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Abstract. There is an intriguing analogy between the gravitational dynamics of horizons and
thermodynamics, which is not yet understood at a deeper level. In fact, it has been shown
for several cases that the on-horizon structure of the gravitational field equations in Einstein
theory have the structure of first law of thermodynamics. In this talk, we discuss how such a
structure arises and show that the field equations near any static horizon can be written as:
TdS−dE = PdV . Moreover, the result extends beyond Einstein theory and holds for Lanczos-
Lovelock lagrangians as well. The entropy S we obtain is precisely the Noether charge entropy of
Wald, and E provides a natural generalization of quasi-local energy of the horizon. We comment
on several implications of this result, particularly the notion of gravitational entropy [treated
as the Noether charge of diffeomorphism invariance] associated with horizons and it’s role in
gravitational dynamics arising out of virtual displacements of the horizon.

1. Introduction

There exists a strong mathematical resemblance between the on-horizon structure of the
gravitational field equations and the first law of thermodynamics. This intriguing structure was
first noted by Padmanabhan [1] in the context static spherically symmetric horizon in Einstein
gravity. In [1] it was shown that the differential form of the on-horizon Einstein equation [more
specifically, the G0

0 and Gr
r components] can be interpreted as virtual displacement of the horizon,

and is, in fact, equivalent to the first law fo thermodynamics: TdS = dE + P⊥dV . In this talk,
we describe how such a result arises out of near-horizon symmetries of the gravitational field
tensor and holds not only for Einstein theory, but arbitrary Lanczos-Lovelock theory as well.
In particular, our discussion brings out the key ingredients responsible for the thermodynamic
structure of field equations as well as the generality of the result. Moreover, one can identify
the expression for horizon entropy with the Noether charge entropy defined by Wald. Therefore,
the question of how “gravity knows about thermodynamics at all”, finds a natural explanation
in the analysis we present. 2

Notation: The metric signature is (−,+,+,+); latin indices go from 0 to 3, and greek indices
from 1 to 3. Capitalized latin indices go over the (D − 2) transverse coordinates.

1 Work done in collaboration with T. Padmanabhan, IUCAA, India.
2 Only the references most directly related to the present talk have been cited here; for further details and an
exhaustive list of references, see [2].

First Mediterranean Conference on Classical and Quantum Gravity (MCCQG 2009) IOP Publishing

Journal of Physics: Conference Series 222 (2010) 012014 doi:10.1088/1742-6596/222/1/012014

c© 2010 IOP Publishing Ltd 1



2. Gravitational field equations as a thermodynamic identity

2.1. Background

The coordinate system best suited for our discussion is given by the metric:

ds2 = −N2dt2 + dn2 + σABdyAdyB (1)

where σAB(n, yA) is the transverse metric, and the Killing horizon, generated by the timelike
Killing vector field ξ = ∂t, is approached as N2 → 0. Demanding the finiteness of curvature
invariants on the horizon leads to the following Taylor series expansion for the lapse N(n, x, y)
and the transverse metric σAB [3]:

N(n, y) = κn

[
1 − 1

2
R⊥(y;n = 0)n2 + O(n3)

]
(2)

σAB = [σH(y)]AB +
1

2
[σ2(y)]AB n2 + O(n3) (3)

where we have collectively called the transverse coordinates as y, and R⊥ is the Ricciscalar
corresponding to y = constant surface. We shall be interested in a small region in the

neighbourhood of the spacelike (D − 2)-surface; more precisely, we shall assume n ≪ R
−1/2
⊥ ,

and would be interested in the κ → ∞. That is, we shall require the length scale set by κ to be
the smallest of all length scales. The t = constant part of the metric is written by employing
Gaussian normal coordinates for the spatial part of the metric spanned by

(
n, yA

)
, n being the

normal distance to the horizon. Consider the (y = constant) null vectors given by:

li =
(
−1,+N−1, 0, 0

)

ki =
(
−1,−N−1, 0, 0

)
(4)

In the limit we are interested in, it is easy to check that these vectors satisfy the geodesic
equation in affinely parametrized form, that is; ∇ll = 0 = ∇kk. [Explicit calculation shows that
∇ll has only “y”-components, given by:

∇ll = −
(
2κ−2

) [
σAB ∂BR⊥

]
n=0

∂A + O(n2) (5)

which go to zero in the limit ∂R⊥/κ2 → 0, which is the limit we are interested in.] The affine
parameter λ, defined by l · ∇λ = 1 can be found by using the above form of N(n, y); to the
leading order, we find that, λ ∼ λH +(1/2)κn2 where λ = λH is the location of the horizon. Note
that, N2l → ξ|H , which implies, 2κ (λ − λH) l → ξ|H . In subsequent analysis, the differentials
of various geometric quantities (such as entropy) defined on the horizon, which are directly
involved in the statement of the first law of thermodynamics, are to be interpreted as variations
with respect to the affine parameter along the outgoing null geodesics, i.e., λ. This, of course, is
the most natural variation that can be chosen on a null surface. All throughout, we shall take
the on the horizon limit by considering a foliation defined by n = constant surfaces and then
taking the limit n → 0.

Aside: Before proceeding to the calculation, we should mention the connection of above metric
with local coordinate system of an accelerated observer. The most common form in which the
latter is written are the so called Fermi normal coordinates, which takes the form (in self-evident
notation):

g00 = −
[
(1 + aµyµ)2 + R0µ0νy

µyν
]

+ O(y3)

g0µ = −2

3
R0ρµσyρyσ + O(y3)

gµν = δµν − 1

3
Rµρνσ yρ yσ + O(y3) (6)
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It is worth noting that the metric we considered above has a very similar form. Of course, it
is simpler than the above metric since while constructing Fermi coordinates, no restriction such
as staticity or constant acceleration is imposed. However, it is worth pursuing this point further
since one ultimately wants to connect the dynamics of gravity with local horizons of accelerated
observers in curved spacetime [see section 3], and so it is important to make precise notions such
as local boost Killing vector field, local Rindler temperature etc. Work towards this is currently
in progress.

2.2. Thermodynamic structure of Einstein tensor

We will now use the near horizon symmetries of the Einstein tensor to prove that the field
equations near the horizon have a thermodynamic interpretation. We begin with the following
expression for the on-horizon structure of the Einstein tensor (which can be found in [3];

G
bξ
bξ
|H = Gbn

bn |H =
1

2
tr [σ2] −

1

2
R‖ (7)

where R‖ is the Ricci scalar of the on-horizon transverse metric, [σH ]AB. The Einstein tensor
components given above are evaluated in an orthonormal tetrad appropriate for a timelike
observer moving along the orbit of the Killing vector field generating the Killing horizon. 3

It is easy to show that, on the horizon: δλ
√

σ = (2κ)−1 √σ tr [σ2] δλ. We can use this

to express G
bξ
bξ

in terms of variation of the transverse area with respect to affine parameter λ.

Further, using the equality G
bξ
bξ
|H = Gbn

bn |H arising out of near-horizon symmetries alongwith the

field equations, give

T
∂

∂λ

[∫
1

4

√
σ d2y

]

H

δλ −
[∫

H

1

8π
R‖

√
σ d2y

]
δλ

2
=

∫

H
P⊥

√
σ d2y δλ = F δλ (8)

where we have identified T = κ/2π as the horizon temperature and used the interpretation of
T bn

bn as normal pressure, P⊥, on the horizon. The last equality defines F as the average normal

force over the horizon “surface” (in the spirit of membrane paradigm) so that F δλ is the virtual
work done in displacing the horizon by an affine distance δλ. The above equation can now be
recognized as

TδλS − δλE = F δλ (9)

where

S =
1

4

∫

y

√
σ d2y (10)

E =

∫

λ

1

16π

[∫

y
R‖

√
σ d2y

]
δλ (11)

give entropy and energy when evaluated at λ = λH . While the expression for entropy is familiar,
the expression for energy is not, but can be shown to reduce to standard expressions in specific
cases.

We have therefore shown that Einstein equations near a static horizon has a highly symmetric
structure which has the form of the first law of thermodynamics. It is trivial to show that the
above expression reproduces the original result of Padmanabhan for static spherical symmetric
case.

3 The validity of expression (7), with the given Taylor series for N(n, yA) and σAB(n, yA), can be easily checked
using a symbolic package such as MAPLE.
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2.3. Thermodynamic structure of Lanczos-Lovelock tensor

A natural generalization of the above result would be to look at Lanczos-Lovelock lagrangians,
which are the unique generalizations of Einstein tensor to higher dimensions, and yield equations
of motion which are well behaved. We shall simply outline the derivation here; details can be
found in [2].

The Lanczos-Lovelock (LL) lagrangians are given by

L(D)
m =

(
1

16π

1

2m

)
δa1b1...ambm

c1d1...cmdm
Rc1d1

a1b1
· · ·Rcmdm

ambm
(12)

The corresponding equations of motion are 2Ei
j = T i

j , where

Ei
j(m) =

(
1

16π

m

2m

)
δa1b1...ambm

jd1...cmdm
Rid1

a1b1
· · ·Rcmdm

ambm
− 1

2
δi
jLm (13)

where m is an integer, and Einstein theory corresponds to m = 1. These lagrangians have
various special properties which have been discussed extensively in the literature. In particular,
these lagrangians satisfy: ∇a (∂L/∂Rabcd) = 0.

A detailed analysis using Gauss-Codazzi decomposition and Combinatorics leads to

Eâ
b̂
|H =




E⊥ 0 0
0 E⊥ 0
0 0 E‖

[(D−2)×(D−2)]



 (14)

which generalizes the result of Einstein theory. The object of interest, viz. E⊥, turns out to be

E⊥ =

(
1

16π

m

2m

)
σCA EB

A [σ2]
CB

︸ ︷︷ ︸
corr to variation of a lower dim. action!

−
(

1

2

)
L(D−2)

m (15)

Once again, some simple algebraic manipulations similar to those done in the Einstein case puts
this in the form (valid on the horizon):

2E⊥

√
σ δλ =

κ

2π

(
1

8

m

2m−1

)
EBC δλσBC

√
σ

︸ ︷︷ ︸
δλS

− L(D−2)
m

√
σ δλ

︸ ︷︷ ︸
δλE

(16)

where

S = 4πm

∫
dΣ L(D−2)

m−1 7→ 1

4

∫
dΣ (17)

E =

∫ λ

δλ

∫
dΣ L(D−2)

m 7→
∫

λ

1

16π

[∫

y
R‖

√
σ d2y

]
δλ (18)

where the arrows give corresponding expressions for D = 4 Einstein case. The thing to note
is that both terms on RHS are expressible as “variations” of quantities locally defined on the
horizon! In fact, S is precisely the Noether charge entropy as defined by Wald [4]. The quantity E
as defined above gives an expression for energy which matches with known expressions for specific
cases [for example, it gives (1/2)rH for spherically symmetric solutions in D = 4 Einstein theory,
and reproduces the correct mass for spherically symmetric black hole solutions in Lovelock theory
as calculated by others]. In fact, this expression for energy deserves a closer look, since it provides
a very natural generalization of quasilocal energy for aspheric black holes in Einstein as well as
Lovelock gravity.

Following exactly the same steps as in Einstein case, we conclude that the field equations can
be written as: TδλS − δλE = Fδλ on the horizon.
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3. Comments and Discussion

To put the result in appropriate context [5], begin by noting that what we have shown is that
the following relations

E(n̂, n̂) = −E(u,u)︸ ︷︷ ︸
near−horizon symmetry

& E(u,u) = (1/2) T (u,u)︸ ︷︷ ︸
field eq

have a thermodynamic structure. Democracy of all observers then implies that E = (1/2)T are
thermodynamic:

E(u,u) =
1

2
T (u,u) 7−→

all u

E =
1

2
T

Further, note that, in the limit N → 0, we have N2l → ξ. Using this and u = ξ/N , we see that
T (u,u) → T (ξ, l), which is precisely the flow of energy when the horizon undergoes a virtual
displacement along the outgoing null geodesics. Incidentally, there is another way to look at this
which is worth mentioning: the object g⊥ab = 2ξ(alb) is the transverse part of the induced metric,

and hence Tabξ
alb = (1/2) tr2[Tab], where tr2 is the trace with respect to the metric 2ξ(alb). For

spherically symmetric spacetimes, since T 0
0 = T r

r = P , we have (1/2) tr2[Tab] = P , which is the
result given in [1].

Finally, let us briefly comment on lagrangians which depend on metric and Riemann tensor
(but not it’s derivatives); i.e., L = L [gab, Rabcd]. Equations of motion are given by:

P cde
a Rbcde − 2∇c∇dPacdb −

1

2
Lgab = 8πTab (19)

where Pabcd is defined as ∂L/∂Rabcd, and inherit all the symmetries of the Riemann tensor. It is
obvious that analyzing the near-horizon symmetries is not going to be easy, particularly due to
the presence of the middle term on LHS; in fact, no such symmetries might exist at all for general
lagrangians without imposing additional restrictions. One might concentrate [taking hint from
the Lovelock case] on Tabξ

alb without worrying about the symmetries of the field tensor, but
then one risks loosing some crucial link between such symmetries and black hole entropy. Indeed,
that such a link exists is most clearly evident from the work of Carlip [6], and it would in fact
be worthwhile to connect Carlip’s analysis with our result. Nonetheless, we observe that the
thermodynamic structure of field equations are crucially linked to the near-horizon symmetries
and select out a particular class of lagrangians, the Lanczos-Lovelock lagrangians. This seems
reasonable since it is only for this class of lagrangians that one obtains second order equations
of motion and the initial value problem is well defined. Since we do not have any criterion other
than symmetry principles to analyze notions such as gravitational entropy in arbitrary theories
of gravity, such a restriction to lagrangians is important since it gives us a handle on the sort
of low-energy effective actions we may expect from a full theory of quantum gravity. It must be
remembered that two apparently different types of symmetries [definitely connected] are evident
in our result: the appearance of Wald entropy which arises as a Noether charge of diffeomorphism
invariance (restricted to diffeomorphisms generating isometries) and the near-horizon symmetry
of the field tensor, which in fact enforces, in the 2-dimensional subspace orthogonal to the
horizon, conformal invariance of matter fields near the Killing horizon. Moreover, our result
above already clearly provides a direct connection of entropy so obtained with gravitational
dynamics.
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