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Systems Biology

Karthik Raman and Nagasuma Chandra

Systems biology seeks to study biological systems as a whole,

contrary to the reductionist approach that has dominated

biology. Such a view of biological systems emanating from

strong foundations of molecular level understanding of the

individual components in terms of their form, function and

interactions is promising to transform the level at which we

understand biology. Systems are defined and abstracted at

different levels, which are simulated and analysed using

different types of mathematical and computational tech-

niques. Insights obtained from systems level studies readily

lend to their use in several applications in biotechnology and

drug discovery, making it even more important to study

systems as a whole.

1. Introduction

Biological systems are enormously complex, organised across

several levels of hierarchy. At the core of this organisation is the

genome that contains information in a digital form to make

thousands of different molecules and drive various biological

processes. This genomic view of biology has been primarily

ushered in by the human genome project. The development of

sequencing and other high-throughput technologies that generate

vast amounts of biological data has fuelled the development of

newways of hypothesis-driven research.Development of compu-

tational techniques for analysis of the large data, aswell as for the

modelling and simulation of the complex biological systems have

followed as a logical consequence. Simulatable computational

models of biological systems and processes form the cornerstone

of the emerging science of systems biology.

Traditionally, biologyhas focusedon identifying individual genes,

proteins and cells, and studying their specific functions. Each of
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these is indeed extremely important in understanding the indi-

vidual molecules, but as individual isolated pieces of informa-

tion, they are insufficient to provide insights about complex

phenomena such as human health and disease. As an analogy, to

study an aircraft, focused detailed studies on individual compo-

nents such as the engine, wings and tail, would not be sufficient

to understand how an aircraft can fly. More importantly, it would

not provide any understanding of what component influences

what other component in what manner and to what extent, an

understanding which is very important to effectively set things

right when something malfunctions. In the same way, since

diseases occur when there is some malfunction in the form or

function of one or more of the cellular components, we need an

understanding how various molecules in a cell influence each

other in health, in order to attempt curing or correcting it to the

extent possible.

The scale at which various molecular level studies can now be

carried out is providing us systematic data on many fronts en-

abling us to reconstruct holistic models of larger systems [1].

Systems biology seeks to study biochemical and biological sys-

tems from a holistic perspective, promising to transform how

biology is done.The goal is for a comprehensive understanding of

the system’s influence on its individual components, leading to

the appearance of complex properties such as robustness, emer-

gence, adaptation, regulation and synchronisation, seen so very

often in biological systems. Essentially, systems biology advo-

cates a departure from the reductionist viewpoint, emphasising

on the importance of a holistic view of biological systems. It also

aims at a departure from the “spherical cow” 1, in trying to

encapsulate the enormous complexity of biological systems in

greater detail. Systems biology adopts an integrated approach to

study and understand the function of biological systems, particu-

larly, the response of such systems to perturbations such as the

inhibition of a reaction in a pathway, or the administration of a

drug. It can of course be argued that systems biology is just a new

name for the conventional disciplines such as physiology and

1A euphemism often directed at

the severe approximations that

characterise modelling.
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pharmacology, which are well established for several decades

now. Undoubtedly, these disciplines emphasise the need for con-

sidering whole systems. Yet, systems biology emerges as a new

discipline, since it differs from the conventional disciplines in a

fundamental way: the latter treat much of the whole system as a

‘black-box’, giving us only an idea of the end picture but not

enabling us to ask ‘why’ or ‘how’ a particular outcome is seen.

Systems biology on the other hand aims to reconstruct systems by

a bottom-up approach, with detailed knowledge about the indi-

vidual components thatmake up the systemand how these compo-

nents interact with each other. Modelling and simulation of com-

plex biological networks form the cornerstone of systems biology;

the coupling of in silico models with in vivo and in vitro experi-

mentation, with modelling guiding experimentation and experi-

mentation aiding in model refinement, can provide impetus to

improve the understanding of biological systems. Effects and

influences of one component on the other are deciphered, provid-

ing a greater understanding of how genotypes relate to pheno-

types.

2. Elements of Systems Biology

Systems biology, being a holistic approach involves modelling

and analysis of metabolic pathways, regulatory and signal trans-

duction networks for understanding cellular behaviour. There are

also various levels of abstraction at which these systems are

modelled, with a wide variety of techniques that can be employed

based on the quality and quantity of data available.

The critical step in the modelling and analysis of these pathways

is their reconstruction, involving the integrationof diverse sources

of data to create a representation of the chemical events underly-

ing biological networks [2]. A variety of high-throughput experi-

ments have been developed to provide extensive data on the

proteome, metabolome, transcriptome and the reactome in a cell

(see Box 1 for glossary of terms). Some of these techniques

include microarray analyses of the transcriptome and mass spec-

trometry analyses that generate proteomics data. It is important to
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understand that these experiments generate genome-scale ‘omics’

data, which cover a majority of the components such as metabo-

lites, transcripts and proteins, in a cell. Another major feature of

systems biology is the strong integration of experiment with

theory; it is quite common that a model is used to generate one or

Box 1. Glossary of Some Terms Used and their Related Concepts

Genomics and other ‘omics’: The German botanist Hans Winkler coined the term ‘genome’ in 1920 by

combining thewordsGENe and chromosOME.Aprecise definition of genome is ‘all theDNA in a cell’ because

this includes not only genes but also DNA that is not part of a gene, or non-coding DNA or in other words, all

the genetic material in the chromosomes of a particular organism’; its size is generally given as its total number

of base pairs. In the same way, a proteome is a collection of all proteins, coded by a genome. The human

proteome is the collection of proteins found in the human body. With the success of large-scale quantitative

biology projects such as genome sequencing, the suffix ‘-ome-’ has migrated to a host of other contexts: Omics

such as genomics, transcriptomics, proteomics,metabolomics or interactomics. The suffix ‘ome’ often signifies

totality of some sort.

Genome Sequence refers to the sequence of consecutive DNA ‘letters’ spanning all the chromosomes of a cell

from start to finish.

Gene Expression: This refers to the ‘turning on’ of a gene. Most human genes are active, or turned on, only

in certain cells under certain conditions. Genes for eye colour are active in eye cells but not in stomach cells.

Similarly, some genes may lie dormant for years and then turn on and become malignant late in life.

Transcription is the process of ‘turning on’, or activating a gene.

Genotype and Phenotype: Genotype refers to the particular form of a gene a person has. The genetic

constitution of an organism, as distinguished from its physical appearance (its phenotype). A phenotype on the

other hand is the physical trait such as red hair, or behaviour such as anxiety. A phenotype results from the

‘expression’ of a gene or genes.

Network: A network is generally a collection of related nodes, connected on the basis of interactions. It is

essentially a map of ‘who interacts with whom’. The most common kinds of networks are protein–protein

interaction networks, cataloguing how different proteins interact with one another within the cell.

Hub:Much like the hub of a wheel, highly connected nodes in networks are referred to as hubs. These often

are very important to network function and at the same time are the ‘Achilles heels’ of many real-world

networks. In the context of biological networks, hubs may present interesting drug targets.

Data-driven Modelling: Traditional physical modelling is knowledge-driven, where knowledge is derived

from first principles; for example, the modelling of the motion of a pendulum based on ODEs from physical

laws. Data-driven modelling, in contrast, is employed when certain input–output characteristics of the system

are known but there is only limited knowledge on the system in question. Linear regression is a very simple

example of a data-driven model.
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more hypotheses, which are then tested experimentally, and

iteratively contribute tomodel refinement. In essence, the various

parts of a systems biology study are (a) define amodel system, (b)

identify a choice of attributes/parameters to study the system that

is appropriate for the problem being addressed, (c) comprehen-

sive experimental measurements, (d) appropriate mathematical

abstraction of the system that is computationally tractable and (e)

computational simulations that can generate and test various

hypotheses, (f) that can later be verified by experimental ap-

proaches (Figure 1).

2.1 System Definition

Systems biology experiments are often characterised by a syn-

ergy between theory and experiment (Figure 1). As in traditional

biological experiments, the chosen model system must be suit-

able for experimental investigations, and should also be complex

enough to capture the biological phenomenon of interest. Simple

bacteria such as E. coli are often used as model organisms to

understand the organisation and behaviour of prokaryotic sys-

tems. Saccharomyces cerevisiae is the de facto standard model

organism for understanding eukaryotic systems. Similarly, the

fruitfly Drosophila and the worm Caenorhabditis elegans are

Figure 1. Systems biology

process. This process re-

lies on an iterative proce-

dure of model building, ex-

perimental verification,

model analysis and model

refinement. The concepts

that underlie these pro-

cesses have been shown

as clouds.
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used as models to incrementally understand more and more com-

plexmulti-cellular organisms. It is important to note that, although

some of these systems are significantly less complex than mam-

malian systems, several processes are conserved, leading to the

possibility of very useful predictions of the behaviour of mamma-

lian systems from themodelling of simpler systems. Very often, it

is impractical to consider whole organisms or whole cells, espe-

cially to address questions pertaining to the mechanism of a given

process. Pathways or sets of pathways function as modules of the

larger systems, which provide a practical framework to study the

biological processes/phenomena.

Metabolic pathways, signal transduction pathways and regulatory

pathways have been studied from a variety of organisms from

which a wide range of biological insights have been obtained.

Such pathways have also been combined into the larger context of

networks, where the abstraction is often a bit less quantitative,

again for practical reasons. Studies on transcriptional network of

yeast,metabolic networkofE. coli, serve as examples of studies at

this level. Thus, the scale of the system can vary from tens of

components to several thousands. The resolution of information

can also vary fromdetailed atomistic information to broad cellular

views. For example, a defined model could contain thermody-

namic data of the metabolic reactions in a given pathway, that in

turn have sound correlationswith the three-dimensional structures

of the involved enzymes. On the other hand the defined system

could simply contain logical connections between different cellu-

lar states implying functional correlations without any further

details on the cells themselves. A systems biology approach is

characterised by a series of iterative experimentation and model

refinement (also see Figure 1), often using perturbations to the

system as a handle to affirm roles of known components as well as

to discriminate between alternative models [3]. Another impor-

tant feature is that most of these components, fromcomputation to

high-throughput laboratory experiments are amenable to automa-

tion.
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2.2Modelling in Systems Biology: Model Abstraction

Models are created to simulate a process or a set of processes

observed in the natural world in order to gain insights into process

mechanisms and predict outcomes for a given set of specific input

parameters. Conceptual and theoretical modelling constructs are

expressed as sets of algorithms and implemented as software

packages. What constitutes a model depends upon what is under-

stood about a given process and how best it is computationally

tractable. For example, in drug discovery, amodel can refer to the

relationship of the structure of a target molecule to its ability to

bind a certain type of ligand at one end of the spectrum, while at

the other end, it can refer to a statistically derived relationship of

a set of ligands to a particular biological activity, with no explicit

consideration of the mechanism or the basis of such activities.

Conceptual modelling is an integral part of problem solving in

general and in fact an essential component of any activity that

attempts to achieve a goal in a systematic way.

The advantages of having a model are manifold: (a) it gives the

precise definition of the components of a given system (or the

genotype), (b) it allows performing simulations and monitoring

the end-effect, whichmay be the given phenotype in this context,

(c) it helps in dissecting the role of every component in the system

through the analysis of perturbations, (d) it helps us to interpret

complex hard-to-understand problems, (e) it helps in studying

systems that are impractical to study through conventional ex-

periments, (f) it helps both in designingminimal systems that can

result in a particular phenotype, as well as analysing the effect of

the addition of newer components into the framework, and (g) it

is highly amenable for high-throughput simulations and highly

cost-effective, useful especially in applications such as drug

discovery.

Thus, models not only provide significant insights into the under-

lying biology and application opportunities, but also enable the

efficient study of what may be highly impractical, or even impos-

sible through biochemical andmolecular biology experiments. It

Models are created to
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process mechanisms
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must however be emphasised that a model is only as good as our

understanding of what constitutes a system and how it has been

built.Model building is thus a critical step in in silico analysis and

is often iterated and refined with validation steps.

Given that biological systems and processes are understood at

many different levels and in many different aspects, it is no

wonder that many different kinds of models should exist in

practice. Figure 2 illustrates that models span a wide range,

emanating from the organisational hierarchy in which biological

systems are understood.

On one hand, there are structural models at atomic levels imply-

ing certain functions, whereas on the other hand, there are whole

genome-based mathematical models of either pathways or entire

organisms implying functions at very different levels. It is

Figure 2. Modelling tech-

niques in systems biology.

The various methods have

been represented along-

side an axis that details the

granularity (or resolution)

typical for each method.
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important to understand the abstraction levels of the models, so

that conclusions are drawn at appropriate levels from the analy-

ses. The choice of the method depends upon the type and extent

of data available, as well as the objective of the modelling

exercise in terms of the level at which the system is desired to be

understood.

Models are routinely built from a variety of sources, which vary

in the degree of accuracy of experiments recorded and often

depend even on the interpretation of data available.Model valida-

tion is a critical quality control step that endorses the results

obtained through simulation of the model. Typical model valida-

tion involves the comparison of model predictions against known

biochemical and genetic evidences obtained by various experi-

ments, particularly when experimental data has not been used for

tuning the models.

3. Key Properties of Biological Systems/Models

Biological systems are characterised by several key properties,

which distinguish them frommodels in other disciplines. Knowl-

edge of these fundamental principles, which characterise biologi-

cal systems, is important both for understanding their function

and for modelling them. Some of these interesting properties are

discussed below.

3.1 Irreducibility

Irreducibility is an important concept that makes systems think-

ing important. We may undoubtedly gain significant insight into

each of the components of the system by studying them individu-

ally, but we will require to study the system as a whole in order to

gain a holistic perspective of what these components do when

they are all put together in an appropriate manner. An analogy to

a book is often drawn, where one cannot understand a book by

reading one word at a time. In other words, knowing the meaning

of every word in a book does not tell us what the book is about.

They have to be placed in context to grasp the story in the book.

It is this context that is sought out in systems biology; thus it is not
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accuracy of

experiments
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only the form and function of individual molecules, but rather

their functional orchestration in a ‘context’ in a complex manner

that makes a living species. The larger properties that arise out of

that context are often referred to as ‘emergent properties’. Emer-

gent properties are thus consequences of the interactions between

system components.

3.2 Emergence

Systems are composed of individual elements or ‘parts’ that

interact in various ways. In general, the behaviour of a system is

quite different frommerely the sumof the functions of its various

parts. As Anderson put it as early as 1972, in his classic paper by

the same title, “More is different” [4] , it is not possible to reliably

predict the behaviour of a complex system, despite a good knowl-

edge of the fundamental laws governing the individual compo-

nents:

The ability to reduce everything to simple fundamental laws does

not imply the ability to start from those laws and reconstruct the

universe. The constructionist hypothesis breaks down when con-

fronted with the twin difficulties of scale and complexity. At each

level of complexity entirely new properties appear. Psychology is

not applied biology, nor is biology applied chemistry. We can

now see that the whole becomes not merely more, but very

different from the sum of its parts.

PWAnderson, 1972 [5]

This reinforces the need to develop methods to study biological

systems at the systems level, rather than at the level of individual

components.

3.3 Complexity

The term complexity, a concept linked to the concept of systems

itself, is often used in a variety of disciplines to characterise a

system with a number of components intricately linked to each

other, giving rise to behaviours that may not be described by

In general, the

behaviour of a

system is quite

different from

merely the sum of

the functions of its

various parts.
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simple models. Emergent behaviour (described above) is one of

the most fundamental features of complex systems. Health or

disease are examples of complex systems. These cannot be

predicted simply by analyzing the individual ligands or proteins

that comprise the cells. A more complete picture of their context

would be necessary to achieve it. Biological systems, needless to

say, are extraordinarily complex, which is evident in individual

prokaryotic cells, let alonemulti-cellular organisms. For example

an E. coli cell has about 4500 genes coding for at least as many

proteins. At the outset, trying to understand how these many

proteins embedded in less than femtolitre (10–15 L) of volume,

perform together to enable the many functions of the E. coli cell

appears to be a daunting task. However, we can understandmany

aspects of the cell if we divide complexity in hierarchies and then

focus on understanding each individual level in a stepwise man-

ner and then re-assimilate them in an appropriate context. In other

words, understanding how, at the bottom of the hierarchy, DNA,

proteins and metabolites function in individual cells, helps us to

understand how different proteins give rise to pathways, how

pathways come together to form processes, and how these are

organised in a functional cell (Figure 3). In higher organisms, we

Figure 3. Levels of hierar-

chies for understanding

and modelling biological

systems. The figure illus-

trates different types of

models that are appropri-

ate at a given level of hier-

archy.Theinformation they

encode (abstraction level)

are listed for each of them

as also the methods that

are in current practice to

design, build and analyse

the models.
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would extend this to understanding how different cell types are

formed and organised in tissues, how tissues make complex

organs, and finally, howmanydifferent organs are orchestrated in

the top hierarchical level, the organism. However, amidst this

complexity, there is modularity with many commonmechanisms

for a range of biological events. Different cell types and functions

use recurrent basic mechanisms of organisation and communica-

tion; thus common patterns underlie diverse expressions of life.

Understanding single cell types, even when the organisms con-

taining them are evolutionarily distant, such as bacteria and

humans, would inevitably provide enormous amount of informa-

tion to understand other cell types. Complexity has important

implications for modelling; the complexity of large systems often

makes them intractable for analyses. Therefore, large systems are

often broken down into their constituent modules, or sub-sys-

tems, which are more amenable for analyses.

3.4 Modularity

Bacterial systems may be viewed as comprising modules, which

maybe insulated or decoupled from one another, or alternatively,

connected to one another. Modules constitute semi-autonomous

entities with dense internal functional connections and relatively

looser external connections with their environment. Modularity

or the encapsulation of functions, can contribute to both robust-

ness (by confinement of damage) and to evolvability (by rewiring

of modules for new functionality) [5]. An obvious example of a

module is a cell in a multi-cellular organism, which interacts with

both the environment and other cells. Modules are also com-

monly organised in a hierarchical fashion: a cell is composed of

organelles, while also being a part of higher structures such as

tissues and organs (Figure 3) . At a different level, a signal

transduction systemis an extendedmodule that achieves isolation

on account of the specificity of the binding of chemical signals to

receptor proteins as well as the specificity of the interactions

between the signalling proteins within the cell [5].
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3.5 Robustness and Fragility

Robustness may be understood as the relative property of a

system to retain stability despite several perturbations, internal or

external. No system can be robust to all kinds of perturbations.

Robustness in biological systems is achieved using several com-

plexmechanisms involving feedback, alternative (fail-safe)mecha-

nisms featuring redundancy and diversity (heterogeneity), struc-

turingof complex systems into semi-autonomous functional units

(modularity), and their reliable co-ordination via establishment

of hierarchies and protocols. Sensitivity or fragility, however,

characterises the ability of organisms to respond adequately to a

stimulus. Robustness and fragility have been described in the

literature as inseparable; the ‘robust, yet fragile’ nature of com-

plex systems is thought to exhibit ‘highly optimised tolerance’.

Complex engineered systems (and biological systems) are often

quite resistant to designed-for uncertainties, but quite susceptible

to other perturbations. For example,modern aeroplanes, vis-à-vis

the Wright brothers’ aeroplane, are quite stable to atmospheric

perturbations, but are fundamentally sensitive to complete elec-

trical failure, due to the tight dependence of the control on a wide

variety of electrical systems. Several biological systems are quite

sensitive to what may be quantitatively small perturbations.

There are several examples of networks which exhibit high

insensitivity to attacks on nodes in random, but high sensitivity

showing high disruption when there is a targeted attack on a few

highly connected (hub) nodes.

4. Practice of Systems Biology

Systems biology primarily involves the building of models of

systems, detailing metabolism, regulation, signalling and pro-

tein–protein interactions (Figure 4). A variety of modelling tech-

niques encompassing awide spectrumof resolution and accuracy

are used. Figure 2 shows some of these methods, also indicating

the level of detail that the method usually deals with. The levels

of biological organisational hierarchy at which suchmethods can

Systems biology
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Figure 4. An overview of modelling in systems biology. This figure illustrates the various compo-

nents of the systems biology modelling cycle, of how various types of experimental data are

translated to a mathematical model, followed by simulation. The simulation results are then used

to infer predictions (system behaviour), which are often compared against experimental results,

leading to further improvements/enhancements to the mathematical model.

be used have already been illustrated in Figure 3. Some of the

tools and resources useful for systems level modelling and simu-

lation of biological systems are listed in Table 1.

At the highest level of resolution, there are atomistic models,

followed by molecular recognition models, incorporating details

at the lowest atomic level. These are followed by mechanistic

models of molecular networks, which are usually realised using
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Models for Simulation

Biomodels.net http://www.biomodels.org/

CellML http://www.cellml.org/

Panther http://www.pantherdb.org/

Pathway Databases

BioCyc http://biocyc.org/

BioChemWeb http://www.biochemweb.org/

KEGG Pathway http://www.genome.jp/

Reactome http://www.reactome.org/

Quantitative Data

BioPAX http://www.biopax.org/

BRENDA http://www.brenda-enzymes.info/

Systems Biology Standards

LibSBML (API) http://sbml.org/

MathML http://sbml.org/

SBML http://sbml.org/

little b http://www.littleb.org/

MIRIAM http://www.biomodels.org/

Pathway Design and Network Based Tools

Cell Designer http://www.celldesigner.org/

Cytoscape http://cytoscape.org/

JDesigner http://www.sys-bio.org/software/jdesigner.htm

Metatool http://www.biocyc.org/

SBGN http://www.sbgn.org/Main_Page

Teranode http://www.teranode.com/

GUI-Modelling and Simulation Tools

E-Cell http://www.e-cell.org/

Gepasi http://www.gepasi.org/

MATLAB http://www.mathworks.com/

Maple http://www.maplesoft.com/

SBML Toolbox http://sbml.org/

Systems Biology Workbench (SBW) http://sbml.org/

Non-GUI Modelling and Simulation Tools

Pathway Analyzer http://sourceforge.net/projects/pathwayanalyser

COBRA http://gcrg.ucsd.edu/

JigCell http://jigcell.biol.vt.edu/

Table 1. This table outlines some of the important resources for systems biology, from pathway

databases, to databases of kinetic parameters, as well as modelling and simulation tools.
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differential equations detailing kinetic parameters and stochastic

modelling, to account for inherent noise in biochemical systems.

At a lower level of resolution are the constraint-based modelling

techniques such as flux balance analysis (FBA) and stoichiomet-

ric analyses, which rely more on global properties of networks,

such as stoichiometry and mass conservation, rather than the

intricate kinetic parameters.

Boolean networks thrive with lesser data, where interactions

between network components are represented bymeans of Bool-

ean functions such as ‘OR’, ‘AND’, ‘ANDNOT’ and so on. Such

discrete modelling techniques have applications in several areas.

Topological analyses of networks, which are constructed pre-

dominantly based on knowledge of association or causality, can

also provide interesting insights into the organisation and proper-

ties of biological systems. At a further lower level of resolution

are Bayesian networks and other statistical learning models, as

well as qualitative models of biological systems.

The choice of methods for modelling and simulation is predomi-

nantly determined by the quality and quantity of data that are

available, as well as the desired objective of the modelling

exercise. When well-characterised kinetic parameters are avail-

able for a set of reactions in a given pathway, a kinetic model

consisting of differential equations describing the rate of change

of concentration of each of the metabolites can be constructed.

Such a system of equations can then be solved to obtain insights

about the essentiality of each component. For example, a math-

ematical model of glycolysis in T. brucei has been built, based on

in vitro enzyme kinetic data [6].

When kinetic parameters are not available, constraint-basedmod-

els of reaction networks can be constructed and analysed, obtain-

ing insights into the metabolic capabilities of systems as well as

gene essentiality [2, 5]. At a lower level of resolution, interaction

networks of metabolites or more importantly, proteins, can be

constructed and analysed, obtaining fundamental insights into

centrality, and consequently lethality (or essentiality) [7].
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4.1 Kinetic Modelling

When sufficient mechanistic details are available for cellular

processes such asmetabolism, signal processing and gene regula-

tion, detailed quantitative predictions about cellular dynamics

can be made. Typically, ordinary differential equations (ODEs)

are used for this purpose. ODE-based simulations involve a

mechanistic representation of the reaction network, with all the

involved association/dissociation constants, rate constants and

affinities or appropriate approximations. Since such data is not

always available, thismethodhas limited applicability.Biochemi-

cal reactions are regularly represented by differential equations

that indicate the rate of consumption and production of various

species involved in the reactions. The systemof differential equa-

tions so generated can be solved and the system can be simulated.

An important caveat is that even where kinetic parameters are

available, they have often been determined in vitro, rather than in

vivo, which again significantly impacts the accuracy of simula-

tions. Genome-scale kineticmodellingof biological systems is an

interesting challenge that lies ahead in systems biology.

4.2 Constraint-Based Modelling

Kinetic data available for the simulation of networks are quite

scarce, rendering the kinetic modelling of metabolic networks a

challenging task. An approach used often to overcome the limita-

tion of data, is to add appropriate ‘constraints’ on the systems, so

as to make it feasible to find meaningful solutions. Constraints

are generally in the form of rules, which define the upper and

lower limits of the acceptable values for a given variable or in the

form of some well-known laws of chemistry that must be upheld

while solving for the system. Constraint-based analyses of recon-

structed metabolic networks have proved to be quite effective in

various applications such asmetabolic engineering, prediction of

outcomes of gene deletions, and in the elucidation of cellular

regulatory networks .

One specific example of metabolic modelling using a constraint-
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based approach is Flux-Balance Analysis (FBA) [8], which uses

linear optimisation to determine the steady-state reaction flux

distribution in a metabolic network by maximising an objective

function, such as ATP production or growth rate. FBA involves

carrying out a steady state analysis, using the stoichiometric

matrix for the system in question.An important assumption is that

the cell performs optimally with respect to a metabolic function,

such as maximisation of biomass production or minimisation of

nutrient utilisation, on the premise that selection pressures during

evolution, guide systems towards optimality. Once an objective

function is fixed, the system of equations can be solved to obtain

a steady state flux distribution. This flux distribution is then used

to interpret the metabolic capabilities of the system.

FBA has the capabilities to address the effects of gene deletions

and other types of perturbations on the system. Gene deletion

studies can be performed by constraining the reaction flux(es)

corresponding to the gene(s) (and therefore, of their correspond-

ing proteins(s)), to zero. Effects of inhibitors of particular pro-

teins can also be studied in a similar way, by constraining the

upper bounds of their fluxes to any defined fraction of the normal

flux, corresponding to the extents of inhibition. FBA gives a

general idea of the metabolic capabilities of an organism; gene

deletion studies using FBA yield information on the criticality of

genes for the growth/survival of an organism. The analysis of

perturbations using flux balance models of metabolic networks

provides a handle to analyse the lethality of individual gene

deletions, as well as double knock-outs, to identify pairs of genes

that are indispensable, as well as to determine and analyse syn-

thetic genetic interactions.

4.3 Pathway Models

A pathway model is the lowest level of abstraction in system-

based models. It looks at only the reactions in the metabolome of

an organism and accounts for several of the interactions between

the gene products of an organism and its metabolites. However,

this is a significant improvement on the mere sequence data that
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is often employed for modelling and analysis. Several paradigms

exist for pathway modelling and they are reviewed in the litera-

ture [9] . Basedon the availability of data, a suitable paradigmcan

be chosen for modelling; this affects the accuracy of the simula-

tions performed on the systems. Some examples of the use of

pathway models are illustrated in later sections.

4.4 Network-Based analysis

Barabási and Oltvai [10] have shown that tools from network

theory may be adapted to biology, providing profound insights

into cellular organisation and evolution. Hubs which are heavily

connected components in a graph may be identified and targeted

to ‘knock out’ a system. In a typical interaction-based modelling

of metabolic pathways, connections between the various proteins

andmetabolites in a system are obtained.When further analysed,

specific hubs emerge to be more connected. These hubs may

serve as interesting targets as they have the potential to affect

several other connections in the system. The advantage of inter-

action-based modelling is that the amount of data required is

relatively less and it is possible to generate interaction networks

from existing databases. There is a need for more such derived

databases, whichwould be of immense use in applications such as

drug discovery.

5. Promise of Systems Biology

Systems biology finds application in several fields, including

metabolic engineering and drug discovery. It has an immense

potential to improve our fundamental understanding of biological

systems. Biologyhas itself immensely benefited frombuilding on

the study of ‘model’ organisms such as Arabidopsis thaliana,

Drosophila melanogaster, C. elegans and Escherichia coli. Sys-

tems approaches have been successfully applied for the study of

model organisms such as Escherichia coli, where the metabolic

capabilities have been predicted in silico and verified experimen-

tally. Systems-level studies of organisms such as S. cerevisiae are

expected to significantly impact the study of more complex

organisms such as humans.
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An excellent application of systems biology in metabolic engi-

neering, with commercial potential, has been illustrated by

Stephanopoulos and co-workers, for improving lysine produc-

tion. Stephanopoulos and co-workers have also reported a ge-

nome-wide FBA of Escherichia coli to discover putative genes

impacting network properties and cellular phenotype, for re-

engineering lycopene synthesis [11]. Metabolic fluxes were cal-

culated such as to optimise growth, followed by scanning the

genome for single and multiple gene knockouts that yield im-

provedproduct yieldwhilemaintaining acceptable overall growth

rate. For lycopene biosynthesis in Escherichia coli, such targets

were identified and subsequently tested experimentally by con-

structing the corresponding single, double and triple gene knock-

outs. A triple knockout construct (�gdhA�aceA�fdhF) was iden-

tified, which exhibited a 37% increase over an engineered, high

producing parental strain.

Another field where excellent progress has been made is in the

modelling of the heart as a virtual organ, at various levels [12].

Models of different cell types in the heart have led to the creation

of the first virtual organ, which is being used in drug discovery

and testing and in simulating the action of devices such as cardiac

defibrillators. The culmination of systems modelling lies in the

modelling of complete systems, accounting for all component

reactions, the localisation of these components and their interac-

tions. The interaction between these organelles or compartments

and the interface with the physical world, in terms of external

temperature, pH and other effects becomes more relevant in

highest levels of biological hierarchy (Figure 3). Computational

models of human physiology come into play both to relate to

whole animal models used in traditional pharmacology andmore

importantly, to build integrated data-driven models that can be

refined to mimic the human physiology more closely.

The IUPS Physiome project (http://www.physiome.org.nz/) is a

project that is aimed at describing the human organism quantita-

tively, to understand key elements of physiology and pathophysi-
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ology. The salient features of the project are the databasing of

physiological, pharmacological and pathological information on

humans and other organisms and integration through computa-

tional modelling. The models span a wide range, from diagram-

matic schema suggesting relationships among system compo-

nents, to fully quantitative computational models describing the

behaviour of physiological systems and response of an organism

to environmental change. Each mathematical model is an inter-

nally self-consistent summaryofavailable information and thereby

defines a working hypothesis about how a system operates.

Predictions from such models are subject to tests, with new

results leading to new models. The goal is to understand the

behaviour of complex biological systems through a step-by-step

process of building upon and refining existing knowledge.

Efforts are underway to extend these concepts further to virtual

patients. Entelos’ PhysioLab (http://www.entelos.com/) has de-

veloped models of human physiology that supplement animal

model systems. For example, Entelos’ Diabetes PhysioLab has

more than 60 virtual patients, each one representing a hypothesis

of the pathophysiology of diabetes, constrained by the pathway

networks and consistent with validation experiments. Such mod-

els have the potential for performingpatient profiling, classifying

patient types and even to tailor-design treatment regimes, with a

long-term goal of making personalised medicine, a reality.

The possibility of drug discovery based on systems biology is

exciting – it holds promise for the discovery of more efficacious

drugs with fewer adverse effects. Often, adverse drug reactions

might emerge on account of the binding of the drug to proteins

other than the intended targets. By considering larger systems and

accounting for such possibilities, it is possible that such problems

may be identified by in silico analyses. It is envisaged that the

complete understanding of a system in terms of all the compo-

nents present and their complex interaction network would assist

in discovering the ideal drug, which has high specificity and

effectiveness.
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6. Future Perspectives

The enormous progress in the development of new methods in

different branches of biology and their abstraction through com-

putational models that we are currently witnessing, has already

shown enormous potential, both for understanding biological

processes at a better level, as well as for any application opportu-

nities. These opportunities, which are expected to increase even

more in the coming years, promise to make the mission of

creating data-driven models and simulations a reality, leading to

fundamental changes in the way we discover drugs. The predic-

tive power provided by data-driven computation has long been a

critical component in product development and safety testing in

other industries, from aerospace engineering to circuit design.

With the current rate of advances in systems biology, we can also

expect significant enhancements in pathway models, process

models and indeed in entire system models, both in terms of

mathematically representing complex phenomena as well as in

terms of mimicking and simulating the biological events. The

success of the virtual heart project [12] and creation of virtual

patients representing different pathophysiologies are suggestive

of this trend. We can also envisage that the use of

pharmacogenomics and tailor-made medicines could be distinct

possibilities in the near future. In short, the stage is all set for the

integration and application of skills from mathematics and com-

puter science to address complex problems in biology and medi-

cine, in a big way.
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