗ − b(X)b(X)∗ = a(X)a(X)∗ − a(X)f(X)f(X)∗a(X)∗

= a(X)(IE2
⊗ In − f(X)f(X)∗)a(X)∗

� 0. (26)

(iii) implies (i): This is the content of Theorem 7.10 in [2]. ✷

Recall the non-commutative set Gδ = (Gδ(n))n from (3). The following is the Toeplitz-Corona theorem 

of [2] for the non-commutative domain Gδ = (Gδ(n)) with the assumption that 0 ∈ Gδ(1). Observe that 

certain well-known non-commutative domains, for example, the non-commutative polydisc, can be realized 

as such Gδ, for suitable δ.

Theorem 2. Let a1, . . . , aℓ be bounded C-valued nc-functions defined on Gδ and μ > 0. If for all n ∈ N

and R ∈ Gδ(n), 
∑ℓ

i=1 ai(R)ai(R)∗ � μ2In, then there exist C-valued nc functions g1, . . . , gℓ defined on Gδ

such that 
∑ℓ

i=1 ai(R)gi(R) = In for each n ∈ N and R ∈ Gδ(n). Moreover the B(C, Cℓ) valued nc function 

g satisfies ‖g(R)‖ ≤ 1
μ

for all n ∈ N and R ∈ Gδ(n), where g(R) = e1 ⊗ g1(R) + · · · + eℓ ⊗ gj(R) and 

e1, e2, . . . , eℓ are the standard unit (column) vectors in Cℓ.

Proof. Letting E1 = E3 = C and E2 = C
ℓ, a(R) = e∗

1 ⊗a1(R) +· · ·+e∗
ℓ ⊗aℓ(R) and b(R) = μIn for R ∈ Gδ(n)

in Theorem 1, the hypothesis becomes a(R)a(R)∗ −b(R)b(R)∗ � 0. Theorem 1 now implies that there exists 

a B(C, Cℓ) valued nc function f such that ‖f(R)‖ ≤ 1 and

[e∗
1 ⊗ a1(R) + · · · + e∗

ℓ ⊗ aj(R)]f(R) = μIn. (27)

Choose C-valued nc functions f1, . . . , fℓ such that f(R) = e1 ⊗ f1(R) + · · · eℓ ⊗ fℓ(R). Using this in Eq. (27)

yields,

ℓ
∑

i=1

ai(R)fi(R) = μIn.

Taking gi = 1
μ

fi; i = 1, 2, . . . , ℓ, completes the proof. ✷

4. Free spectrahedra

Let Λ denote a linear k × k matrix-valued nc polynomial,

Λ(x) =

g
∑

j=1

Ajxj ,

where the Aj are k × k matrices. The corresponding linear pencil is the expression

L(x) = Ik − Λ(x) − Λ(x)∗.

A bit of algebra shows that

L(x) = (Ik − Λ)(x) (Ik − Λ)(x)∗ − Λ(x)Λ(x)∗. (28)
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Given the linear pencil L(x), define the free (non-commutative) spectrahedron (see [15]) associated with the 

linear pencil L(x) by RL = (RL,n)n, where

RL,n = {X ∈ (Cn×n)d : L(X) ≻ 0}.

If one associates with the linear pencil L(x), the nc polynomials ǫ(x) = Ik − Λ(x) and δ(x) = Λ(x), then it 

follows from (28) that the spectrahedron RL is the nc set K = (K(n))n constructed from nc polynomials ǫ

and δ as in Eq. (1). The results of this article apply equally well to such spectrahedra.
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