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ABSTRACT 

Transcription bursting creates variation among the individuals of a given population. Bursting 

emerges as the consequence of turning on and off the transcription process randomly. There are at 

least three sub-processes involved in the bursting phenomenon with different timescale regimes 

viz. flipping across the on-off state channels, microscopic transcription elongation events and the 

mesoscopic transcription dynamics along with the mRNA recycling. We demonstrate that when 

the flipping dynamics is coupled with the microscopic elongation events, then the distribution of 

the resultant transcription rates will be over-dispersed. This in turn reflects as the transcription 

bursting with over-dispersed non-Poisson type distribution of mRNA numbers. We further show 

that there exist optimum flipping rates (αC, βC) at which the stationary state Fano factor and 

variance associated with the mRNA numbers attain maxima. These optimum points are connected 

via ( )C C C rα β β γ= + . Here α is the rate of flipping from the on-state to the off-state, β is the rate 

of flipping from the off-state to the on-state and γr is the decay rate of mRNA. When α = β = χ 

with zero rate in the off-state channel, then there exist optimum flipping rates at which the non-

stationary Fano factor and variance attain maxima. Here ( ), 3 2 1C v r rk k tχ + ++  (here rk +
is the rate 

of transcription purely through the on-state elongation channel) is the optimum flipping rate at 

which the variance of mRNA attains a maximum and , 1.72C tκχ  is the optimum flipping rate at 

which the Fano factor attains a maximum. Close observation of the transcription mechanism 

reveals that the RNA polymerase performs several rounds of stall-continue type dynamics before 

generating a complete mRNA. Based on this observation, we model the transcription event as a 

stochastic trajectory of the transcription machinery across these on-off state elongation channels. 

Each mRNA transcript follows different trajectory. The total time taken by a given trajectory is 

the first passage time (FPT). Inverse of this FPT is the resultant transcription rate associated with 

the particular mRNA. Therefore, the time required to generate a given mRNA transcript will be a 

random variable. For a stall-continue type dynamics of RNA polymerase, we show that the overall 

average transcription rate can be expressed as r rk h k+ +
∞ where r rk Lλ+ + , rλ

+
is the microscopic 

transcription elongation rate in the on-state channel and L is the length of a complete mRNA 

transcript and ( )h β α β+
∞ = +    is the stationary state probability of finding the transcription 

machinery in the on-state. 
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INTRODUCTION 

Subcellular process such as transcription and translation of various genes are essential for the 

survival of an organism [1, 2]. Since these processes are mesoscopic in nature, their outcomes such 

as mRNAs and protein molecules are prone to great number fluctuations. Particularly, cells with 

identical genetic materials, produce different levels of mRNAs and proteins corresponding to 

various genes at a given time point. Such variations in the expression of different genes across the 

population of individual cells is essential for the survival of an organism against various extreme 

environmental conditions. The molecular number fluctuations across various cells of a population, 

can be influenced by both intrinsic and extrinsic factors.  The intrinsic noise in gene expression 

arises well within the system itself which is characterized by a set of kinetic parameters such as 

transcription and translation rate constants. On the other hand, external environmental factors such 

as temperature and nutrient fluctuations can perturb these intrinsic kinetic parameters which 

ultimately emerges as the extrinsic noise component [3]. 

 

The stochasticity of the constitutive gene expression has been extensively investigated both 

theoretically and experimentally [4-10]. The fluctuations in the number of mRNAs and protein 

molecules can be well characterized by the corresponding population mean, variance, coefficient 

of variation and the Fano factor. Here coefficient of variation = (standard deviation / mean) and 

Fano factor = (variance / mean). The Fano factor measures the extent of deviation of the molecular 

number fluctuations from the standard Poisson process for which the Fano factor = 1. Populations 

which exhibit Fano factor < 1 are under-dispersed and those populations which exhibit Fano factor 

> 1 are over-dispersed. Detailed theoretical calculations and subsequent experimental studies on 

the unregulated gene expression have shown that the Fano factors associated with the protein 

number fluctuations is more than one and its deviation from the Poisson increases linearly with 

the translational efficiency [8, 11]. Here the translational efficiency = translation rate / decay rate 

of mRNA molecules. On the other hand, the molecular number fluctuations in mRNAs follows a 

typical Poisson process with Fano factor = 1.  

 

Gene expression was initially thought as a continuous process and the probability density functions 

associated with the mRNAs and protein number fluctuations are assumed to be a monomodal type. 

Later experiments revealed the interrupted and bursting nature of mRNAs and protein numbers 

along the temporal axis [12, 13]. Such transcriptional bursting can result in a bimodal or 

multimodal type density functions associated with the number of mRNAs and proteins [12, 14, 

15]. By definition, two stage gene expression involves only transcription and translation processes 

and three stage gene expression incudes on-off state dynamics of the promoter along with the 

transcription and translation. The main sources of transcription bursting can be attributed to the 

initiation and elongation steps [14]. In the process of transcription initiation, the promoter seems 

to be turned on and off in a random manner via the binding-unbinding of the regulatory 

transcription factors (TFs). On the other hand, the RNA polymerase enzyme complex (RNAP) can 

undergo stall-continue type dynamics in the transcription elongation process. Both these types of 

dynamics ultimately introduce a time dependent stochasticity in the overall transcription rate 

constant. Transcription bursting phenomenon has been studied in detail [16-23]. The effects of 

various factors such as negative feedback [17], presence of enhancer elements [24, 25] on the 

frequency of bursting and burst size have also been unraveled in detail. 
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Both the binding-unbinding of regulatory TFs proteins with the promoter and stall-continue type 

dynamics of RNAP in the elongation process ultimately switch on or off the transcription event in 

a time dependent and random manner. Generally, transcription elongation generates positive 

supercoiling ahead of the RNAP complex and leaves negative supercoil trail behind the RNAP 

[26-28]. For a smooth transcription elongation process, these positive and negative supercoils need 

to be relaxed by the gyrase and topoisomerase I enzymes respectively [14]. When there is a lack 

in the number of gyrase molecules to handle the accumulation of positive supercoils ahead of the 

transcribing RNAP, then RNAP complex cannot progress further and subsequently transcription 

event will be stalled. When enough gyrase molecules arrive and relax the accumulated positive 

supercoils, then the transcription event continues and so on. Recent studies revealed the possibility 

of co-transcription of several RNAPs in a convoy with finite interval among them [29, 30]. Within 

a convoy of RNAPs with appropriate spacing among them, there is a possibility that the negative 

supercoil trail of the first RNAP will be cancelled by the positive supercoil ahead of the second 

RNAP and so on. This is the fluid model of transcription elongation which requires generally short 

distances among the RNAPs [29]. The cooperative interactions among the RNAPs of a convoy 

can be either collaborative or antagonistic depending on the spacing among them which can be 

well modelled by the push and push-pull mechanisms [29-31]. The overall interactions among the 

RNAPs of a convoy ultimately result in the random speed up or slowdown of the transcription 

elongation dynamics of individual RNAPs apart from the stall-continue type dynamics of the 

convoy in a time dependent manner. 

 

Clearly, there are three different timescale regimes involved in the transcription bursting viz. (a) 

the timescale associated with the microscopic elongation transitions in the generation of a complete 

mRNA transcript, (b) the timescale associated with the on-off flipping dynamics and (c) the 

timescale associated with the mesoscopic dynamics of mRNA along with its recycling. Interplay 

of these processes (a), (b), and (c) results in the over-dispersion of the distribution of mRNA 

numbers. Almost all the theoretical and experimental studies on the transcription bursting 1) 

assumed slower timescale for the on-off state flipping than the timescale of transcription and decay 

and 2) concentrated on the steady state of the gene expression. In this paper, using a combination 

of theoretical and simulation tools we will show that the flipping across the on-off transcription 

elongation channels introduce stochasticity in the transcription rate and there exists an optimum 

flipping rate at which the variance and Fano factor of mRNA numbers attain the maxima. 

 

THEORY 

Let us consider the typical transcription event along with the recycling of mRNAs well within the 

cellular environment as depicted in Fig. 1. When the transcription happens in a “stall-continue” or 

“on-off” mode of RNA polymerase enzyme complex (RNAP in prokaryotes and RNA Pol II in 

eukaryotes), then it can be described by the following set of coupled master equations. 

( ) ( )
( ) ( )

, 1, 1, , , ,

, 1, 1, , , ,

1

1

t m t r m t r m t r r m t m t m t

t m t r m t r m t r m m t m t m t

p k p m p k m p p p

p k p m p k m p p p

γ γ α β

γ γ α β

+ + + + + + + −
− +

− − − − − − + −
− +

∂ = + + − + − +

∂ = + + − + + −
                                           (1) 

Let us denote ,m tp as the overall probability of finding m number of mRNA molecules at time t 

starting from zero number of mRNAs at time t = 0. The probabilities of finding the transcription 

machinery at the on-off states are described by ,m tp±
where the superscript (+) denotes the on-state 
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and (-) denotes the off-state and the corresponding transcription rates are rk ±
(s-1 when mRNA 

concentration is measured in numbers or M/s when mRNA concentration is measured in M). Let 

us assume that the length of the complete mRNA transcript is L bp where 1 bp = 3.4 x 10-10 m. 

When there is a flipping across the on-off state channels, then the synthesis of a given mRNA 

transcript of interest will eventually follow a random trajectory as described in Fig. 1. We denote 

the resultant transcription rate of this random trajectory as ξ which is the inverse of the total time 

taken by the particular trajectory and it varies from trajectory to trajectory. We define the average 

effective or resultant transcription rate as kr which is the average of ξ across several trajectories 

of the transcription event as rk ξ= . In general, one finds that r rk k− + and r r rk k k− +≤ .   

 

We have assumed a non-zero transcription rate 0rk − ≠ for the off-state channel mainly due to the 

fact that the RNA polymerase complex completely stalls only when the level of positive 

supercoiling accumulating ahead of transcription is strong enough to completely stop its further 

progression. Otherwise, the progression of the RNA polymerase over transcription will be slower 

than the normal speed (but not equal to zero).  Here α (s-1) is the rate of transition from the on-state 

to the off-state and β (s-1) is the rate of transition from the off-state to the on-state of transcription. 

The ratio rkσ α= is generally defined as the transcription efficiency [3] or the burst size. Here σ 

is the average number of mRNA molecules generated in the on-state of transcription. The first 

order decay rate of mRNAs is described by rγ (s-1). The main assumption in Eqs. 1 is that the 

timescales associated with the flipping rates (α, β) are comparable with or higher than the 

timescales associated with the transcription rates rk ±
. We will show in the later sections that rk ±

will 

be rescaled with (α, β) when the timescales associated with (α, β) are shorter than the timescales 

associated with the generation a full mRNA transcript.  When the average transcription speed of 

the RNAP is rλ
±
(bp/s) and the length of the final mRNA transcript is L bp, then the average 

transcription rate through the respective on and off channels will be r rk Lλ± ±  (1/s). In other 

words, 1r rkτ ± ±= (s) is the average time required to generate a full mRNA transcript via the 

respective on-off channels. Here one should note that the maximum elongation of speed of RNA 

pol II seems to be close to ~100 bp/s [32, 33].  Typical transcription elongation speed of the 

prokaryotic RNAP complex is rλ
+
~ 50-60 bp/s [2]. The average resultant transcription rate kr will 

be a function of the variables rλ
±
, L, α and β. The initial and normalization conditions associated 

with Eqs. 1 can be given as follows. 

 

( ),0 ,0 , , , , ,;  0;  1;  m m m t m t m t m t m tm m
p m p p p p p pδ+ − + − + −= = + = = +∑ ∑                                                (2) 

Eqs. 1 and 2 can be solved using the standard method of generating function formalism. Upon 

defining the generating functions as
, ,0

m

s t m tm
G s p

∞± ±
=

=∑ , Eq. 1 can written as follows. 

( ) ( )
( ) ( )

, , , , ,

, , , , ,

1 1

1 1

t s t r s t r s s t s t s t

t s t r s t r s s t s t s t

G k s G s G G G

G k s G s G G G

γ α β

γ α β

+ + + + + −

− − − − + −

∂ = − + − ∂ − +

∂ = − + − ∂ + −
                                                 (3) 
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General solution to Eqs. 3 was obtained in terms of confluent hypergeometric functions in Ref. 

[34] using Galilean type transformation of variables (Eqs. 13 and 14 in Ref. 31). However, these 

solutions in terms of confluent hypergeometric functions are very difficult to handle. Particularly, 

the derivation of the expressions for the variance and the Fano factor associated with the mRNA 

number fluctuations will not be a difficult task. To avoid this hurdle, we follow the route of case-

splitting technique to derive all the possible approximations under various conditions which are 

simple and also easy to handle. Upon performing few basic operations, this system can be rewritten 

as the following set of two uncoupled partial differential equations. 

( ) ( )( )
( ) ( )

( ) ( )( )

( )( ) ( ) ( )

, , , ,

22 2 2

, , , 1 , 2 , 3 ,

2

1

2 3

1 1

1 2 1

1 1

1 ;  1

s t r s s t t s t r s t

r s s t r s t s t t s t s s t t s t s t

r r r r

r r r r r r r r r

G s G G s k G

s G s G G A G A G A G

A s k k s

A k k s A s k k k s k k k

γ β α

γ γ

γ γ α β

α β γ α β

+ − − − −

− − − − − −

− +

− + − − + + −

 = − ∂ + ∂ + − + 

− ∂ = − − ∂ ∂ − ∂ + ∂ + ∂ +

 = − + + − + + 
 = − + − + + = − − + + + 

+  

                   (4) 

Here we have the initial conditions as ,0 ,01, 0s sG G+ −= = [35].  Eqs. 3-4 are the central equations of 

this paper from which we derive several interesting results. Upon approximately solving these 

partial differential equations, one can recover the expressions for the probability density functions 

associated with the mRNA fluctuations ,m tp±
 as follows. 

( )1, 1, , 1 , , 1 , ,1;  lim ! ;  lim !m m

t t m t s s s t m t s s s t s tG G p G m p G G m− + ± ± + −
→ →

  + = = ∂ = ∂ +                                (5) 

Further, using these generating functions, one can straightforwardly derive the expressions for the 

various time dependent statistical quantities associated with the population of mRNAs such as 

mean ( ,m tη ), variance ( ,m tv ), coefficient of variation ( ,m tµ ) and Fano factor ( ,m tκ ) as follows. 

( )
( )

, 1 , ,

22 2 2 2

, 1 , , , , , , , , , ,

lim

lim ;  ;  

m t s s s t s t

m t s s s t s t m t m t m t m t m t m t m t m t

m G G

v m m G G v v

η

η η µ η κ η

+ −
→

+ −
→

 = = ∂ + 
 = − = ∂ + + − = = 

      (6) 

With this background, we will consider the following exactly solvable cases and other interesting 

approximations of Eqs. 3-4. 

 

Case I. ;  0;  0r rkα β γ−≠ = =  

This case has been investigated earlier in Refs. [35, 36] (Eqs. 11 and 12 in Ref. [35]). Under these 

conditions, Eqs. 4 can be reduced to the following form which is exactly solvable. 

( ) ( )( ) ( )2

, , , , , ,1 1 0;  t s t r t s t r s t s t s t t s tG k s G k s G G G Gα β β β α− + − + − + − − ∂ − − − + ∂ − − = = + ∂                  (7) 

The general solution to this set of partial differential equations can be written as follows. 

( )( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )

, 1 2

, 1 2

exp 2 2 2 exp 2 exp 2

exp 2 2 exp 2 exp 2

s t

s t

G w t F s w u ut F s w u ut

G w t F s ut F s ut

β α

β

+

−

 = − + + − − 
= − + −

          (8) 
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Here 2 4u w αβ= +  where ( ) ( )1rw k s β α+= − + − . Noting that 1, 1, 1t tG G− ++ = , the functions F1(s) 

and F2(s) and the particular solution to Eqs. 8 can be derived as follows. 

( ) ( ) ( )( ) ( )( ) ( ) ( )1 2 1 2 1 20;  2 ;  ;  F s F s F s w u F s w u F s u F s uα α α+ = + + − = ∴ = = −              (9) 

Upon substituting these functions into Eqs. 8 one finally obtains the following expression for the 

generating functions. 

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

,

,

exp 2 2 2 exp 2 exp 2

exp 2 2 exp 2 exp 2

s t

s t

G w t u w u ut w u ut

G w t u ut ut

β

β α

+

−

 = − + − − − 
 = − − − 

                                (10) 

Using the overall generating function, one can derive the mean number of mRNAs as follows. 

( ) ( )( ) ( )( ) ( )2

, 1 , ,lim 1 expm t s s s t s t rm G G k t tη α α β β α β β α+ − +
→  = = ∂ + = − − + + + +          (11) 

For short timescales, ,m t rk tη +  which is similar to the deterministic result and for long timescale 

it behaves as ( ),m t rk tη β β α+ +  . Noting that ( )2 2

1 , ,lims s s t s tG G m m+ −
→ ∂ + = − , which can be 

written explicitly as follows. 

( )( ) ( )( ) ( )( )
( ) ( )( )

2 2
2

22

4 2 2

2 4 2 2 2

2 2 exp
r

t t t t
m m k

t t t t

α β β α β β β
α β

β α α αβ α β α β
+

 + + + + − + − = +  
+ − + + − − +  

                  (12) 

Using Eqs. 11 and 12 one can write down the variance, coefficient of variation and Fano factor of 

mRNAs as follows. 

( ) 22 2

, 1 , , , , , , , ,lim ;  ;m t s s s t s t m t m t m t m t m t m tv G G m m v vµ η κ η+ −
→= ∂ + + − = =                                  (13) 

It is remarkable to note down the following limits as time tends towards infinity. 

( )2

0 , , ,lim 1;  lim 1 2t m t t m t m rkκ κ κ α α β+
→ →∞ ∞= = = + +                                                             (14) 

Clearly, in Eqs. 14 the stationary state Fano factor ,mκ ∞ attains a maximum value at an optimum 

Cα β=  which can be obtained by solving 
, 0mκ α∞ ∂ ∂ =   for α.  

Case II. ;  0;  0r rkα β χ γ−= = = ≠  

In this case, Eqs. 4 reduce to the following set of uncoupled partial differential equations. 

( )
( ) ( )( ) ( )

( ) ( )

( )( )

2

, , , ,22 2

,

,

, , , ,

2 1 1 2 1
1

1 2 1

1

r s t s t t s t r t s t r s t

r s s t

r r r s s t

s t r s s t s t t s t

s G G k s G k s G
s G

s s k G

G s G G G

γ χ χ
γ

γ γ χ

γ χ χ

− − + − + −

−

+ −

+ − − −

 − − ∂ ∂ − ∂ + − − ∂ + − + − ∂ =  
 − − + − ∂   

= − ∂ + + ∂

   (15) 
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Similar to this case with settings ( );  0;  0r rkα β γ−≠ = ≠  was considered in Refs. [35, 36]. The 

first term of the series expansion was obtained using recurrence relation method in Ref. [35]. 

Interestingly, the solution set for these conditions was obtained in terms of confluent 

hypergeometric functions using Galilean type transformation of variables in Ref. [36] (Eqs. A2-

A5 in Ref. [36]). Remarkably, when χ →∞ , then Eqs. 15 reduce to the following form. 

( ) ( ), , ,0 , , ,;  lim 1 2;  1 2 1s t s t s t s t r s t r s s tG G G G k s G s Gχ γ+ − ± − + − −
→∞  = = ∂ = − + − ∂                   (16) 

These equations are exactly solvable as follows.  

[ ] ( ) ( )( )( )
( ) ( )( )( )

,

, , ,

1 2 exp 1 1 exp 2

exp 1 1 exp 2

s t r r r

s t s t s t r r r

G k s t

G G G k s t

γ γ

γ γ

± +

+ − +

= − − − −   


= + = − − − −    

                             (17) 

Using these generating functions, one can derive the Poisson type expressions for the probability 

density function associated with the mRNA population as follows. 

[ ] ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

,

, , ,

1 2 2 1 exp exp 2 1 exp !

2 1 exp exp 2 1 exp !

m

m t r r r r r r

m

m t m t m t r r r r r r

p k t k t m

p p p k t k t m

γ γ γ γ

γ γ γ γ

± + +

+ − + +

= − − − − −      

= + = − − − − −      
            (18) 

Various statistical properties of mRNA population can be derived as follows. 

( ) ( ) ( ), , , ,2 1 exp ;  1;  2 1 expm t m t r r r m t m t r r rv k t k tη γ γ κ µ γ γ+ += = − − ∴ = = − −                          (19) 

These results clearly suggest that as χ →∞ , the overall average or effective transcription rate kr 

rescales from rk +
to 2rk +

. The condition χ →∞ implies that the system switches infinite number 

of times between on and off states with equal amount of dwell times at both these states. That is 

to say, the timescale of flipping between on-off states are comparable with the timescales of the 

microscopic transcription elongation events. Therefore, the condition χ →∞  violates the 

assumption of Eqs. 1 and Eqs. 16-18 since the transcription rates will be a function of the flipping 

rate χ  under such conditions. 

Case III. 0;  ;  0r rk α β χ γ− = = = =  

In this case, Eqs. 15 reduce to the following form which is exactly solvable. 

( ) ( )
( )

, , , ,

, , ,

1t s t r s t s t s t

t s t s t s t

G k s G G G

G G G

χ

χ

+ + + + −

− − +

∂ = − − −

∂ = − −
                                                   (20) 

The general solution of Eqs. 20 can be written as follows. 

( )( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )

, 1 2

, 1 2

exp 2 2 2 exp 2 exp 2

exp 2 2 exp 2 exp 2

s t

s t

G w t F s w u ut F s w u ut

G w t F s ut F s ut

χ χ

χ

+

−

 = − − + + − − 
= − − + −

          (21) 
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Here ( )1rw k s+= −  and 2 24u w χ= + . Noting the initial conditions ,0 ,01;  0s sG G+ −= =  for a finite χ 

values one finds the following expressions for the functions F1(s) and F2(s). 

( ) ( ) ( )( ) ( )( ) ( ) ( )1 2 1 2 1 20;  2 ;   ;  F s F s F s w u F s w u F s u F s uχ χ χ+ = + + − = ∴ = = −          (22) 

Upon using these, one can write down the particular solution of Eqs. 20 as follows. 

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

,

,

0 , , ,

exp 2 2 2 exp 2 exp 2

exp 2 2 exp 2 exp 2

lim 0;  lim  

s t

s t

s t s t s t

G w t u w u ut w u ut

G w t u ut ut

G G Gχ χ

χ

χ χ

+

−

− + −
→ →∞

 = − + − − − 
 = − − − 

= =

              (23) 

Using Eqs. 22 and noting that , , ,s t s t s tG G G− += + one can drive the following limiting conditions of 

the generating function. 

( )( ) ( )( )0 , ,lim exp 1 ;  lim exp 1 2s t r s t rG k s t G k s tχ χ
+ +

→ →∞= − = −                      (24) 

Using Eqs. 23 one can directly derive the probability density function associated with the mRNA 

population at high and low values of the flipping rate as follows. 

( ) ( )( ) ( ) ( )( )0 , ,lim exp ! ;  lim exp 2 2 !
m m

m t r r m t r rp k t k t m p k t k t mχ χ
+ + + +

→ →∞= − = −                  (25) 

Further, one can derive the mean and the variance of the mRNA population explicitly as follows. 

( )( )
( ) ( ) ( ) ( )( )

,

2 2

,

1 exp 2 2 4

4 2 3 4 exp 2 exp 4 4

m t r

m t r r r r r

k t t

v k k t t k k t k t

η χ χ χ

χ χ χ χ χ χ χ

+

+ + + + +

= − − + 


 = + − + + − − − −   
         (26) 

It is also interesting to note down the following limiting values.                   

0 , , 0 , ,lim ;  lim 2;  lim ;  lim 2m t r m t r m t r m t rk t k t v k t v k tχ χ χ χη η+ + + +
→ →∞ → →∞= = = =                       (27) 

Remarkably, the functional form of the mRNA variance shows a turnover type behavior with 

respect to changes in χ and it has a definite maximum at the optimum flipping rate ,C vχ . Explicit 

expression for this optimum χ can be derived from the following equation. 

( )
( )

2

,

2 3 2 exp 2 4 4 4 2
0

exp 4 2

r r r r

m t

r r

k t k t k t t k
v

t k t k

χ χ χ χ χ χ
χ

χ χ

+ + + +

+ +

  − + + − − + −   ∂ ∂ = =    − − +   
                      (28) 

Upon ignoring the terms multiplying the exponentials for large values of χ and time as t →∞ , Eq. 

28 can be approximated to 2 3 2 0r rk t kχ χ+ +− +   from which one finds the optimum value of χ at 

which the variance becomes a maximum as follows. 

( ), 3 2 1C v r rk k tχ + ++                                                                                  (29) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2020. ; https://doi.org/10.1101/2019.12.18.880435doi: bioRxiv preprint 



Theory of transcription bursting 

10 

 

However, Eq. 29 suggests that the optimum value of χ will be a time dependent quantity which 

decreases towards zero when the time increases towards infinity. Clearly, at the steady or stationary 

state i.e. in the limit as t →∞ , the existence of optimum flipping rate over the variance of the 

mRNA population will disappear. It is also interesting to note down the following limits. 

2

, , , 0 , , 0 , ,

, , , 0 , , 0 , ,

;  lim ;  lim 0;  lim 1 ;  lim 2

;  lim 1;  lim 1 2 ;  lim 1;  lim 1

m t m t m t t m t t m t m t r m t r

m t m t m t t m t t m t r m t m t

v k t k t

v k

χ χ

χ χ

µ η µ µ µ µ

κ η κ κ χ κ κ

+ +
→ →∞ → →∞

+
→ →∞ → →∞

= = ∞ = = =

= = = + = =
  (30) 

Remarkably, the Fano factor associated with the fluctuations in the number of mRNAs show a 

maximum deviation from the Poisson with respect to χ which can be demonstrated as follows. 

( )
( ) ( )[ ]

2 2 2 2

, 2 2

8 12 3 exp 2 24 18 7
0

exp 4 8 8 5 exp 6 2 1
m t

t t t t t

t t t t t

χ χ χ χ χ
κ χ

χ χ χ χ χ

  − − + − + + −    ∂ ∂ = =    − − + + + − +   
                             (31) 

Similar to the derivation of Eq. 29, one can ignore the terms multiplying the exponentials and 

finally one obtains the following approximation for large values of χ. 

2 2

,8 12 3 0;  1.72Ct t tκχ χ χ− − ∴                                                                     (32) 

Clearly, at the steady state i.e. as t →∞ , the existence of optimum flipping rate over the Fano 

factor as well as the variance of the mRNA population will disappear. In other words, steady state 

theories and experiments cannot capture these important properties. Using detailed stochastic 

simulations, we will show in the later sections that both Eqs. 29 and 32 are valid even when the 

conditions 0;  ;  0r rk α β γ− > ≠ >  are true. In these situations, we will show in the later sections 

that the optimum flipping rates (αC, βC) which maximize the variance and the Fano factor 

associated with the fluctuations in the number of mRNA molecules asymptotically approach their 

non-zero steady state limits. 

Dependency of the transcription rate on the on-off flipping dynamics  

Let us consider a single transcription event. Here the length of the final mRNA transcript is L bp. 

Since the addition of each nucleotide at the ends of a growing mRNA is an energetically driven 

stochastic process, we can describe the entire transcription elongation as a directed walk with the 

microscopic transition rates rλ
±
(bp/s). Here the superscript ‘+’ represents the on-state and ‘-’ 

represents the off-state of the promoter and ,n tq±
are probabilities of finding of the transcription 

machinery with n number of transcribed mRNA bases in the respective on-off state channels at 

time t.  Now we can consider three possible scenarios as depicted in Figs. 2A-B viz. (a) when all 

the microscopic transitions of the transcription elongation event are characterized homogeneously 

with the rates rλ
±
and there is no flipping across the on-off state channels, then one finds that 

r rk Lλ± ±=  and subsequently the average resultant transcription rate will be equal to either rk +
 or 

rk −
depending on the channel used for the transcription elongation (Fig. 1, Figs. 2B1 and 2B3 

respectively). On the other hand, when there is a flipping across on-off state channels, then the 

resultant transcription rate ξ will be somewhere in between ( ),r rk k+ −  (Fig. 2B2). Clearly the 
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transcription rate ξ associated with each mRNA transcript will be a random variable and its 

ensemble average across several individual transcripts is defined as rk ξ=  . When the timescales 

of flipping across on-off states are comparable with the timescales of the microscopic transcription 

elongation events, then such randomly interrupted transcription elongation can be well described 

by the following set of coupled master equations. 

( )
( )

, 1, , , ,

, 1, , , ,

t n t r n t n t n t n t

t n t r n t n t n t n t

q q q q q

q q q q q

λ α β

λ α β

+ + + + + −
−

− − − − + −
−

∂ = − − +

∂ = − + −
                                             (33) 

The initial and boundary conditions associated with Eqs. 34 can be given as follows [37-39]. 

( ) ( ), , , ,0 ,0 ,0 ,;  ;  0;  ;   0n t n t n t n n n L tq q q q n q q n qδ δ+ − + − ±= + = = ∴ = =                                                (34) 

Upon defining
0 0 0, , | ,

0

L

n t n t n tg dnq± ±= ∫  which is the overall probability of finding the system within 

( )0,n L∈  at time t starting from n = 0, one can straightforwardly derive the following results. 

0 0 0 0 0 0 0 0,0 , , , , , ,0
0 0 0

1;  0;  ;  1n n n t n t n t t n t n ng g T t g dt g dt g dt g g
∞ ∞ ∞± ± ± + + + + +

∞ ∞   = = = − ∂ = ∂ = − = −   ∫ ∫ ∫        (36) 

Further, we set that
0 ,

0
0t n tt g dt

∞ −∂∫   especially when 0rλ
− → since the probability flux entering the 

off-state of the system will eventually return back to the on-state. The system can exit upon 

generating a complete transcript only from the on-state. Here nT ±
 is the mean first passage times 

(MFPT) associated with the generation of a full mRNA transcript of length L starting from n 

number of initial bases of mRNA at time t = 0. One should note that the resultant transcription rate 

ξ is the inverse of the first passage time (FPT) which is a random variable. Clearly, the MFPTs nT ±
 

obey the following set of coupled backward type master equations [38, 39]. 

1 11;  0r n r n n n r n r n n nT T T T T T T Tλ λ α β λ λ α β+ + + + + − − − − − + −
+ +− − + = − − + − =                                            (37) 

Here the boundary conditions directly follow from Eqs. 34 as 0LT ± = . Upon solving Eqs. 37, the 

overall MFPT can be calculated as the sum n n nT T T+ −= + . When the initial number of bases in the 

mRNA transcript is n0 = 0, then the required MFPT to generate a complete transcript starting from 

zero bases will be 0 0 0T T T+ −= +  from which one can derive the expression for the overall average 

transcription rate as [ ]01rk T= . The system of coupled Eqs. 37 is exactly solvable. The solution 

corresponding to the first moment of the FPT nT ±
can be written as follows.  

( ) ( ) ( )( )
[ ] ( )( ) ( )

2 2

2

1

1 ;  ;  1

L n

n r r r

L n

n r r r r r r

T L n W L n y

T L n y W y y W

αλ β λ β λ

λ λ α αλ βλ β λ α λ

+ − − − + +

− − + − + + + − +

 = − + − + − 

 = − − − = + = + + 

            (38) 
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Here one should note the following limiting conditions. 

( ) [ ]( ) [ ]( )
0 0 0

lim ;lim ;  lim 1
r r r

n r n r n rT L n T L n T L n
λ λ λ

λ α β λ α β λ− − −
+ + − + +

→ → →
= − = − = + − (39) 

The second moment of the FPTs (we denote them as nR±
) satisfy the following set of coupled 

backward type master equations [37]. 

1 12 ;  2r n r n n n n r n r n n n nR R R R T R R R R Tλ λ α β λ λ α β+ + + + + − + − − − − + − −
+ +− − + = − − + − = −                                (40) 

Here the boundary conditions of Eqs. 40 directly follow from Eqs. 34 as 0LR± = . Eqs. 40 can be 

derived using the following relationships. 

0 0 0 0 0 0

2

, , , ,
0 0 0 0

2 ;  n t n t n t t n t n t nR t g dt tg dt t g dt g dt T
∞ ∞ ∞ ∞± ± ± ± ± ±   = − ∂ = ∂ = − = −   ∫ ∫ ∫ ∫                                   (41) 

The set of coupled difference equations given in Eqs. 40 along with Eqs. 38 for the definition of 

nT ±
 is exactly solvable and the complete solution is given in Appendix A. One can obtain the 

following simplified expressions for the second moments of FPTs associated with the generation 

of a complete mRNA transcript especially in the limit as 0rλ
− → .   

[ ]( )( ) ( ) [ ]( )( )2 2

1 1 ;  1 2n r n r rR L n L n R L n L nα β λ α α β λ βλ+ + − + +   = + − − + = − + − + +      (42) 

Eqs. 42 can be obtained by substituting the expressions of nT ±
given by Eqs. 39 in Eqs. 40 

subsequently solving the resultant difference equation. We denote the mean of FPTs with respect 

to n = 0 as 0T Tη ± ±= and, 0 0 0T T T Tη + −= + =  by definition. Using Eqs. 39 and 42, one can obtain 

the expressions for the variance ( Tv ), Fano factor ( Tκ ) and coefficient of variation ( Tµ ) of the 

FPTs associated with the generation of a complete mRNA transcript of length L starting from n = 

0 in the limit 0rλ
− →  as follows. 

[ ]
( ) ( )

( ) ( ) [ ]

( ) ( ) [ ]

( )( )

( )

2

0 0 0 0 0 0

2
2 2

2 2

22 2 2

2
2

2
2

;  ;  ;  1

2

2

2

2 4 1 8 2

2 8

n n n T T r

T r r

T T T r r

T T T r

S r r r r

S r r

R R R R R R v R T T L

v L

v

v L

η α β λ

α α β λ β βλ

κ η α α β λ β β α β λ

µ η α α β λ β α β

α λ β β λ β β λ βλ

β λ α α α α λ

+ − + − +

+ +

+ +

+

+ + + +

+ +

= + = + = − = = +

 = + + + 
 = = + + + + 
 = = + + + + 

 = − − + − + + 

 = − + + +   ( )8 2 1r rαλ λ+ + − − 
 

                                           (42) 

In Eqs. 42, ( Sα , Sβ ) are the critical values of the flipping rates (which can be obtained by solving 

the equation 1Tκ =  for α by fixing β or for β by fixing α) such that when Sα α< or Sβ β< , then the 
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Fano factor associated with the FPTs becomes as 1Tκ <  (sub-Poisson type). When Sα α> or

Sβ β> , then 1Tκ >  (super-Poisson type). When Sα α= or Sβ β= , then 1Tκ =  (Poisson type). One 

should also note that Sα can exist only when ( )( )2 4 1 8 0rβ β λ β+ − + + ≥   and Sβ  can exist only 

when ( )8 8 0rα λ + + − ≥  . Since the overall transcription rate of a given mRNA transcript is the 

inverse of the respective FPT, one can conclude that the distribution of transcription rates will be 

the sub or super Poisson type depending on the relative values of the on-off flipping rates (α, β). 

Remarkably, the Fano factor Tκ associated with the distribution of FPTs is independent on the size 

of the mRNA transcript L. Further, the coefficient of variation of FPTs Tµ shows a turn over type 

behavior with respect to changes in α with a definite maximum at α = β which can be shown by 

solving 0Tµ α∂ ∂ = for α. It is also interesting to note down the following limiting conditions. 

( )
( )

2

2

0 0 0

lim ;  lim 1 ;  lim 1  

lim ;  lim 1 ;  lim 1

T r T r T

T r T r T

v L L

v L L

β β β

α α α

λ κ λ µ

λ κ λ µ

+ +
→∞ →∞ →∞

+ +
→ → →

= = =

= = =
                                                 (43) 

Especially, whenα β χ= =  then one can obtain the following simplified expression for T0 using 

the set of Eqs. 38 as follows. 

( ) ( )( )( ) 2

0 2 1 1
L

r r r r r r r r rT L λ λ λ χ λ χ λ λ λ χ λ λ
−− + − − + − + − + = + + − + + − +                             (44) 

Eqs. 44 clearly suggest that the overall average transcription rate rk is a function of the flipping 

rate χ especially when the timescale associated with the flipping dynamics is much slower than the 

timescale associated with the generation of a complete transcript. It is remarkable to note the 

limiting values of T0 as 0 0lim rT Lχ λ +
→ =  and, ( )0lim 2 r rT Lχ λ λ− +

→∞ = +  .When 0rλ
− →  then 

Eqs. 44 clearly suggest that T0 will be independent of the on-off flipping rate χ. However, the 

MFPT will be doubled under such situations. When r rλ λ− + and for sufficiently large values of 

the transcript length L, one finally obtains the limiting conditions in line with Eqs. 19 and 30 as 

lim 2r rk Lχ λ +
→∞ =  and, 0lim r rk Lχ λ +

→ = where r rk Lλ+ += . These limits follow directly from 

the initial conditions given in Eqs. 35. For example, when we hypothetically set up the initial 

conditions as ( ),0 ,0;  0n nq n qδ− += = , then we need to swap the on-off state superscript indices (+ 

and -) in Eqs. 39 and subsequently one obtains the limiting values ( )lim 2r r rk Lχ λ λ− +
→∞ + and, 

0lim r rk Lχ λ −
→ = where r rk Lλ− −=  even when r rλ λ− +< . 

When 0rλ
− → then the system of Eqs. 37 will be uncoupled. In this situation, the overall average 

transcription rate kr rescales from rk +
to 2rk +

when χ tends towards infinity i.e. the overall 

transcription rate kr will be confined inside the interval ( )2r r rk k k+ +≤ ≤ . When 0rλ
− →  and α β≠
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then the overall average effective transcription rate can be expressed as the functions of the on-off 

flipping rates as ( )r rk k β α β+ +   . This equation suggests the probable range of kr as 

0 r rk k +≤ ≤ depending on the relative values of the on-off flipping rates. In the following sections, 

we investigate the possibility of various steady state solutions to Eqs. 1. 

 

 

 

 

Steady state solutions 

Under steady state conditions, Eqs. 1 reduce to the following form. 

( ) ( )
( ) ( )

1, 1, , , ,

1, 1, , , ,

1 0

1 0

r m r m r r m m m

r m r m r m m m m

k p m p k m p p p

k p m p k m p p p

γ γ α β

γ γ α β

+ + + + + + −
− ∞ + ∞ ∞ ∞ ∞

− + − − − + −
− ∞ + ∞ ∞ ∞ ∞

+ + − + − + =

+ + − + + − =
                                        (45) 

Here ,mp±
∞ are the stationary state probabilities associated with the finding of m number of mRNAs 

in the respective on (+) and off (-) channels of transcription. Eqs. 45 also can be solved using the 

standard generating function formalism. One can define the steady state generating functions and 

the corresponding probability densities as follows. 

( ), , 1, 1, , ,;  1m

s m m mm m m
G s p G G p p± ± − + + −

∞ ∞ ∞ ∞ ∞ ∞= + = + =∑ ∑ ∑                                                     (46) 

Using the generating functions defined in Eqs. 46, one can recover the respective probability 

density functions as follows. 

( ), 0 , , 0 , ,lim ! ;  lim !m m

m s s s m s s s sp G m p G G m± ± + −
∞ → ∞ ∞ → ∞ ∞

  = ∂ = ∂ +                                               (47) 

Upon applying the transformation given in Eqs. 46 into Eqs. 45, one obtains the following set of 

coupled ordinary differential equations. 

( ) ( )
( ) ( )

, , , ,

, , , ,

1 1 0

1 1 0

r s r s s s s

r s r s s s s

k s G s d G G G

k s G s d G G G

γ α β

γ α β

+ + + + −
∞ ∞ ∞ ∞

− − − + −
∞ ∞ ∞ ∞

− + − − + =

− + − + − =
                                                            (48) 

In Refs. [15, 17], the solutions to Eqs. 45 were expressed in terms of confluent hypergeometric 

functions. Here we derive an alternate solution set that is easy to handle. Eqs. 48 can be split into 

the following set of uncoupled ordinary differential equations. 

( )
( ) ( )( )

2 2

, , ,

, , ,

1 0

1 1

r s s s s s s s

s r s s r s

s d G F d G H G

G s d G k s G

γ

γ β α

− − −
∞ ∞ ∞

+ − − −
∞ ∞ ∞

− + + =

 = − − − − 
                                                                  (49) 

Various functions in Eqs. 49 are defined as follows. 

( )( )( ) ( )( )1 ;  1s r r r r s r r r rF s k k H k s k kγ α β γ γ α β+ − + − += + + − − + = − − − −                              (50) 
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Using the substitution as ( )( ), exp 1s r r sG k s Mγ− +
∞ = − , where Ms is an arbitrary function of s, one 

can reduce Eqs. 49 into the following form. 

( ) ( ) ( )2 0;  1 ;  1 ;  1z s z s s r r r r rzd M b z d M aM a b z k k sα γ α β γ γ− + + − − = = + = + + = − −    (51) 

Solution to Eq. 51 can be expressed in terms of Kummer functions as follows [40]. 

( ) ( )1 2KummerM , , KummerU , ,zM C a b z C a b z= +                                                                 (52) 

Since ( )KummerU , ,0a b →∞  for any arbitrary values of { }, 0a b > in Eq. 52, we need to set 2 0C =  

to enforce the normalization condition of the probability density function.  We use the following 

properties of the KummerM functions to further simplify our results [40, 41]. 

( ) [ ] ( ) ( )( )
( )
( ) ( ) ( )
( ) ( ) ( ) ( )

KummerM , , KummerM 1, , KummerM , ,

KummerM 0, , 1

KummerM , , exp KummerM , ,

KummerM , , exp KummerM 0, , exp

zd a b z a z a b z a b z

a z

a b z z b a b z

a a z z a z z

= + −


= 


= − − 
= − = 

                       (53) 

Using these properties, one finally obtains the solution to the generating functions obeying the 

set of differential equations Eqs. 48 as follows. 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

,

,

exp 1

KummerM 1 ,1 , 1

exp 1

KummerM ,1 , 1

r r

s

r r r r r

r r

s

r r r r r

k s
G

k k s

k s
G

k k s

α α β γ

α γ α β γ γ

β α β γ

α γ α β γ γ

+

−
∞ − +

+

+
∞ − +

 + − ×   =  
 × + + + − −   

 + − ×   =  
 × + + − −   

                                  (54) 

Here the KummerM function can be defined explicitly as follows [40, 41]. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
00

KummerM , , ! ;  1 ... 1 ;  1n

n n nn
a b z a z n b w w w w n w

∞

=
 = = + + − = ∑        (55)     

Upon expanding the generating functions in terms of Macularin series with respect to s around s = 

0 and then substituting s = 1 in the computed series, one finally obtains the expressions for the 

respective probability density functions as follows.  

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )( )

,

0

,

0

! exp

1

! exp

1 1

m

r r r

n m nm m m

n r r r r rm nn m n

m

r r r

n m nm m m

n r r r r rm nn m n

m k

p
C k k k

m k

p
C k k k

β α β γ γ

α γ α β γ

α α β γ γ

α γ α β γ

+

+
−∞ + − +

+−= −

+

−
−∞ + − +

−−= −

  + − ×  =   × − Ψ + +    
  + − ×  =   × + − Ψ + +    

∑

∑

                 (56) 
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Various paramaters and terms in Eqs. 56 are defined as follows. 

( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )

KummerM , 1 ,

KummerM 1 , 1 ,

! ! ! ;  

r r r r r

r r r r r

m

n u

m n m n k k

m n m n k k

C m n m n w w u w

α γ α β γ γ

α γ α β γ γ

− +
+

− +
−

Ψ = − + − + + + − −

Ψ = − + + − + + + − −

= − = Γ + Γ  

                          (57) 

From Eqs. 54, one can derive the expressions for the steady state mean, variance, coefficient of 

variation and Fano factor (we denote them as , , , ,, , ,m m m mvη µ κ∞ ∞ ∞ ∞  respectively) as follows. 

( ) ( ) ( )

( )
( )( ) ( ) ( )

( )( ) ( ) ( )

, 1 , ,

2 2

1 , , , ,

, 23 2 2

2
2 3 2 2

, , ,

, ,

,

lim

lim

m s s s s r r r

s s s s m m

m

r r r r r

m m m r r r r r r

m m

m

m G G k k

G G
v

k k

v k k k k

v

η α β α β γ

η η

α α β β γ βα γ α β α β γ

µ η α α β β γ βα α β α β γ

η
κ

+ − − +
∞ → ∞ ∞∞

+ −
→ ∞ ∞ ∞ ∞

∞
− +

− + − +
∞ ∞ ∞

∞ ∞

∞

 = = ∂ + = + + 
  ∂ + + − =  =  
= +Ξ + + +Ω + + +  

= = +Ξ + + +Ω + + +

=
( )( ) ( )( )( )3 2 2

r r r r r rk k k kα α β β γ βα α β α β α β γ− + − +

=  
 
= +Ξ + + +Ω + + + +  

         (58) 

Various terms in Eqs. 58 are defined as follows. 

( )( ) ( ) ( ) ( )( )2 ;  2 2r r r r r r r r r r r r rk k k k k k k k k kβ γ β γ γ− + − − + − − + + +Ξ = + + Ω = + + + − + +                  (59) 

Eqs. 58 suggest that, in the presence of flipping across the on-off states, the effective transcription 

rate transforms as ( ) ( )r r rk k kα β α β− += + + under steady state conditions. In the following 

sections we will consider various cases of approximations to Eqs. 54-59. 

Case I. ;  0rkα β −≠ =  

In this situation, Eqs. 54 reduce to the following form. 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

,

,

exp 1 KummerM 1 ,1 , 1

exp 1 KummerM ,1 , 1

s r r r r r r

s r r r r r r

G k s k s

G k s k s

α α β γ α γ α β γ γ

β α β γ α γ α β γ γ

− + +
∞

+ + +
∞

= + − + + + − −  

= + − + + − −  
  (60) 

Upon expanding these generating functions in terms of Macularin series around the point s = 0 and 

then substituting s = 1 in the computed series, one finally obtains the following probability density 

functions associated with the steady state mRNA populations.   
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( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

,

0

,

0

! exp

1 1

! exp

1 1 1

m

r r r r

m m m n m

n r rm nn m n

m

r r r r

m m m n m

n r rm nn m n

m k k
p

C

m k k
p

C

β α β γ γ

α γ α β γ

α α β γ γ

α γ α β γ

+ +

+
∞ −

+ −= −

+ +

−
∞ −

− −= −

 + − ×   =  
 × − Φ + +   

 + − ×   =  
 × − Φ + + +   

∑

∑

                                       (61) 

Various terms in Eqs. 61 are defined as follows.            

( )( )
( )( )

KummerM , 1 ,

KummerM 1 , 1 ,

r r r r

r r r r

m n m n k

m n m n k

α γ α β γ γ

α γ α β γ γ

+
+

+
−

Φ = − + − + + +

Φ = − + + − + + +
                                          (62) 

From Eqs. 60, one can derive the expressions for the steady state mean, variance, coefficient of 

variation and Fano factor as follows. 

( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )

,

22

,

2

,

2

,

2

,

2

2

2

max 2

m r r

m r r r r r r

m r r r r r

m r r r r

m C C r r r C C r

k

v k k

k k

k

k

η β α β γ

β α α β γ β β γ γ α β α β γ

µ α α β γ β β γ β α β γ

κ α α β γ β β γ α β α β γ

κ α α β γ β β γ α β α β γ

+
∞

+ +
∞

+ +
∞

+
∞

+
∞

= +

= + + + + + + + +

= + + + + + + +

= + + + + + + + +

= + + + + + + + +

                         (63) 

Clearly, when rk −
= 0, then the overall transcription rate rescales as ( )r rk kβ α β+= +  and using 

the respective limiting condition from Eqs. 63 one can derive the optimum α at which the 

stationary state Fano factor ,mκ ∞  attains a maximum as ( )C rα β β γ= + . This can be obtained by 

solving 
, 0mκ α∞ ∂ ∂ =   for α.  Using the definition of the burst size or the transcription efficiency

rkσ α= , one can also show that the steady state Fano factor ,mκ ∞  will attain a maximum value 

at the optimum transcription efficiency ( )C r C r rk kσ α β β γ= = + .  

Case II. ;  0rkα β χ −= = ≠  

In this case, the generating functions reduce to the following form. 

( )( ) ( )( )
( )( ) ( )( )

,

,

exp 1 2 KummerM 1 ,1 2 , 1

exp 1 2 KummerM ,1 2 , 1

s r r r r r r r

s r r r r r r r

G k s k k s

G k s k k s

γ χ γ χ γ γ

γ χ γ χ γ γ

− + − +
∞

+ + − +
∞

   = − + + − −  
   = − + − −  

             (64) 

Upon expanding these generating functions in terms of Macularin series around the point s = 0 and 

then substituting s = 1 in the computed series, one finally obtains the following probability density 

functions associated with the steady state mRNA populations. 
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( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

,

0

,

0

exp 2 !

1 2

exp 2 !

1 1 2

m

r r r

m n m nm m

r r r n r rm n m nn

m

r r r

m n m nm m

r r r n r rm n m nn

k m

p
k k k C

k m

p
k k k C

γ γ

χ γ χ γ

γ γ

χ γ χ γ

+

+
∞ −+ − +

+ − −=

+

−
∞ −+ − +

− − −=

  − ×  =   × − ∆ +    
  − ×  =   × − ∆ + +    

∑

∑

                             (65) 

Various terms and functions in Eqs. 65 are defined as follows. 

( )( )
( )( )

KummerM , 1 2 ,

KummerM 1 , 1 2 ,

r r r r r

r r r r r

m n m n k k

m n m n k k

χ γ χ γ γ

χ γ χ γ γ

− +
+

− +
−

∆ = − + − + + − −

∆ = − + + − + + − −
                                   (66) 

Using the generating functions given in Eqs. 64 and noting the definition of the overall generating 

function , , ,s s sG G G− +
∞ ∞ ∞= + , one can derive the following properties of the stationary state mRNA 

populations and their various limiting properties. 

( ), 2m r r rk kη γ− +
∞ = +                                                        (67) 

( )( ) ( ) ( )
( ) ( )( ) ( )

2 2

,

2 2

0 , ,

4 2 2 4 2 4 4 8

lim 2 2 4 ;  lim 2

m r r r r r r r r r r

m r r r r r r r r m r r r

v k k k k k

v k k k k k v k kχ χ

χ γ γ χ γ γ γ χ

γ γ γ γ

− − + + +
∞

− − + + + − +
→ ∞ →∞ ∞

 = + + − + + + + 
 = + − + + = + 

    (68) 

( ) ( ) ( ) ( )

( )
( ) ( ) ( )( ) ( )

2

,

,

2 2

0 ,

4 2 4 2 2 4 2

lim 2

lim 2 2

m r r r r r r r r r r r

m r r r

m r r r r r r r r r

k k k k k k k

k k

k k k k k k k

χ

χ

µ γ χ γ χ γ χ γ

µ γ

µ γ γ

+ + − + − − +
∞

+ −
→∞ ∞

− − + + + + −
→ ∞

 = + + + + − + + + 

= +

 = + − + + +  

          (69) 

( )( ) ( ) ( )( )

( ) ( )( ) ( )

2

,

2

0 , ,

4 2 2 4 2 4 2 2

lim 2 2 2 ;  lim 1

m r r r r r r r r r r r

m r r r r r r r r r r m

k k k k k k k

k k k k k k kχ χ

κ χ γ γ χ γ χ γ

κ γ γ γ κ

− − + + + − +
∞

− − + + + + −
→ ∞ →∞ ∞

  = + + − + + + + +   
  = + − + + + =   

     (70) 

Case III. ;  0rkα β χ −= = =  

In this situation, various statistical properties of the stationary state mRNA populations and their 

various limiting values can be derived as follows. 
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( ) ( )
( )

( ) ( )
( )

( ) ( )

,

,

2

0 , ,

,

, 0 ,

,

0 , ,

2

4 2 4 2

lim 2 4 ;  lim 2

2 4 2

lim 2 ;  lim 2

2 4 4 2

lim 1 2 ;  lim 1

m r r

m r r r r r

m r r r r m r r

m r r r r r

m r r m r r r

m r r r

m r r m

k

v k k

v k k v k

k k

k k k

k

k

χ χ

χ χ

χ χ

η γ

χ γ γ χ γ

γ γ γ

µ γ γ χ χ γ

µ γ µ γ

κ γ χ χ γ

κ γ κ

+
∞

+ +
∞

+ + +
→ ∞ →∞ ∞

+ +
∞

+ + +
→∞ ∞ → ∞

+
∞

+
→ ∞ →∞ ∞

=

= + + +

= + =

= + + +

= = +

= + + +

= + =















                                                 (71) 

Case IV. ;  ;  ;  0r r rkα β α γ β γ −≠ ≠   

In this case, the generating functions reduce to the following simple form. 

( ) ( )( ) ( ) ( )( ), ,exp 1 ;  exp 1s r r s r rG k s G k sα α β γ β α β γ− − + +
∞ ∞+ − + −                         (72) 

The corresponding probability density functions can be derived via expanding these generating 

functions in terms of Macularin series around s = 0 and then substituting s = 1 in the computed 

series expansion. 

( ) ( )( )( )
( ) ( )( )( )

,

,

exp !

exp !

m

m r r r r

m

m r r r r

p k k m

p k k m

α α β γ γ

β α β γ γ

− − −
∞

+ + +
∞

+ −  

= + −  


                                                               (73) 

Therefore, one finally obtains the following bimodal Poisson type expression for the probability 

density function associated with the stationary state mRNA populations. 

( )( ) ( )( )( ) ( ), exp exp !
m m

m r r r r r r r rp k k k k mα γ γ β γ γ α β− − + +
∞ = − + − +                           (74) 

These types of bimodal probability density of the mRNA populations seem to play critical role in 

the cell to cell variability within an organism [14]. From Eqs. 60, one can derive the expressions 

for the steady state statistical properties of the mRNA population as follows. 

( ) ( )

( ) ( )( )( ) ( )

( ) ( )( )( ) ( )
( ) ( )( )( ) ( )( )

,

2 22 2 2

,

2
2 2

,

2 2

,

2

2

m r r r

m r r r r r r r r r r

m r r r r r r r r r r r r r r

m r r r r r r r r r r r r r r r

k k

v k k k k k k

k k k k k k k k k

k k k k k k k k k

η β α α β γ

α γ βα γ β γ γ α β

µ α γ βα γ γ γ β γ α β

κ α γ βα γ γ γ β γ γ α β α β

+ −
∞

− − + + − +
∞

− − − + + + + − +
∞

− − − + + + + − +
∞

= + +

= + + + − + +

= + + − + + + +

= + + − + + + + +

(75) 

From Eqs. 75 one can conclude that the steady state Fano factor will attain a maximum when the 

at the flipping rates αC, βC which are connected via
C C r rk kα β + −= .  
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Case V. ;  ;  ;  0r r rkα β α γ β γ −≠ =   

This is exactly the scenario addressed in Ref. [14]. In this case, the generating functions defined 

in Eqs. 54 takes the following simple form. 

( ) ( ) ( )( ), ,;  exp 1s s r rG G k sα α β β α β γ− + +
∞ ∞+ + −                                                        (76) 

We have used the properties of the KummerM functions defined in Eqs. 53 to derive Eqs. 76. 

The corresponding probability density functions can be derived as follows. 

( ) ( ) ( ) ( ), ,;  exp !
m

m m r r r rp p k k mα α β β α β γ γ− + + +
∞ ∞

 + = + −         
                                (77)  

Using Eqs. 77, one finally obtains the Poisson density function with zero spike [14]. 

( ) ( ) ( ) ( ), exp !
m

m r r r rp k k mα α β β α β γ γ+ +
∞

 + + + −         
                                         (78) 

In Eq. 78, the number of mRNA molecules m takes only the integer values and Eq. 78 is valid for 

the entire range of m i.e. m = 0 to infinity. Noting that , , ,s s sG G G− +
∞ ∞ ∞= + , from Eqs. 76, one can 

derive various statistical properties such as mean, variance, coefficient of variation and Fano factor 

associated with the stationary state mRNA populations as follows.  

( )
( )( ) ( )

( )( )
( )

,

22

,

,

, 1

m r r

m r r r r r

m r r r r

m r r

k

v k k

k k

k

η β α β γ

β α γ βγ γ α β

µ α γ βγ β

κ α γ α β

+
∞

+ +
∞

+ +
∞

+
∞

= +

= + + + 


= + + 


= + + 

                                                                      (79) 

STOCHASTIC SIMULATION METHODS 

To check the validity Eqs. 29 and 32 under various conditions, we performed detailed stochastic 

simulations on the complete system of master equations Eqs. 1. Here there are two different 

timescales viz. the timescale associated with the generation of a complete mRNA transcript and 

the timescale associated with the flipping dynamics across on-off state channels of transcription. 

We used the Gillespie algorithm [42, 43] to simulate the system of Eqs. 1. Let us denote the 

number of mRNA molecules at time t as m. Initially at t = 0, m = 0 and the system was in the on-

state so that r rk k +→ . Clearly, there are four different reaction transitions viz. ( )1m m− →  which 

represents the zeroth order transcription with a rate kr, ( )1m m+ → which represents the first order 

recycling of mRNA molecules with a rate γr m, [ ] [ ]+ → −  represents the flipping from the on-state 

to the off-state with a rate α and[ ] [ ]− → +  represents the flipping from the off-state to the on-state 

with a rate β. The total reaction flux here is T r rf k mγ α β= + + + . We generated two different 

random numbers which are equally distributed inside ( )1 2, 0,1r r ∈ . The reaction times were 

sampled from the exponential type distribution ( ) ( )exp Tp fτ τ∝ − . This can be achieved via 
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transforming r1 using the rule ( )1ln Tr fτ = − . We used r2 to decide on which reaction takes place 

at this time point. In these iteration steps we set r rk k ±→ depending on the current state of the 

transcription channel. 

 

a) When ( )2 r Tr k f≤ then the transcription reaction will take place.  

b) When ( ) ( )( )2r T r r Tk f r k m fγ< ≤ + , then the recycling of mRNA will take place.  

c) When ( )( ) ( )( )2r r T r r Tk m f r k m fγ γ α+ < ≤ + + , then the transition from the on-state to the 

off-state will take place. Upon such transition we set the transcription rate as r rk k −→ .  

d) When ( )( ) 2r r Tk m f rγ α+ + < , then the transition from the off-state to the on-state will take 

place. Upon such transition we set the transcription rate as r rk k +→ .  

 

Several trajectories were generated each with a total time tT and various statistical properties of 

mRNA numbers such as mean, variance, coefficient of variation and Fano factor were computed 

across the time axis. To compute the optimum flipping rate, same set of simulations were 

performed at different values of the flipping rate. Using this dataset, the optimum flipping rates at 

which the variance and the Fano factor attained the maximum were numerically computed. 

 

To compute the mean first passage time (MFPT) associated with the generation of a complete 

mRNA transcript we used the following algorithm. We set up the initial number of mRNA bases 

as n = 0 and the system starts from the on-state or off-state channel with the respective microscopic 

elongation rates rλ
±
. The completely transcribed mRNA transcript will have L number of bases. 

Clearly, there are three different transitions viz. ( )1n n− →  which represents the transition with 

rate rλ
±
depending on the transcription channel at that time point, [ ] [ ]+ → −  represents the flipping 

from the on-state to the off-state with a rate α and[ ] [ ]− → +  represents the flipping from the off-

state to the on-state channel with a rate β. The total reaction flux here is Q rf λ α β= + +  where 

r rλ λ ±=  depending on the current state of the transcription channel. We generated two different 

random numbers which are equally distributed inside ( )1 2, 0,1r r ∈ . The reaction times were 

sampled from the exponential distribution ( ) ( )exp Qp fτ τ∝ − . This can be achieved via 

transforming r1 using the rule ( )1ln Qr fτ = − . We used r2 to decide on which reaction transition 

takes place at this time point. In these iteration steps, we set r rλ λ ±→ depending on the current 

state of the transcription channel. 

 

a) When ( )2 r Qr fλ≤ then the microscopic elongation transition ( )1n n→ + will take place.  
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b) When ( ) ( )( )2r Q r Qf r fλ λ α< ≤ + , then the transition from the on-state to the off-state will 

take place. Upon such transition we set the microscopic elongation transition rate as r rλ λ −→ .  

c) When ( )( ) 2r Qf rλ α+ < , then the transition from the off-state to the on-state will take place. 

Upon such transition we set the microscopic elongation transition rate as r rλ λ +→ .  

 

When n = L, then the iteration was stopped and the first passage time (FPT) was noted. Several 

such trajectories were generated and the obtained FPTs were used to compute the MFPT and other 

statistical properties of FPTs such as variance, coefficient of variation and the Fano factor. This 

analysis was repeated at various of values of the flipping rates. 

 

RESULTS AND DISCUSSION 

Transcription bursting seems to emerge as a consequence of the interplay between the on-off 

flipping rates (α, β), microscopic transcription elongation rates ( rλ
+
, rλ

−
), resultant transcription 

rates ( rk +
, rk −

), and the recycling rate of mRNAs γr. When the on-off flipping rates and the 

transcription elongation rates are comparable to each other, then a continuous type transcription 

with monomodal type distribution of the mRNA populations will be observed as in Fig. 3A. In 

this case, the transcription will be always in the on-state by definition. Transcription bursting 

emerges when one sets α β>  and the condition r rk k− + is satisfied which is clearly demonstrated 

in Figs. 3B-D. Here β is the rate of flipping from the off-state to the on-state of transcription and 

α is the rate of flipping from the on-state to the off-state. In most of the natural scenarios one finds 

that 0rk −  . Therefore, the inequality conditionα β>  along with the decay rate constant γr decides 

the emergence of the bursting in transcription and also the burst size that is defined as rkσ α= . 

The mRNA number fluctuations in the two-stage or continuous transcription and decay follows a 

typical Poisson density function with Fano factor = 1. When the transcription undergoes on-off 

flipping dynamics, then the mRNA number fluctuations follow a typical super Poisson type density 

function with a Fano factor more than one. Earlier studies suggested that such systems are closely 

follow a negative binomial distribution function [15]. The entire transcription scheme can be 

fragmented into several sub-processes viz.  

 

(a) The flipping dynamics across the on-off channels of the transcription. This is characterized by 

the flipping rates (α, β). Here the on-state describes the fully functional transcription machinery 

and the off-state describes a scenario where the RNAP is stalled due to the presence huge 

positive supercoil barrier ahead or other chromosomal barriers. 

(b) Microscopic transcription elongation events representing the growth of individual mRNAs 

starting from n = 0 number of bases toward n = L bp. This is characterized by the microscopic 

transcription elongation rates ( rλ
+
, rλ

−
) corresponding to the on and off channels respectively. 

(c) Mesoscopic transcription dynamics. This is characterized by the mesoscopic transcription rates 

( rk +
, rk −

) corresponding to the on and off state channels which are the cumulative effects of (a) 

and (b). When the transcription follows pure on or off state channels so that there is no flipping 

across them i.e., α = β = 0, then one finds that r rk Lλ± ± .When the transcription follows a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2020. ; https://doi.org/10.1101/2019.12.18.880435doi: bioRxiv preprint 



Theory of transcription bursting 

23 

 

random trajectory via flipping across on and off states, then the resultant transcription rate ξ 

will be a random variable. Clearly, ξ varies across different mRNA transcripts. The overall 

average transcription rate can be defined as rk ξ= . When α ≠ β, then one finds the probable 

range of the resultant transcription rate r rk kξ− +≤ ≤  and r r rk k k− +≤ ≤ .  

(d) Recycling dynamics of mRNAs which is characterized by the decay rate γr. Independently it 

is a first order decay which follows a Poisson type density function. 

 

Individually, the population of states in the on-off channels associated with the uncoupled sub-

process (a) follows a binomial density function for which the Fano factor is less than one. This is 

similar to the tossing of a coin. On the other hand, the population of various states in the sub-

processes (b), (c) and (d) individually follow typical Poisson density function with a Fano factor 

of one (see Appendix B for a simplified derivation). When the sub-process (a) is dynamically 

coupled with (b) and (c), then the resultant or effective transcription rate ξ randomly fluctuates 

among the population of transcription events across ( rk −
, rk +

). The probability density function 

associated with the fluctuations in the resultant transcription rate ξ will be dependent on the on-off 

flipping rates, microscopic elongation rates ( rλ
−
, rλ

+
) and the length of the mRNA transcript L.  

 

Figs. 4 and 5 demonstrate how the statistical properties of the mRNA number fluctuations varies 

with time and flipping rate parameters. When α = β = χ and γr = 0, then one finds from Figs. 4B 

and D that the variance and the Fano factor associated with the mRNA numbers attain maxima at 

the optimum flipping rates ,C vχ  and ,C κχ respectively. These optimum flipping rates seems to be 

decrease with time towards zero in line with the theoretical predictions of Eqs. 29 and 32. These 

results are shown in Figs. 5.  Clearly, the system will follow a Poisson type density function (Fano 

factor of mRNA number fluctuations equals to one) when the flipping rates become 0χ →  as well 

as χ →∞ . This reasonable since when 0χ →  then the on-off channels will be uncoupled and all 

the transcription events will be via the on-state channel. When χ →∞  then the system of strongly 

coupled and both the transcription channels will be equally utilized. When γr ≠ 0, then the optimum 
flipping rates ,C vχ  and ,C κχ first converge to the steady state limits and then move slowly towards 

zero which is evident from Figs. 4E, G, Figs. 5B and E. Figs. 6 demonstrate how the statistical 

properties of the mRNA number fluctuations vary with time when α ≠ β. Remarkably, Eqs. 63 

suggested that there exists steady state optimum points αC and βC at which the Fano factor attains 

the maximum. These optimum points are connected via ( )C C C rα β β γ= +  as shown in Eqs. 63 

and Figs. 7. When we fix α and iterate β, then one finds the optimum value of α at which the Fano 

factor attains maximum as ( )C rα β β γ= + . Particularly for a fixed β = 1, one finds for γr = 1 that 

2Cα = as shown in Fig. 6D. In the same way, when we fix β and then iterate α, then one finds 

the optimum β at which the Fano factor attains a maximum as 2 2 4 2C r rβ α γ γ= + −  and so on.  

Particularly for a fixed α = 1, one finds for γr = 1 that 0.618Cβ = as shown in Fig. 6H. 
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Generation of an individual mRNA transcript can be characterized by sequential microscopic 

transcription elongation rates ( rλ
+
, rλ

−
) as shown in Figs. 2. We define the time that is required to 

generate a complete mRNA transcript of size L bp starting from zero number of bases as the first 

passage time (FPT). Inverse of this FPT is the transcription rate ξ associated with the respective 

mRNA transcript. Since FPT is a random variable across the population of transcription events, 

the resultant transcription rate will be a time dependent random variable in view of the mesoscopic 

transcription dynamics [44]. The average of FPTs is defined as the mean first passage time 

(MFPT). When there is a flipping across the on-off states, then the overall average transcription 

rate kr will be an inverse of the mean first passage time (T0, MFPT) as [ ]01rk T= . When there is 

no flipping across the on-off states then one finds that r rk k ±= where r rk Lλ± ±= depending upon 

the transcription channel used to generate the mRNA transcript. 

 

Figs. 8 demonstrate how the statistical properties of FPTs such as mean, variance, Fano factor and 

coefficient of variation associated with the generation of a complete transcript varies with the on-

off flipping rates. When we set α = β = χ and 0rλ
− ≠ , then there exists an optimum flipping rate 

χC,T at which the variance and the Fano factor associated with the distribution of FPTs attain the 

maxima. This result is line with the prediction of Eqs. A7 of Appendix A. Further, the Fano factor 

associated with the FPTs seems to be less than one throughout the iteration range of χ. This 

indicates the sub-Poisson type density function of FPTs. These results are demonstrated in Figs. 

8A-D. When α ≠ β and 0rλ
− → , then the distribution of FPTs varies depending on the ratio (α / β) 

of the flipping rates.  

 

When (α / β) = 1, then the distribution of FPTs approximately follow a Poisson type density 

function with a Fano factor = 1. When (α / β) > 1, then the distribution of FPTs follow a super 

Poisson (over dispersed with a Fano factor > 1). When (α / β) < 1, then the distribution of FPTs 

follow a sub Poisson (under dispersed with a Fano factor < 1). These results are demonstrated in 

Figs. 8E and F. It is also interesting to note the limit ( )00
lim

r
rT L

λ
α β βλ−

+
→

+ . These results 

are consistent with the theoretical prediction by Eqs. A3 of Appendix A. as we have shown in 

Appendix A. Various other limiting values of the MFPT (corresponding to the case 0rλ
− → ) 

associated with the generation of a complete mRNA transcript are shown in Figs. 9 (for the 

situation where α = β = χ) and Figs. 10 (for the situation where α ≠ β). Figs. 10 provides the 

computational proof for the various limiting values of the MFPT required to generate a full mRNA 

transcript as described in the Appendix A. Variation of the critical flipping rates ( Sα , Sβ ) 

associated with distribution of FPTs with respect to (α, β) as described in Eqs. 42 is demonstrated 

in Figs. 10E and F. Emergence of steady state bimodal type distribution of mRNA populations is 

demonstrated in Figs. 11 along with a fitting to the experimental data digitized from Ref. [14].  

 

One can broadly classify the models on transcription bursting into two state and multi state models 

[45]. In two state models, the promoter is assumed to flip across on and off states. Two state models 

generally produce a bimodal type density of the mRNA numbers. In the multistate models [19], 

there are several states across which the transcription process fluctuates. Multistate models 

generally result in the multimodal type density functions associated with the mRNA number 
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fluctuations [46]. In all these models, the transcription rate kr will be assumed to be a constant. 

This assumption will work only when the timescale associated with the flipping across various 

states is much higher than the timescale associated with the generation of a complete mRNA 

transcript. It is generally assumed that the transcription machinery generates several mRNA 

transcripts (following the Poisson density function) in the on-state before flipping to the off-state 

e.g. the interrupted Poisson model developed in Ref. [47]. However close look at the underlying 

transcription mechanism reveals that the RNAP or RNA pol II performs several rounds of stall-

continue type dynamics before generating a complete transcript. Therefore, the time that is 

required to generate a given transcript will be a random variable. This means that the resultant 

transcription rate ξ (which is the inverse of the first passage time required to generate a complete 

mRNA transcript) will be a random variable.  

 

The overall average transcription rate will be defined as ( )rk p dξ ξ ξ ξ= =∫ where ( )p ξ is the 

probability density function associated with the distribution of transcription rates. Depending on 

the timescale of on-off state flipping one can consider two different scenarios viz. (a) when the 

timescale of on-off flipping is much longer than the timescale associated with the generation of a 

complete mRNA transcript, then the transcription rate will be homogenous within a given on-state 

period but varies from burst to burst. This can be approximately described as a static disorder in 

the transcription rates. (b) When the timescale of flipping is much shorter than the timescale 

associated with the mRNA synthesis, then the transcription rate varies from mRNA to mRNA. 

This can be described as a dynamical disorder in the transcription rates [44, 48, 49].  Our mean 

first passage time calculations suggested that when the rate of off-state transcription channel is 

zero i.e. 0rλ
− → , then the overall average transcription rate will be transformed as r rk h k+ +

∞ where 

r rk Lλ+ + and ( )h β α β+
∞ = +    is the stationary state probability of finding the transcription 

machinery in the on-state (Appendix A and Eqs. B8 of Appendix B or sufficiently large mRNA 

length L) in the presence of flipping across the on-off states. This means that the transcription “rate 

constant” will be a function the on-off flipping rates. Comparison of this quantity with the steady 

state and time dependent solutions of Eqs. 1 clearly suggested that Eqs. 1 is accurate enough (this 

can be inferred from the expression of ,m tη  in Eqs. 11 and ,mη ∞  of Eqs. 58) to capture the 

inhomogeneity of the resultant transcription rate ξ at sufficiently large mRNA lengths. However, 

Eqs. 1 cannot explain the origin of over-dispersion in the mRNA numbers. Our detailed study 

reveals that such over-dispersion mainly originates from the non-Poisson type distribution of FPTs 

associated with the elongation of individual mRNA transcripts especially when the on-off flipping 

rates are such that (α / β) > 1. 

 

CONCLUSION 

Transcription bursting is essential to generate variation among the individuals of a given 

population. The mechanism of bursting comprises of at least three sub-processes with different 

timescale regimes viz. flipping dynamics across the on-off state transcription elongation channels, 

microscopic transcription elongation events and the mesoscopic transcription dynamics along with 

the mRNA recycling. Flipping dynamics across the on-off states is similar to the tossing of a coin.  

When the flipping dynamics is combined with the microscopic elongation events, then the 

distribution of resultant transcription rates will be over-dispersed. This in turn reflects as the over-

dispersed non-Poisson type distribution of mRNA numbers. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2020. ; https://doi.org/10.1101/2019.12.18.880435doi: bioRxiv preprint 



Theory of transcription bursting 

26 

 

Our detailed calculations show that there exist optimum flipping rates (αC, βC) at which the 

stationary state Fano factor and variance associated with the mRNA numbers attain maxima. These 

optimum points are connected via ( )C C C rα β β γ= + . Here α is the rate of flipping from the on-

state to the off-state and β is the rate of flipping from the off-state to the on-state of transcription 

and γr is the decay rate of mRNA. When α = β = χ, then there exist optimum flipping rates at which 

the non-stationary Fano factor and variance attain maxima. Here ( ), 3 2 1C v r rk k tχ + ++  (where rk +

is the rate of transcription through the on-state channel) is the optimum flipping rate at which the 

variance of mRNA numbers attains a maximum and , 1.72C tκχ  is the optimum flipping rate at 

which the Fano factor attains a maximum. These optimum points reduce to zero when t →∞ . 

Close look at the transcription mechanism reveals that the RNA polymerase enzyme complex 

performs several rounds of stall-continue type dynamics before generating a complete mRNA 

transcript. Based on this observation we model the transcription event as the stochastic trajectory 

taken by the transcription machinery across these on-off state elongation channels. Each transcript 

follows different trajectory. The total time taken by a given trajectory is the first passage time 

(FPT). Inverse of this FPT is the resultant transcription rate ξ associated with the particular mRNA. 

Therefore, the time that is required to generate a given mRNA transcript will be a random variable. 

This means that the resultant transcription rate ξ will be a random variable. The overall average 

transcription rate will be the ensemble average rk ξ=  which is equal to the inverse of the mean 

first passage time required to generate a complete mRNA. For a stall-continue type dynamics of 

RNA polymerase, the overall average transcription rate can be expressed as r rk h k+ +
∞ where 

r rk Lλ+ + , rλ
+
is the microscopic transcription elongation rate on the on-state channel and L is 

the length of complete mRNA and ( )h β α β+
∞ = +    is the stationary state probability of finding 

the transcription machinery in the on-state. 
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APPENDIX A  

Consider the following backward type coupled master equations (Eqs. 40 of the main text) 

corresponding to the second moments of the first passage times (FPTs) required to generate a 

complete mRNA transcript starting from an arbitrary n size of mRNA [37, 39]. 

 

1 12 ;  2 ;  0r n r n n n n r n r n n n n LR R R R T R R R R T Rλ λ α β λ λ α β+ + + + + − + − − − − + − − ±
+ +− − + = − − + − = − =                 (A1) 

In this equation, the first moments of the FPTs are defined as follows (as described in Eqs. 42 of 

the main text). 

( ) ( ) ( )( )
[ ] ( )( )
[ ] ( ) ( ) ( ) ( )( )
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2 2
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2 2
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1 1
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= − − −
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    (A2) 

The set of difference Eqs. A1 is exactly solvable using standard summing technique [37] and the 

final expression corresponding to the variance ( Tv ), Fano factor ( Tκ ) and coefficient of variation 

( Tµ ) of FPTs associated with the generation of a complete mRNA transcript of length L starting 

from n = 0 can be written as follows. 
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Here y and W are defined as in Eqs. A2 and various other terms A1, A2 and A3 in Eqs. A3 are 

defined as follows. 
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In Eqs. A4-A6, W is defined as in Eqs. A2. Whenα β χ= = , then the expression corresponding 

to the variance of FPTs given in Eqs. A3 simplifies to the following form. 
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The terms Y, B1, B2 and B3 in Eqs. A7 are defined as follows. 
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                                      (A8) 

Numerical analysis of Eqs. A7 reveals the existence of maximum Tv , Tκ and Tµ  at the optimum 

flipping rate χC,T which is demonstrated in Figs. 8B and D. Eqs. A2 clearly suggest that when the 

microscopic transcription elongation rate associated with the off-state channel is close to zero i.e. 

0rλ
− →  then the overall average transcription rate scales with the on-off flipping rates as

[ ] ( )01r rk T k β α β+= +   where r rk Lλ+ += is the overall transcription rate of the pure on-state 

channel and rλ
+
is the elongation rate of the on-state channel. 

APPENDIX B 

Let us consider the uncoupled on-off state transcription elongation channels. When there is no 

flipping across the on and off state channels, then Eqs. 1 will be uncoupled as follows. 
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( ) ( ) ( ), 1, 1, , ,01 ;  t m t r m t r m t r r m t mu k u m u k m u u mγ γ δ± ± ± ± ± ± ±
− +∂ = + + − + =                                            (B1) 

Here ,m tu±
is the probability of finding m number of mRNAs at time t in the respective independent 

transcription channels. Upon defining the generating functions as
, ,0

m

s t m tm
G s u

∞± ±
=

=∑ one can 

transform Eqs. B1 into the following partial differential equations. 

 

( ) ( ), , , ,01 1 ;   1t s t r s t r s s t sG k s G s G Gγ± ± ± ± ±∂ = − + − ∂ =                                                                     (B2) 

 

Upon solving Eqs. B2 for the for the appropriate boundary conditions one finds the expression 

for the generating functions as follows. 

 

( ) ( )( )( ), exp 1 1 exps t r r rG k s tγ γ± ±= − − −                                                                                (B3) 

 

Using this generating function one can derive various statistical properties of the mRNA number 

fluctuations corresponding to on-off channels as follows. 

 

( )( )
( )( )

( )( )( )

, 1 ,

2 2

, 1 , , ,

1

, ,

lim 1 exp

lim 1 exp

1;  1 exp

m t s s s t r r r

m t s s s t m t m t r r r

m t m t r r r

G k t

v G k t

k t

η γ γ

η η γ γ

κ µ γ γ

± ± ±
→

± ± ±
→

−± ± ±

= ∂ = − −

= ∂ + − = − −

= = − −

                                                        (B4) 

 

Upon expanding the generating function in to a Macularin series with respect to variable s and 

then setting s = 1, one finally obtains the probability density functions as follows. 

 

( ) ( )( ) ( ) ( )( ), 1 exp exp 1 exp !
m

m t r r r r r ru k t k t mγ γ γ γ± ± ±= − − − − −                                        (B5) 

 

Using Eqs. B5 one can directly obtain the steady state probability density functions as follows. 

( ) ( ), exp !
m

m r r r ru k k mγ γ± ± ±
∞ = −                                                                                         (B6) 

When the on-off state flipping is uncoupled from the transcription elongation, then the flipping 

dynamics can be described by the following set of coupled differential equations. 

0

0

1
;  

0

t t

t

t t

h h h

h h h

α β
α β

+ + +

− − −

  −       
∂ = =        −        

                                                                                (B7) 

Here we have the normalization condition 1t th h+ −+ = . Upon solving Eqs. B7 with the appropriate 

initial conditions, one obtains the expression for the time dependent probability th±
of finding the 

transcription state in the respective on-off channels as follows. 
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( ) ( ) ( )( )
( ) ( )( )( )

( )
( )

exp
;  

1 exp

t

t

th h

h ht

β α β α α β α β β α β
α α βα α β α β

+ +
∞

− −
∞

 + − + − +    +        = =      + + − − +        
                     (B8) 

Upon combining Eqs. B5 with Eqs. B8, one can derive , ,m t m t tp u h± ± ± , which is the probability of 

finding m number of mRNAs in the respective on-off state channels. Explicitly one can write the 

following expression. 

( ) ( ) ( ) ( ), , , exp ! exp !
m m

m t m t t m t t t t t t t tp u h u h h m h mϕ ϕ ϕ ϕ+ + − − + + + − − ++ = − + −                              (B9) 

In this equation, we have defined the function ( ) ( )1 expt r r rk tϕ γ γ± ±= − −   . When the timescale 

associated with the on-off state flipping dynamics is much lower than the timescale associated 

with the mRNA synthesis and decay dynamics so that ( ) rα β γ+  , then Eq. B9 reduces to

, , ,m t m t m tp u h u h+ + − −
∞ ∞+ . Under complete steady state conditions , , ,m m mp u h u h+ + − −

∞ ∞ ∞ ∞ ∞+  and one 

obtains the following bimodal Poisson type expression. 

( ) ( ) ( ) ( ) ( ), exp exp !
m m

m r r r r r r r rp k k k k mγ β γ γ α γ α β+ + − −
∞

 − + − +  
                         (B10) 

When the transcription rate associated with the off-state channel tends toward zero, then one 

recovers the Poisson density function with zero spike [14] as follows. 

( ) ( ) ( ) ( ),0
lim exp !

r

m

m r r r rk
p k k mα α β γ β γ α β−

+ +
∞→

+ + − +                                      (B11) 
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FIGURE 1. Stochastic transcription rate and transcription bursting. In this generalized model, the 

mRNA transcript of size L bp can be generated via either pure on or off state channels with rates 

rk +
and rk −

 respectively. The microscopic transition rates rλ
±
 characterize the addition of individual 

nucleotides at the end of growing mRNA in the process of transcription elongation. The resultant 

transcription rate will be the inverse of the first passage time required to generate a complete 

mRNA. When there is a flipping across these on-off states then the resultant transcription rate ξ 

fluctuate across rk +
and rk −

 in a random manner where r rk k− +  in general. The ensemble average 

of ξ across several trajectories of mRNA synthesis will be the average transcription rate rk ξ= . 

Here (+) denote the on-state and (-) denotes the off-state of transcription and γr is the decay rate 

constant of mRNAs. The rate of flipping from the on-state to the off state is α and the rate of 

flipping from the off-state to the on-state in β.  The mesoscopic transcription rates rk ±
 are connected 

to the microscopic ones rλ
±
via the relationship r rk Lλ± ±=  . As a result, flipping across on-off states, 

the overall effective transcription rate kr will be somewhere in between ( ),r rk k− + . Here the dotted 

line is a stochastic transcription trajectory which varies from transcript to transcript. This means 

that the effective transcription rate ξ (it is not a constant anymore) varies from transcript to 

transcript and it is a stochastic quantity.  
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FIGURE 2. Stochasticity in the transcription rate. A. In this model the total length of the full 

transcript is L = 10 bp. Green color denotes the on-state and red color denotes the off-state 

channels. At time t = 0, the system was in the on-state. Green to green transition is characterized 

by the microscopic transcription elongation rate rλ
+
and red to red transition is characterized by the 

elongation rate rλ
−
. Here rλ

±
 are measured in bp/s. B. When the entire transcription process follows 

the pure off-state channel (B1), then the overall transcription rate scales as r r rk k Lλ− −= =  that is 
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measured in s-1. When there is a flipping across the on- and off-state channels (B2), then the 

transcription rate of a given mRNA trajectory will be somewhere inside as r rk kξ− +< < . For a stall-

continue type elongation of RNA polymerase, it approaches the limit ( )
0

lim
r

r rk L
λ

α β λ β−
+

→
+  

as shown in Appendix A where rk ξ= . When the entire transcription process follows the pure 

on-state channel (B3), then the overall transcription rate can be expressed as r r rk k Lλ+ += = . 

 

 

FIGURE 3. Emergence of the transcription bursting phenomenon. These are all single stochastic 

trajectories. A. Continuous transcription process. Here the parameters settings are α = β = 10-6 s-1, 

rk +
= 3 s-1, γr = 0.1 s-1, and rk −

= 10-5 s-1. In these settings, one finds that r rk k +  and therefore the 

steady state mRNA numbers will be s r rm k γ+ ~ 30. Initially the system was set into the on-state 

of transcription. B. Transcription bursting emerges when one sets high value for α and low value 

for β apart from the mandatory condition that r rk k− + . Here α = 3, β = 1 and rest of the parameters 

are set as in in the panel A. In C. β = 0.1 and in D. β = 0.05 and rest of the other parameters are set 

as in the panel A. 
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FIGURE 4. Simulation results on various time dependent statistical properties of mRNA number 

fluctuations in the pre-steady state regime of the transcription event. Here we have set α = β = χ 

for simplification, ηm,t denotes the mean, κm,t denotes the Fano factor, μm,t denotes the coefficient 
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of variation, and vm,t denotes the variance. In the panels A-D the parameter settings are 10rk + = ,

0rk − =  and 0rγ = . In line with the predictions of Eqs. 29 and 32 one observes maxima in the Fano 

factor and the variance with respect to the flipping rate χ which is also a time dependent quantity. 

As predicted by these equations, the optimum flipping rate shifts towards zero as time tends 

towards infinity. In the panels E-H the parameter settings are 10rk + = , 0rk − =  and 1rγ = . Statistical 

properties were computed over 106 number of trajectories. 
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FIGURE 5. Variation of the optimum flipping rate χ that maximizes the variance and the Fano 

factor of mRNA numbers. In panels A-C the settings are 10rk + = , 0rk − =  and 0rγ = . In panels D-

F the settings are 10rk + = , 0rk − =  and 1rγ = . Panels A and D represent the flipping dynamics across 

the on and off states. Panels B and E represent the variation of the optimum flipping rate with 

respect to time which maximize the Fano factor associated with the mRNA number fluctuations. 

Panels C and F represents the variation of the optimum flipping rate with respect to time which 

maximizes the variance associated with the mRNA number fluctuations. Here the solid red lines 

are the predictions by Eqs. 29 and 32 which are valid when α = β = χ, 0rk − =  and 0rγ = . In panels 

C and F, the precision in numerically computing the maximum points is lost when t < 0.1 since 

the surface is almost flat. Statistical properties were computed over 106 number of trajectories. 
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FIGURE 6. Various time dependent statistical properties of mRNA fluctuations in the pre-steady 

state regime of the transcription event. Here we have set α ≠ β, ηm,t denotes the mean, κm,t denotes 

the Fano factor, μm,t denotes the coefficient of variation, and vm,t denotes the variance of the mRNA 
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number fluctuations. In the panels A-D the settings are , 1rk − = , 1rγ =  and β = 1. In the 

panels E-H the settings are , 1rk − = , 1rγ =  and α = 1. In line with the predictions of Eqs. 29 

and 32 one observes maxima in the Fano factor and the variance even when α ≠ β. Statistical 

properties were computed over 106 number of trajectories. 

 

 

 

10rk + =

10rk + =
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FIGURE 7. Variation of the steady state Fano factor ,mκ ∞ associated with the mRNA number 

fluctuations with respect to changes in the flipping rates α and β in the limit ,0
lim

r
mk

κ− ∞→
 as given 

in Eqs. 63. Here the settings in panels A and B are 1rk + = , 0rk − =  and 0.1rγ = . Panel B is the 

contour plot of panel A. The optimum values of α at which ,mκ ∞  attains a maximum can be 

expressed as ( )C rα β β γ= + . This can be obtained by solving 
, 0mκ α∞ ∂ ∂ =   for α. Red solid 
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line in panel A is the maximum value of the steady state Fano factor which can be obtained by 

substituting α = αC in the expression of ,mκ ∞  as in Eqs. 63.  

 

FIGURE 8. Dependence of the overall average transcription time on the on-off flipping rates. 

Here T0 is the mean first passage time associated with the formation of a complete mRNA 

transcript with size n = L bp starting from n = 0 bp where n is denotes dynamic number of 

transcribed bases. Filled or hollow circles are the simulated results and solid lines are the 
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theoretical predictions computed using Eqs. A3 (panels E, F) and A7 (panels A-D) of Appendix 

A. By definition kr = [1/T0] is the transcription rate. T0 was calculated using Eqs. 39. Hollow blue 

and red circles are the stochastic simulation results. In panels A-D the settings are 10rλ
+ =  bp/s, 

5rλ
− =  bp/s, α β χ= = and L = 100 bp with ( ),0nq nδ+ =  and ,0 0nq− =  in A and B. In C and D

( ),0 ,0;  0n nq n qδ− += = . Here ,n tq±
 is the probability of finding n number transcribed bases in the 

respective on (+) and off (-) state channels. When the flipping rate becomes sufficiently large, then 

one finds the limiting value as ( )0lim 2 r rT Lχ λ λ+ −
→∞ + . Panels B and D demonstrate the 

variation of the mean ( Tη ), variance ( Tv ), coefficient of variation ( Tµ ) and Fano factor ( Tκ ) of the 

first passage times associated with the generation of a complete mRNA transcript with respect to 

the flipping rate parameter χ. Clearly, there exists an optimum flipping rate χC,T  at which the 

variance, Fano factor and coefficient of variation of the first passage times attain a maximum. 

Panels E and F demonstrate behavior of the overall MFPT when  α β≠  and 0rλ
− → . In this 

situation, we find ( )00
lim

r
rT L

λ
α β βλ−

+
→

+ . Settings in E and F are 10rλ
+ = , 

410rλ
− −=  and L = 

100.  In panel E, β = 1 and in panel F, α = 1 with initial conditions ( ),0 ,0;  0n nq n qδ+ −= = .  Statistical 

properties of FPTs were computed over 106 number of trajectories. With these settings one finds 

that βS ~ 1.15 and αS ~ 0.7 in line with the prediction by Eqs. 42. 
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FIGURE 9. Various limiting values of the mean first passage time (MFPT, T0) associated with 

the generation of a complete mRNA transcript of size L bp. MFPT was computed using Eqs. 44. 

Here the settings in panel A are 10rλ
+ =  bp/s and L = 100 bp. When 0rλ

− →  and 0χ → , then one 

finds that 0 rT L λ +→  = 10 s (I). When 0rλ
− → with finite χ, then one finds that 0 2 rT L λ +→ = 20 

s (III). Hypothetically, when r rλ λ− +≥ and χ →∞ , then one finds that ( )0 2 r rT L λ λ+ −→ +  (II). 

Panel B is the contour plot of panel A. 
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FIGURE 10. Statistical properties of the first passage times (FPTs) associated with the generation 

of a complete mRNA transcript of size n = L bp starting from n = 0. Settings are, 10rλ
+ =  bp/s is 

the elongation rate in the on channel and L = 100 bp and
410rλ

− −= is the elongation rate of the off 

channel. As shown in Appendix A, one finds the limiting value of the mean of FPTs (MFPT, T0) 

as ( )00
lim

r
rT L

λ
β α βλ−

+
→

+ . When α = 102 and β = 10-2, then one finds the limiting value as
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00
lim ln 11.5

r

T
λ−→

 . For α = 10-2 and β = 102, one finds that 00
lim ln 2.3

r

T
λ−→

  and so on. A. mean 

of FPTs (ηT). B. Variance of FPTs (vT). C. Fano factor of FPTs (κT). D. coefficient of variation of 

FPTs (μT). Statistical properties of FPTs were computed over 106 number of trajectories. In E and 

F ( Sα , Sβ ) are the critical values of the flipping rates such that when Sα α< or Sβ β< , then the 

distribution of the FPTs becomes sub-Poisson type. When Sα α> or Sβ β> , then the distribution 

of FPTs becomes super-Poisson as described in Eqs. 42. Here 10rλ
+ =  bp/s. E. Variation of αS with 

respect to β in the limit 0rλ
− → . F. Variation of βS with respect to α in the limit 0rλ

− → . 

 

 

FIGURE 11. Emergence of the bimodal distribution functions associated with the mRNA number 

fluctuations. In panel A the settings are α = 3, β = 1 and γr = 1. In panel B the settings are α = 3, 

and β = 1. This represents the Poisson density function with zero spike as derived in Eq. 78. Hollow 

red circles are the digitized data points from Ref. [14]. 
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Table 1. List of symbols and variables used in the main text 

Parameter  Definition Remarks 

MFPT Mean first passage time. It is the average time required to 

generate a full mRNA transcript with a given elongation 

speed of RNA polymerase.  

s 

FPT First passage time. It is the time required to generate a given 

mRNA transcript. Clearly this quantity will vary from 

transcript to transcript. 

s 

m Concentration of the mRNA molecules or the number of 

mRNA molecules. 

M, or number 

RNAP RNA polymerase complex  

Fano Factor = variance / mean. In the units of 

mean. 

CV Coefficient of variation = standard deviation / mean. dimensionless 

kr Overall average or effective transcription rate. M/s or 1/s 

rk +
 Transcription rate in the on-state channel of transcription. M/s or 1/s 

rk −
 Transcription rate in the off-state channel of transcription. M/s or 1/s 

L Length of the complete mRNA transcript. bp 

rλ
+
 Microscopic transcription elongation rate constant associated 

with the addition of single bp with already emerging mRNA 

in the on-state channel. r rk Lλ+ += . 

bp/s 

rλ
−
 Microscopic transcription elongation rate constant associated 

with the addition of single bp with already emerging mRNA 

in the off-state channel. r rk Lλ− −= . 

bp/s 

γr Decay rate constant associated with the mRNA molecules. By 

definition 1/γr is the lifetime of mRNA. 

1/s 

α Rate of flipping from the on-state to off-state channel of the 

transcription. 

1/s 

β Rate of flipping from the off-state to the on-state channel of 

the transcription. 

1/s 

χ When α = β then α = β = χ is the rate of flipping across on-off 

states of transcription. 

1/s 

χC,v Optimum on-off flipping rate at which the variance associated 

with the mRNA number fluctuations attains a maximum. 

When 0rk − =  and γr =0, then one finds that

( ), 3 2 1C v r rk k tχ + ++ .  

1/s 

χC,κ Optimum on-off flipping rate at which the Fano factor 

associated with the mRNA number fluctuations attains a 

maximum. When 0rk − =  and γr =0, then one finds that

, 1.72C tκχ  . 

1/s 

σ = kr / α, is the transcription efficiency or the burst size. Molecules  
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σC 
r Ck α= , is the optimum transcription efficiency or the burst 

size at which the steady state Fano factor attains a maximum. 

Molecules or 

dimensionless 

number 

ηm, t Mean value associated with the mRNA number fluctuations at 

time t. 

M or number 

μm, t Coefficient of variation (= variance / square of mean) 

associated with the mRNA number fluctuations at time t. 
2

, , ,m t m t m tvµ η= . 

dimensionless 

κm, t Fano factor (= variance / mean) associated with the mRNA 

number fluctuations at time t. , , ,m t m t m tvκ η= . 

M or number 

vm, t Variance associated with the mRNA fluctuations at time t. M2 or number 

ηm, ∞ Mean associated with the mRNA number fluctuations at the 

steady state. 

M or number 

μm, ∞ Coefficient of variation associated with the mRNA number 

fluctuations at the steady state. 
2

, , ,m m mvµ η∞ ∞ ∞= . 

dimensionless 

κm, ∞ Fano factor associated with the mRNA number fluctuations at 

the steady state. , , ,m m mvκ η∞ ∞ ∞= . 

M or number 

vm, ∞ Steady state variance associated with the mRNA numbers. M2 or number 

αC When β is fixed, then the optimum value of α at which the 

stationary state Fano factor attains a maximum. This can be 

obtained by solving 
, 0mκ α∞ ∂ ∂ =   for α. Explicitly, when 

rk −
= 0 then one finds that ( )C rα β β γ= + . 

1/s 

βC When α is fixed, then iteration over β shows an optimum 

point βC at which the steady state Fano factor associated with 

the mRNA number fluctuations attain a maximum.  

Explicitly one finds that 2 2 4 2C r rβ α γ γ= + − . Both these 

optimum flipping rates αC, βC are connected via

( )C C C rα β β γ= + . 

1/s 

,m tp±
 Probability of finding m number of mRNAs at time t in the 

respective on (+) and off (-) channels of transcription. 

dimensionless 

,mp±
∞  Probability of finding m number of mRNAs in the respective 

on (+) and off (-) channels of transcription at the steady state. 

dimensionless 

pm, t 
, ,m t m tp p+ −= + , Total probability of finding m number of mRNA 

molecules at time t. 

dimensionless 

pm, ∞ 
, ,m mp p+ −
∞ ∞= + , total stationary state probability of finding m 

number of mRNA molecules at time t. 

dimensionless 

T0 Mean first passage time associated with the generation of a 

complete mRNA transcript starting from n = 0 number of 

bases to n = L bp. By definition the overall transcription rate 

is kr = 1 / T0. 

s 
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ξ Transcription rate associated with an individual mRNA 

synthesis. It is the inverse of the FPT required to generate a 

complete mRNA transcript for a given elongation speed of 

RNA polymerase. Its ensemble average rk ξ=  is the overall 

average transcription rate. 

M/s or 1/s 

χC,T On-off flipping rate at which the Fano factor of FPTs 

associated with the generation of a complete mRNA transcript 

attains the maximum point.   

1/s 

,n tq±
 Probability of finding n number of bases in the elongating 

mRNA at time t in the respective on (+) or off (-) channel of 

transcription. 

dimensionless 

,s tG±
 ,0

m

m tm
s p

∞ ±
=

=∑ , is the generating function associated with the 

probability density ,m tp±
.  

dimensionless 

R0 Second moment of the distribution of FPTs required to 

generate a complete mRNA transcript starting from n = 0. 

s2 

vT 2

0 0R T= − , variance associated with the distribution of FPTs 

required to generate a complete mRNA transcript starting 

from n = 0. 

s2 

κT 
T Tv η= , Fano factor associated with the distribution of FPTs 

required to generate a complete mRNA transcript starting 

from n = 0. 

s 

μT 2

T Tv η= , coefficient of variation associated with the 

distribution of FPTs required to generate a complete mRNA 

transcript starting from n = 0. 

dimensionless 

ηT 
0T= , mean associated with the distribution of FPTs required 

to generate a complete mRNA transcript starting from n = 0. 

s 

αS, βS Critical values of the flipping rates (α, β) such that when 

Sα α< or Sβ β< , then the Fano factor Tκ associated with the 

distribution of FPTs becomes as 1Tκ <  (sub-Poisson type). 

When Sα α> or Sβ β> , then 1Tκ >  (super-Poisson type 

distribution). When Sα α=  or Sβ β= , then 1Tκ =  as 

described in Eqs. 42. 

1/s 
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