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Successive Relaying for Two-hop Two-Destination

Multicarrier Relay Channels
Antony V. Mampilly and Srikrishna Bhashyam

Abstract—We propose a successive relaying decode-and-
forward protocol for the half-duplex 2-relay 2-destination mul-
ticarrier channel. The proposed protocol performs significantly
better than existing protocols and achieves sum rates close to the
cutset upper bound. We also prove that the linear program that
describes the cutset upper bound for sum capacity is optimized
using only 3 of the 4 possible states of the half-duplex network.
Of these 3 states, successive relaying uses the two states in which
one of the relays is receiving from the source while the other
relay is transmitting to the destinations. In simulations under a
Rayleigh fading model, the gap between the cutset upper bound
and the proposed protocol is observed to be bounded.

I. INTRODUCTION

Cooperative relaying enhances the coverage and capacity of

cellular networks. Relay networks have attracted significant

attention in the context of device-to-device (D2D) commu-

nication and self-backhauling in 5G systems [1]–[3]. In this

letter, we consider a relay channel with the source transmitting

messages to two destinations with the help of relays (Fig. 1).

The relays are assumed to be half-duplex (HD), i.e., each relay

may either receive or transmit at a time but not both. Therefore,

the 2-relay network has 4 possible states (See Fig. 4).
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Fig. 1: Two-destination relay channel

The 2-relay channel with a single destination, called the

diamond channel, was first studied in [4]. For the diamond

relay channel, it was shown in [5] that Decode-and-Forward

(DF) protocols can achieve rates within 0.71 bits of the

capacity. These DF protocols were extended to the multicarrier

2-relay channel in [6]. In [7], [8], the authors studied an M -

relay multicarrier channel and proposed a greedy protocol

to transmit messages. This greedy protocol uses two states:

(1) the multiple access (MAC) state in which the source is

transmitting to all the relays and (2) the broadcast (BC) state

in which all the relays are transmitting to the destination. As

the first contribution in this letter, we propose a successive
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relaying protocol for multicarrier 2-destination 2-relay channel

that uses the other 2 states of the network. In successive

relaying, one of the relays is transmitting in each state while

the other is receiving (See Fig. 2). Therefore, the source is

always transmitting and the destination is always receiving.

This helps in overcoming the multiplexing loss due to the half-

duplex constraint. This protocol performs significantly better

than a greedy protocol based on [8] and a protocol that time-

shares between the single-destination protocols in [6]. The

proposed protocol also achieves sum rates close to the cutset

upper bound. In simulations, under the Rayleigh fading model,

the gap between the successive relaying protocol and the cutset

upper bound is bounded.

The cutset bound gives an upper bound to the capacity of

the channel under any protocol. In particular, the cutset bound

for a half-duplex relay network is derived in [9]. For single-

destination HD relay channels, the states with non-zero time

fractions required to achieve rates within a constant gap of the

cutset bound have been studied in [10], [11]. In these papers, it

has been shown by analyzing the cutset bound that the number

of states required for an n-relay channel is at most n+1. The

case of n ≤ 6 was shown in [10], and later, this result was

generalized for any n in [11]. The works [10], [11] discuss

the existence of n+1 optimal states. In [12], the algorithm to

find the optimal states for a line network is described. Note

that all these results are for single-destination relay channels.

However, for multiple destination relay channels, to the best

of our knowledge, no such results have been shown. As the

second contribution in this letter, we show that for the 2-

destination multicarrier relay channel, at most 3 states are

required to achieve the optimal value of the linear program

that describes the cutset bound for sum capacity under all

channel conditions.

II. SYSTEM MODEL

The source (S) transmits message wi to the destination-i

(Di) with the help of the relays-1 and 2 (R1,R2), i = 1, 2.

This relay network is shown in Fig.1. Note that there is

no direct link between the source and the destinations. The

received signals at R1, R2, D1, D2 are respectively given by

y1 = H1x0 + z1, y2 = H2x0 + z2,

y3 = H3x1 +H5x2 + z3, y4 = H4x1 +H6x2 + z4,

where x0 ∈ R
N is the signal transmitted by the source S;

yi is the signal received by node i; xi is the vector signal

transmitted by the relay Ri; Hi are N × N channel gain

matrices; and zi are Gaussian noise vectors, i = 1, 2. We will
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be studying multicarrier relay channels, so His are diagonal

matrices with each diagonal entry being the channel gain of

the subcarrier. We also have E||x0||
2 ≤ PS and E||xi||

2 ≤ PR

(i = 1, 2) where PS and PR are the power available at source

and relays, respectively.

III. SUCCESSIVE RELAYING

In this section, we propose a successive relaying protocol

to transmit messages from the source to the destinations. The

states of the channel used for this protocol are shown in

Fig. 2. In state-1, the source transmits signals to R1 and R2
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Fig. 2: Successive Relaying states

transmits signals to both the destinations; while in state-2 the

roles of these relays are reversed. The subchannel selection,

power allocation, and sum-rate computation of the successive

relaying protocol are detailed below.

Subchannel Selection: In state-1, for each subcarrier, R2

selects best destination for transmission. Let N̄
(1)
3 and N̄

(1)
4

be the subcarriers used in state-1 by R2 to transmit to D1

(node-3) and D2 (node-4), respectively. If H5(n) ≥ H6(n)
(where Hi(n) denotes the channel coefficient corresponding

to the nth subcarrier of Hi) then n is assigned to N̄
(1)
3 else n

is assigned to N̄
(1)
4 . Similarly, in state-2, R1 selects the best

destination for transmission.

Power Allocation: Power allocation at source in state-i,
P

(i)
S is done using the waterfilling for channel Hi, i = 1, 2 .

In state-1, R2 selects the best destination for each subcarrier

and then performs waterfilling across channel gains H̄(1)(n) =
max{H5(n), H6(n)} ∀n. This gives the power allocation at

R2, P̄ (1)(n). Similarly, in state-2, R1 performs waterfilling

across channel gains H̄(2)(n) = max{H3(n), H4n)} ∀n, after

selecting the best destination for each channel, to get power

allocation P̄ (2)(n) at R1.

Sum-rate Computation: The sum-rate achieved by the

successive relaying protocol is given by:

RS = max
t∈[0,1]

(min{tR
(1)
S , (1−t)R̄(2)}+min{(1−t)R

(2)
S , tR̄(1)})

where t is the fraction of time the protocol operates

in state-1, R
(1)
S =

∑N

n=1
1
2 log(1 + |H1(n)|

2P
(1)
S (n)),

R̄(2) =
∑N

n=1
1
2 log(1 + |H̄(2)(n)|2P̄ (2)(n)), R

(2)
S =∑N

n=1
1
2 log(1 + |H2(n)|

2P
(2)
S (n)), R̄(1) =

∑N

n=1
1
2 log(1 +

|H̄(1)(n)|2P̄ (1)(n)). Note that, the first and second term in the

above expression of RS correspond to the information flowing

through R1 and R2, respectively.

IV. CUTSET BOUND

The cutset upper bound to the sum-rate capacity of the

channel can be obtained by finding the optimum value of

the linear program (LP) [9] in eqn. (1). The states and cuts

of the channel considered to obtain the linear program are

shown in Fig. 3 and Fig. 4, respectively. The cuts (a)-(d) in

Fig. 3 are represented in cutset LP by the constraints (1a)-

(1d), respectively. For each cut, the constraint is obtained by

bounding the information flow across the cut. Let t1, t2, t3
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Fig. 3: Cuts of the two-destination relay channel
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Fig. 4: States of the two-destination relay channel

and t4 be the fraction of time the channel operates in states-1,

2, 3 and 4. Let P be the power available at source and the

relays. The LP used to find cutset bound is given by:

Maximize Rc (1)

Subject to Rc ≤ t1C1 + t2C2 + t3C13 + t4.0 (1a)

Rc ≤ t1C3 + t2C4 + t3.0 + t4(C3 + C4)(1b)

Rc ≤ t1(C1 + C3) + t2.0 + t3C1 + t4C3 (1c)

Rc ≤ t1.0 + t2(C2 + C4) + t3C2 + t4C4 (1d)
4∑

i=1

ti = 1, ti ≥ 0 (1e)

In this linear program, we have C1 , max
∑N

i=1 log(1 +
|H1(n)|

2Pi) where the maximization is over the set

{(P1, P2, . . . PN ) ∈ R
N
+ |

∑
Pi = P}. Similarly, C2 ,

max
∑

log(1 + |H2(n)|
2Pi). Let function C(., .) be defined

as C(HH , P ) , max log |I + HQHH | where the maxi-

mization is over the set of positive semi-definite matrices
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{Q ∈ SN |tr(Q) = P}. Also, C13 , C([HH
1 HH

2 ], P );
C4 , C([HH

3 HH
4 ], P ) and C3 , C([HH

5 HH
6 ], P ) + δ where

δ = [CPAPC − C4 − C([HH
5 HH

6 ], P )]+, CPAPC is the per-

antenna power constrained MIMO capacity of the channel

formed by the relays (R1,R2) and destinations (D1,D2)

shown in State-4 of Fig. 4 .

The most important states of the channel are states-1 and 2.

This is because (1) the source and the destination are always

‘ON’ in states-1, 2 unlike states-3, 4 and (2) t∗3 = 0 or t∗4 = 0
where t∗3 and t∗4 are the optimal values of t3 and t4 for LP-(1)

as shown later in Theorem-1. Before we state the theorem,

we show the inequality C13 < C1 +C2, which is used in the

proof of Theorem-1.

Lemma 1. C13 < C1 + C2

Proof. Let HH = [HH
1 HH

2 ] then

C13= max log |I +HQHH |
(a)
=max log |I +HHHQ|

(b)
= max log |I +DQ|

(c)
=

N∑

i=1

log(1 + (|H1(n)|
2 + |H2(n)|

2)Pi)

(d)
<
∑

log(1 + |H1(n)|
2Pi) +

∑
log(1 + |H2(n)|

2Pi)

≤ C1 + C2,

where (a) uses the identity |I+AB| = |I+BA|; (b) is because

HHH is a diagonal matrix D (remember H is formed from

the multicarrier diagonal matrices H1 and H2), whose nth

diagonal entry is given by D(n)2 = |H1(n)|
2 + |H2(n)|

2; in

(c), Pi are powers obtained by waterfilling across multicarrier

subchannels D
1

2 ; (d) follows from the monotonicity of the log
function; and the last step follows because C1 and C2 are the

capacities of the channels H1 and H2, respectively.

Theorem 1. For the linear program-(1), t∗3 = 0 or t∗4 = 0.

Proof. Consider the dual program of LP-(1):

Minimize RD (2)

Subject to RD ≥ τ1C1 + τ2C3 + τ3(C1 + C3) + τ4.0(2a)

RD ≥ τ1C2 + τ2C4 + τ3.0 + τ4(C2 + C4)(2b)

RD ≥ τ1C13 + τ2.0 + τ3C1 + τ4C2 (2c)

RD ≥ τ1.0 + τ2(C3 + C4) + τ3C3 + τ4C4(2d)
4∑

i=1

τi = 1, τi ≥ 0 (2e)

We prove the theorem in two parts: first for Case-1, then

for Case-2. In case-1, i.e., for channels that satisfy the

condition C2

C2+C3

− C4

C1+C4

< 0, we show that t∗3 or t∗4 is

zero by the method of contradiction. If we assume that t∗3
and t∗4 are strictly greater than zero, then optimal τ∗2 will

be strictly negative, which is impossible. Case-2 considers

all channels that do not come under case-1. In case-2, we

show that t∗3 = 0 by finding the optimal solutions of LP-

(1) and its dual LP-(2). Finally, it is worth noting that the

condition C2

C2+C3

− C4

C1+C4

< 0 is equivalent to the condition

C1C2 − C3C4 < 0 used in [5] for the single-carrier single-

destination diamond channel.

Case-1 (channels with C2

C2+C3

− C4

C1+C4

< 0)

For this case, we show t∗3 = 0 or t∗4 = 0 by the method of

contradiction. Assume t∗3 > 0 and t∗4 > 0. This implies that by

the complementary slackness theorem, (2c) and (2d) should be

satisfied by equality. Therefore

R∗
D=τ∗1C13 + τ∗2 .0 + τ∗3C1 + τ∗4C2, (3)

R∗
D=τ∗1 .0 + τ∗2 (C3 + C4) + τ∗3C3 + τ∗4C4. (4)

Using (3) and (4) we have

τ∗1C13 + τ∗3C1 + τ∗4C2 = τ∗2 (C3 + C4) + τ∗3C3 + τ∗4C4

The above equation can be simplified using
∑

i τi = 1 to get:

τ∗1 (C13 − C2 + C4)− τ∗2 (C2 + C3) + τ∗3 (C1 + C4 − C2 − C3)

= C4 − C2 (5)

Now we need to ensure that (2a) and (2b) are satisfied.

Therefore

R∗
D ≥ τ∗1C1 + τ∗2C3 + τ∗3 (C1 + C3) + τ∗4 .0, (6)

R∗
D ≥ τ∗1C2 + τ∗2C4 + τ∗3 .0 + τ∗4 (C2 + C4). (7)

Using (3), (6) and
∑

i τi = 1 we have

τ∗1 (C1 +C2 −C13)+ τ∗2 (C2 +C3)+ τ∗3 (C2 +C3) ≤ C2 (8)

Similarly, using (4), (7) and
∑

i τi = 1 we have

τ∗2 (C2 + C3) + τ∗3 (C2 + C3) ≥ C2 (9)

From Lemma-1, note that C1+C2−C13 > 0 in (8). Therefore,

the (τ∗1 , τ
∗
2 , τ

∗
3 , τ

∗
4 ) that satisfies (8), (9) has to satisfy the

following conditions:

τ∗2 (C2 + C3) + τ∗3 (C2 + C3) = C2, (10)

τ∗1 = 0. (11)

Using (11) in (5) we have

−τ∗2 (C2 + C3) + τ∗3 (C1 + C4 − C2 − C3) = C4 − C2 (12)

Solving (10) and (12) simultaneously, we have τ∗3 = C4

C1+C4

and τ∗2 = C2

C2+C3

− C4

C1+C4

. τ∗2 < 0 because we have

considered channels for which C2

C2+C3

− C4

C1+C4

< 0. This

is a contradiction. Therefore, our assumption that t∗3 > 0 and

t∗4 > 0 is incorrect, and either t∗3 = 0 or t∗4 = 0.

Case-2 (channels with C2

C2+C3

− C4

C1+C4

≥ 0)

Consider a point FS-1 = (t1, t2, t3, t4, RC) =
( C4

C1+C4

, C3

C2+C3

, 0, 1 − C4

C1+C4

− C3

C2+C3

, C1C4

C1+C4

+ C2C3

C2+C3

).
It can be easily shown that this point is a feasible point of

LP-(1) as it satisfies all constraints (1a)-(1e); in fact, the

conditions (1a)-(1d) are satisfied by equality.

Similarly, consider another point FS-2 =
(τ1, τ2, τ3, τ4, RD) = (0, C2

C2+C3

− C4

C1+C4

, C4

C1+C4

, 1 −
C2

C2+C3

, C1C4

C1+C4

+ C2C3

C2+C3

). It can be shown easily that this

point is a feasible point of LP-(2) as it satisfies all constraints

(2a)-(2e); in fact, the conditions (2a)-(2d) are satisfied by

equality.

Note that RC of FS-1 is equal to RD of FS-2. Therefore,

by the strong duality theorem, FS-1 and FS-2 are the solutions

of LP-(1) and LP-(2), respectively. Hence, t∗3 = 0.
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Remark 1. From the proof of Theorem-1, we see that for

case-1 states 1, 2, 4 optimize the cutset bound LP. For case-

2, states 1, 2, 3 or states 1, 2, 4 optimize the cutset bound

LP. Therefore, for all channel conditions, states 1 and 2 are

always part of the optimal states. These are exactly the states

used in successive relaying.

V. SIMULATION RESULTS

We compare the performance of successive relaying pro-

tocol with cutset upper bound [9], a greedy protocol based

on [7], [8] and a time-sharing protocol based on the single-

destination MDF protocols in [6]. The time-sharing protocol

used for comparison is as follows. The messages, in the time-

sharing (TS) protocol, are transmitted to the destinations in two

phases. In phase-i (i ∈ {1, 2}) the source transmits messages

exclusively to Di at the rate RSDi
for ti fraction of time, using

the MDF (multi-hop DF) protocol for multicarrier diamond

channel [6]. Therefore, the sum-rate of time-sharing protocol

is t1RSD1
+ t2RSD2

. We consider two modes of the time-

sharing protocol: TS half and TS best. TS half sum-rate is

obtained by assigning t1 = t2 = 1/2 while TS best sum-rate

is obtained by computing maxt1+t2=1{t1RSD1
+ t2RSD2

} =
max{RSD1

, RSD2
}. Since we are considering sum rate, the

greedy protocol for the 2-destination case is obtained in the

following manner: first, the best destination is chosen for each

subcarrier from each relay, and then the greedy algorithm in

[7], [8] is used.

We compare the performance of successive relaying proto-

col for three different topologies. We consider 256 subcarriers

for simulation. For the cases where i.i.d. subchannels are sim-

ulated, the subchannels are drawn from the normal distribution

N (0, 1
d2 ) where d is the distance between the two nodes.

For the correlated subcarriers simulations, a multipath channel

with L taps is used with each tap drawn from N (0, 256
d2L

).

1) Topology-1: In topology-1, the relays are positioned

on a plane between the source and the destination plane as

shown in Fig. 5. Let dS be the source to relay plane distance.

Similarly, dD is the distance between the relay plane and the

destination plane. We consider three scenarios: (1) scenario-1

with dS : dD = 1 : 1, (2) scenario-2 with dS : dD = 1 : 2
and i.i.d subcarriers, (3) scenario-3 with dS : dD = 1 : 2
and correlated subcarriers with L = 6. The average rate

plots for these scenarios are shown in Figs. 6, 7, 8. From

these plots we see that Successive Relaying protocol achieves

rates very close to the cutset upper bound. The Successive

Relaying protocol also performs significantly better than the

greedy protocol. The time-sharing protocol rates are almost as

good as the successive relaying in scenario-1. However, for

scenario-2 when the destinations are away from the relays the

successive relaying rate is significantly better than the time-

sharing protocol rates. The use of successive relaying reduces

the multiplexing loss from half-duplex relaying [13]. This is

captured in Fig. 9 by plotting the Throughput ratio, defined as

the ratio of achievable rate of a scheme to the cutset bound, of

various schemes for scenario-2 in Fig. 9. From Fig. 9, we see

that at high power, throughput ratio of successive relaying is

significantly better than that of other schemes and approaches

1, i.e., it approaches the maximum possible multiplexing gain.
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Fig. 5: Topologies-1 and 2
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Fig. 6: Average rate plots of scenario-1. Here, the average rates

due to Succ. Rel., TS half, TS best are almost the same.
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Fig. 7: Average rate plots of scenario-2. Note that succ. rel.

performs much better than greedy and TS protocols.

2) Topology-2: In topology-2 shown in Fig. 5, R1 and D1

are arranged on one side of the source while R2 and D2

are on the other side of the source. Let dSRi
be the S-Ri

distance and dRiDi
be the Ri-Di distance for i = 1, 2. We

generate average rate plots for the case when dSR1
:dR1D1

=
dSR2

:dR2D2
= 1:2. The average rates for successive relaying

and other protocols are shown in Fig. 10. Once again, we see

that the successive relaying protocol gives rates significantly

better than the greedy and time-sharing protocols.
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Fig. 8: Average rate plots of scenario-3
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3) Topology-3: In topology-3, the relays are placed on

either side of S on a plane. The destinations are positioned on

either side of this plane. Let dD1
and dD2

be the D1 −S and

S −D2 distances, respectively. We generate average plots for

dD1
: dD2

= 2 : 2 in Fig. 11, where dDi
is the distance of Di

from relay plane. The successive relaying protocol performs

significantly better than the greedy and time-sharing protocols.

VI. CONCLUSIONS

We proposed the Successive Relaying protocol for two-

destination relay channels. From the analysis of the cutset

upper bound, we showed that the successive relaying states

are more important than the other two states. Our simulations

showed that, under the Rayleigh fading model, the ratio of

the rate achieved by the Successive Relaying protocol and the

cutset bound approaches 1 at high SNR. The proposed protocol

performs better than the modified versions of protocols in the

literature, especially when the destinations are away from the

source and the relays.
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