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Thermodynamic structure of gravitational field

equations from near-horizon symmetries
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Abstract. There exists a strong mathematical resemblance between the on-horizon structure
of the gravitational field equations and the first law of thermodynamics. In this talk, we discuss
how such a structure arises and show that the field equations near any static horizon can be
written as: TdS−dE = PdV . Moreover, the result extends beyond Einstein theory and holds for
Lanczos-Lovelock Lagrangians as well. The entropy S we obtain is precisely the Noether charge
entropy of Wald, and E provides a natural generalization of quasi-local energy of the horizon. We
comment on several implications of this result, particularly the notion of gravitational entropy
[treated as the Noether charge of diffeomorphism invariance] associated with horizons and it’s
role in gravitational dynamics arising out of virtual displacements of the horizon.

1. Introduction

There is an intriguing analogy between the gravitational dynamics of horizons and
thermodynamics, which is not yet understood at a deeper level. It was first noted by
Padmanabhan [1] that gravitational field equations near a static spherically symmetric horizon
has a intriguing structure; the differential form of this structure can be interpreted as virtual
displacement of the horizon, and is, in fact, equivalent to the first law fo thermodynamics:
TdS = dE + P⊥dV . In this talk, we describe how such a result arises out of near-horizon
symmetries of the gravitational field tensor and holds not only for Einstein theory, but arbitrary
Lanczos-Lovelock theory as well. In particular, our discussion brings out the key ingredients
responsible for the thermodynamic structure of field equations as well as the generality of the
result. Moreover, one can identify the expression for horizon entropy with the Noether charge
entropy defined by Wald. Therefore, the question of how “gravity knows about thermodynamics
at all”, finds a natural explanation in the analysis we present. 2

Notation: The metric signature is (−,+,+,+); latin indices go from 0 to 3, and greek indices
from 1 to 3. Capitalized latin indices go over the (D − 2) transverse coordinates.

2. Gravitational field equations as a thermodynamic identity

2.1. Background

The coordinate system best suited for our discussion is given by the metric:

ds2 = −N2dt2 + dn2 + σABdyAdyB (1)

1 Work done in collaboration with T. Padmanabhan, IUCAA, India.
2 For further details and an exhaustive list of references, see [2].
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where σAB(n, yA) is the transverse metric, and the Killing horizon, generated by the timelike
Killing vector field ξ = ∂t, is approached as N2 → 0. Demanding the finiteness of curvature
invariants on the horizon leads to the following Taylor series expansion for the lapse N(n, x, y)
and the transverse metric σAB [3]:

N(n, y) = κn

[
1 − 1

2
R⊥(y;n = 0)n2 + O(n3)

]
(2)

σAB = [σH(y)]AB +
1

2
[σ2(y)]AB n2 + O(n3) (3)

where we have collectively called the transverse coordinates as y, and R⊥ is the Ricci scalar
corresponding to y = constant surface. We shall be interested in a small region in the

neighbourhood of the spacelike (D − 2)-surface; more precisely, we shall assume n ≪ R
−1/2
⊥ ,

and would be interested in the κ → ∞. That is, we shall require the length scale set by κ
to be the smallest of all length scales. The t = constant part of the metric is written by
employing Gaussian normal coordinates for the spatial part of the metric spanned by

(
n, yA

)
,

n being the normal distance to the horizon. Consider the (y = constant) null vectors given by
li =

(
−1,+N−1, 0, 0

)
and ki =

(
−1,−N−1, 0, 0

)
. In the limit we are interested in, it is easy

to check that these vectors satisfy the geodesic equation in affinely parametrized form, that is;
∇ll = 0 = ∇kk 3 . The affine parameter λ, defined by l · ∇λ = 1 can be found by using the
above form of N(n, y); to the leading order, we find that, λ ∼ λH + (1/2)κn2 where λ = λH

is the location of the horizon. Note that, N2l → ξ|H , which implies, 2κ (λ − λH) l → ξ|H . In
subsequent analysis, the differentials of various geometric quantities (such as entropy) defined
on the horizon, which are directly involved in the statement of the first law of thermodynamics,
are to be interpreted as variations with respect to the affine parameter along the outgoing null
geodesics, i.e., λ. This, of course, is the most natural variation that can be chosen on a null

surface. All throughout, we shall take the on the horizon limit by considering a foliation defined
by n = constant surfaces and then taking the limit n → 0.

2.2. Thermodynamic structure of Lanczos-Lovelock tensor

A natural generalization of the above result would be to look at Lanczos-Lovelock Lagrangians,
which are the unique generalizations of Einstein tensor to higher dimensions, and yield equations
of motion which are well behaved. We shall simply outline the derivation here; details can be
found in [2].

The Lanczos-Lovelock (LL) Lagrangians are given by

L(D)
m =

(
1

16π

1

2m

)
δa1b1...ambm

c1d1...cmdm
Rc1d1

a1b1
· · ·Rcmdm

ambm
(4)

The corresponding equations of motion are 2Ei
j = T i

j , where

Ei
j(m) =

(
1

16π

m

2m

)
δa1b1...ambm

jd1...cmdm
Rid1

a1b1
· · ·Rcmdm

ambm
− 1

2
δi
jLm (5)

where m is an integer, and Einstein theory corresponds to m = 1. These Lagrangians have
various special properties which have been discussed extensively in the literature. In particular,
these Lagrangians satisfy: ∇a (∂L/∂Rabcd) = 0.

3 Explicit calculation shows that ∇ll has only “y”-components, given by: −
`

2κ−2
´ ˆ

σAB ∂BR⊥

˜

n=0
∂A +O(n2),

which go to zero in the limit ∂R⊥/κ2
→ 0, which is the limit we are interested in.
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A detailed analysis using Gauss-Codazzi decomposition and Combinatorics leads to

Eâ
b̂
|H =




E⊥ 0 0
0 E⊥ 0
0 0 E‖

[(D−2)×(D−2)]



 (6)

which generalizes the result of Einstein theory. The object of interest, viz. E⊥, turns out to be

E⊥ =

(
1

16π

m

2m

)
σCA EB

A [σ2]
CB

︸ ︷︷ ︸
corr to variation of a lower dim. action!

−
(

1

2

)
L(D−2)

m (7)

Once again, some simple algebraic manipulations similar to those done in the Einstein case puts
this in the form (valid on the horizon):

2E⊥

√
σ δλ =

κ

2π

(
1

8

m

2m−1

)
EBC δλσBC

√
σ

︸ ︷︷ ︸
δλS

− L(D−2)
m

√
σ δλ

︸ ︷︷ ︸
δλE

(8)

where

S = 4πm

∫
dΣ L(D−2)

m−1 7→ 1

4

∫
dΣ (9)

E =

∫ λ

δλ

∫
dΣ L(D−2)

m 7→
∫

λ

1

16π

[∫

y
R‖

√
σ d2y

]
δλ (10)

where the arrows give corresponding expressions for D = 4 Einstein case. The thing to note
is that both terms on RHS are expressible as “variations” of quantities locally defined on the
horizon! In fact, S is precisely the Noether charge entropy as defined by Wald [4]. The quantity E
as defined above gives an expression for energy which matches with known expressions for specific
cases [for example, it gives (1/2)rH for spherically symmetric solutions in D = 4 Einstein theory,
and reproduces the correct mass for spherically symmetric black hole solutions in Lovelock theory
as calculated by others]. In fact, this expression for energy deserves a closer look, since it provides
a very natural generalization of quasilocal energy for aspheric black holes in Einstein as well as
Lovelock gravity.

3. Comments and Discussion

To put the result in appropriate context [5], begin by noting that what we have shown is that
the following relations

E(n̂, n̂) = −E(u,u)︸ ︷︷ ︸
near−horizon symmetry

& E(u,u) = (1/2) T (u, u)︸ ︷︷ ︸
field eq

have a thermodynamic structure. Democracy of all observers then implies that E = (1/2)T are
thermodynamic:

E(u,u) =
1

2
T (u,u) 7−→

all u

E =
1

2
T

Further, note that, in the limit N → 0, we have N2l → ξ. Using this and u = ξ/N , we see that
T (u,u) → T (ξ, l), which is precisely the flow of energy when the horizon undergoes a virtual
displacement along the outgoing null geodesics. 4

4 Incidentally, there is another way to look at this which is worth mentioning: the object g⊥

ab = 2ξ(alb) is the
transverse part of the induced metric on the horizon, and hence Tabξ

alb = (1/2) tr2[Tab], where tr2 is the trace
with respect to g⊥

ab.
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Finally, let us briefly comment on Lagrangians which depend on metric and Riemann tensor
(but not it’s derivatives); i.e., L = L [gab, Rabcd]. Equations of motion are given by:

P cde
a Rbcde − 2∇c∇dPacdb −

1

2
Lgab = 8πTab (11)

where Pabcd is defined as ∂L/∂Rabcd, and inherit all the symmetries of the Riemann tensor. It is
obvious that analyzing the near-horizon symmetries is not going to be easy, particularly due to
the presence of the middle term on LHS; in fact, no such symmetries might exist at all for general
Lagrangians without imposing additional restrictions. One might concentrate [taking hint from
the Lovelock case] on Tabξ

alb without worrying about the symmetries of the field tensor, but
then one risks loosing some crucial link between such symmetries and black hole entropy. Indeed,
that such a link exists is most clearly evident from the work of Carlip [6], and it would in fact
be worthwhile to connect Carlip’s analysis with our result. Nonetheless, we observe that the
thermodynamic structure of field equations are crucially linked to the near-horizon symmetries
and select out a particular class of Lagrangians, the Lanczos-Lovelock Lagrangians. This seems
reasonable since it is only for this class of Lagrangians that one obtains second order equations
of motion and the initial value problem is well defined. Since we do not have any criterion other
than symmetry principles to analyze notions such as gravitational entropy in arbitrary theories
of gravity, such a restriction to Lagrangians is important since it gives us a handle on the sort
of low-energy effective actions we may expect from a full theory of quantum gravity. It must
be remembered that two apparently different types of symmetries [definitely connected in some
yet unknown manner] are evident in our result: the appearance of Wald entropy which arises
as a Noether charge of diffeomorphism invariance (restricted to diffeomorphisms generating
isometries) and the near-horizon symmetry of the field tensor. Our result above already clearly
provides a direct connection of entropy so obtained with gravitational dynamics.
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