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We study the influence of noise in a prototypical thermoacoustic system, which represents a
nonlinear self-excited bistable oscillator. We analyze the time series of unsteady pressure obtained
from a horizontal Rijke tube and a mathematical model to identify the effect of noise. We report
the occurrence of stochastic bifurcations in a thermoacoustic system by tracking the changes in
the stationary amplitude distribution. We observe a complete suppression of bistable zone in the
presence of high intensity noise. We find that the complete suppression of bistable zone corresponds
to the non-existence of P-bifurcations. This is the first study in thermoacoustics to identify the
parameter regimes pertinent to P-bifurcation using the stationary amplitude distribution obtained
by solving the Fokker-Planck equation.

I. INTRODUCTION

Many natural and engineering systems are nonlinear in
nature and display bifurcations for suitable change in any
of the system parameters. Often, these bifurcations can
result in detrimental consequences in a real system. Es-
pecially Hopf bifurcation, where the system transitions
from a non-oscillatory state to an oscillatory state, is
found to be undesirable in many real systems [1, 2]. The
effect of noise on the dynamics of these nonlinear systems
cannot be neglected as most real systems are noisy. Noise
acts as another bifurcation parameter as it can shift bi-
furcation thresholds [3], induce oscillations [4–6] and in-
troduce novel dynamical states [7]. The noise present
in a real system could be independent or dependent on
the state of the system. Further, the noise could also be
uncorrelated or correlated in nature. It is often difficult
to establish the exact nature of noise in a real system.
This difficulty brings in the necessity of investigating the
effect of noise in mathematical models of real systems
along with physical experiments.

The accurate determination of the bifurcation point is
nearly impossible in the presence of noise. This difficulty
in determining the bifurcation point is because the mea-
sured observable is no longer a deterministic quantity but
a stochastic variable. Thus a single realization that we
obtain in an experiment or from a mathematical model
is incapable of providing the complete information about
the state of the system. In the presence of noise, stochas-
tic differential equations (SDEs) are adopted instead of
ordinary differential equations to describe the evolution
of the system. Hence, we need to calculate the proba-
bility density function of the observable rather than its
absolute value in the presence of noise. The probability
density function of a stochastic variable can be obtained
by solving the Fokker-Planck equation associated with
the SDE [8–10].

As against the deterministic bifurcation where we track
the evolution of the absolute value of the observable,
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we track the change in the probability distribution of
the observable in the presence of noise. The qualitative
changes observed in the probability distribution of the
observable are termed as phenomenological bifurcations
(P-bifurcation). Bifurcation associated with the change
in sign of the largest Lyapunov exponent is termed as
dynamic bifurcation (D-bifurcation). Both P and D-
bifurcations are classified as stochastic bifurcations [11].
There are studies on the effect of additive and multi-
plicative noise on stochastic bifurcations that happen in
nonlinear systems. Additive noise does not change the lo-
cation of the extrema of the stationary probability den-
sity function whereas multiplicative noise can shift the
extrema of the distribution [7].

The phenomenon of stochastic bifurcation is very well
studied using models. The stochastic Hopf bifurcation
is studied in the context of various nonlinear oscillators
[1, 7, 12] and in biological systems including neuron mod-
els, synthetic gene oscillators [1, 13] and cellular networks
[14]. The framework of stochastic bifurcation is also used
to study the effect of noise in self-sustained bistable oscil-
lators [1]. Further, there are several experimental studies
on stochastic bifurcation in nonlinear systems [15, 16].

The literature on stochastic bifurcation in engineering
systems is minimal. Many engineering systems are non-
linear and most engineering systems work in the pres-
ence of noise. Due to the nonlinear nature, they can un-
dergo sudden transitions from a non-oscillatory state to
an oscillatory state for an infinitesimal change in any of
the system parameters. The oscillatory state following a
Hopf bifurcation can cause a total collapse or decrease in
performance of an engineering system [17]. One such en-
gineering system where the margins of safe operation are
limited by Hopf bifurcation is a thermoacoustic system
[18]. A thermoacoustic system is a self-excited system
where a heat source is located in a confinement or duct
[19, 20]. Many power generating systems such as gas
turbine engines, industrial burners and aircraft engines
belong to the category of thermoacoustic systems. A
positive feedback established between the unsteady heat
release rate and the inherent fluctuations of the acoustic
field present in the duct could result in a Hopf bifurca-
tion. From the literature, it can be seen that thermoa-
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coustic systems often undergo subcritical Hopf bifurca-
tion. Thermoacoustic system which undergoes subcriti-
cal Hopf bifurcation is often modeled as a self-sustained
bistable oscillator [21–23].

As most of the thermoacoustic systems work in the
presence of noise, the effect of noise on the dynamical
states of a thermoacoustic system becomes an important
topic of study. The presence of noise can transition the
thermoacoustic system from non-oscillatory state to os-
cillatory state when the system is in the bistable regime.
There are several experimental [24, 25] and numerical
studies [26, 27] on the influence of noise in thermoacous-
tic systems. Recently, Gopalakrishnan & Sujith [23] per-
formed a study on horizontal Rijke tube in order to un-
derstand the effect of noise on the hysteresis characteris-
tics. They performed experiments and adopted a math-
ematical model to achieve this objective. They found
that the width of the bistable zone decreases with in-
crease in the intensity of noise. Moreover, they also re-
ported that there is a suppression of the bistable zone
in the presence of high intensity noise. Therefore, it is
evident from the results reported by Gopalakrishnan &
Sujith [23] that the bifurcation point cannot be ascer-
tained. This difficulty in identifying the Hopf and fold
points in the presence of high intensity noise brings in
the need to calculate the stationary probability density
function of the measured observable. As mentioned ear-
lier, the stationary probability density function can be
calculated by solving the Fokker-Planck (FP) equation
of the system. Noiray & Schuermans [28, 29], in their
pioneering work, introduced Fokker-Planck formalism in
the thermoacoustic literature. They derived the FP equa-
tion for a thermoacoustic system undergoing supercriti-
cal Hopf bifurcation. Their primary focus was to derive
growth and decay rates of thermoacoustic oscillations for
the unsteady pressure data obtained from a gas turbine
engine and compare it with the numerical model.

In summary, the influence of noise characteristics on
noise induced transitions has been studied in thermoa-
coustic systems. The FP equation has been derived for
a thermoacoustic system depicting supercritical Hopf bi-
furcation. The amplitude distribution obtained as a so-
lution to the FP equation has been used to calculate
the growth and decay rate of oscillations. The suppres-
sion of bistable zone in the presence of high intensity
noise is also observed both in experimental and numerical
frameworks. However, the issue of identifying the critical
points of transition remains to be explored. The ampli-
tude distribution must be adopted instead of the absolute
value of the amplitude to determine the transition. In
this study, we adopt the concept of stochastic bifurcation
to study the effect of noise in a thermoacoustic system.
We study the influence of noise in experiments on Rijke
tube and in a mathematical model. The model proposed
by Balasubramanian & Sujith [21], which depicts sub-
critical Hopf bifurcation, is used in this study. We derive
the stationary amplitude distribution from the FP equa-
tion corresponding to the governing equations described

by the model. We identify the parameter regimes corre-
sponding to P-bifurcation in the system.

II. EXPERIMENTAL SETUP AND
MATHEMATICAL MODEL

A horizontal Rijke tube with an electrically heated wire
mesh is used to perform the experiments. The schematic
of the setup is shown in Fig. 1. The tube is of square
cross-section and 1 m long. The cross-sectional area of
the duct is 93 x 93 mm2. A blower (1 HP, Continen-
tal Airflow Systems, Type-CLP-2-1-650), operated in the
suction mode, is used to provide the mean flow. The
flow rate is measured using a compact orifice mass flow
meter (Rosemount 3051 SFC). A rectangular chamber
of dimensions 120 x 45 x 45 cm3, referred to as decou-
pler, is located at the outlet end of the Rijke tube to
reduce the acoustic interactions between the blower and
the duct. The decoupler maintains the pressure fluctu-
ations to be zero at that end. A DC power supply unit
(TDK-Lambda, GEN 8-400, 0-8 V, 0-400 A) provides the
necessary electrical power to the wire mesh. A mesh type
electric heater is used because it can supply high amount
of electric power for a fairly long duration without any
significant structural deformation [30].

FIG. 1. The schematic of the experimental setup. This figure
is reproduced with permission from Ref.[23]. Copyright 2015
Cambridge University Press.

The measurement system consists of a pressure trans-
ducer (or a microphone) PCB103B02 connected to a PCI
6221 data acquisition card to record the acoustic pressure
and a K-type thermocouple to measure the steady state
temperature. The sensitivity of the pressure transducer
is 217.5 mV kPa−1, the resolution is 0.2 Pa and uncer-
tainty is ±1 % of the reading. The pressure data was
acquired at a sampling frequency of 10 kHz for 3 sec-
onds. Loudspeakers (Ahuja AU 60) are used to apply
external noise. Gaussian white noise is generated using
LabVIEW Signal Express and is input to a loudspeaker
through an amplifier. More details on the experimental
setup can be found in Gopalakrishnan & Sujith [23].

We use a simple nonlinear model that depicts the
bistable behavior observed in experiments on horizontal
Rijke tube. A modified form of the model developed by
Balasubramanian & Sujith [21] is used in this study. To
develop this model, the non-dimensional momentum and
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energy equations are linearized neglecting the effect of
mean flow [31] and temperature gradient. The linearized
equations of momentum and energy for the acoustic field
are:

γM
∂u′

∂t
+
∂p′

∂x
= 0 (1)

∂p′

∂t
+ γM

∂u′

∂x
= Q̇′ (2)

where γ is the ratio of specific heat capacities, M is the
mean flow Mach number and Q̇′ is the fluctuating heat
release rate. This set of partial differential equations
(Eqs. 1 & 2) can be converted to ordinary differential
equations through Galerkin expansion [32]. In this ex-
pansion, the pressure (p′) and velocity (u′) fluctuations
are expressed as a combination of the basis functions in
the domain. Any linearly independent set of functions
that satisfy the boundary conditions can be chosen as
the basis functions. The pressure (p′) and velocity (u′)
fluctuations can be expressed in terms of the acoustic
modes as follows:

u′ =

∞∑
j=1

ηj(t)cosjπx, p′ = −
∞∑
j=1

γM

jπ
η̇j(t)sinjπx

(3)
The heat release rate fluctuation is modeled as a function
of the velocity fluctuations.

Q̇′ = Q̇′(u′f (t− τ)) (4)

Here, τ represents the time delayed feedback. For small
time delay, u′f (t− τ) can be approximated as

u′f (t− τ) ≈
∞∑
j=1

[ηj(t)− τ η̇j(t)]cosjπxf (5)

For simplicity, we consider a single mode for the anal-
ysis. The ordinary differential equations obtained after
adopting Galerkin technique [32] are given below.

dη

dt
= η̇ (6)

dη̇

dt
+ 2εωη̇ + ω2η = Q̇′ + ξ(t) (7)

where 2εω is the damping coefficient and ω = π. The
unsteady heat release rate function is given by

Q̇′ = −c1(η − τ η̇)− c2(η − τ η̇)3 + c3(η − τ η̇)5 (8)

where c1, c2 and c3 are constants. It is to be noted that
the model captures the experimental results only quali-
tatively. This is because, the heat release rate expression
used in the model does not capture the exact physical
conditions in experiments. The expression for heat re-
lease rate adopted in the model does not represent the

actual heat transfer rate from a mesh which is the heating
element used in the experiments. Further, we neglected
the effect of mean flow in the model. These changes bring
in the quantitative differences between the model and ex-
periments. Therefore, the values of the parameters that
must be maintained in the model are quite different from
that in experiments, in order to observe similar dynam-
ical features. We have adopted the specific expression
for heat release rate (Eq. (8)) to capture the essential
features of a thermoacoustic system. The heat release
rate responds to the velocity fluctuations at the heater
location after a time delay. Further, the heat release rate
provides a nonlinear feedback on the evolution of pres-
sure and velocity fluctuations [21]. In experiments, a
subcritical bifurcation to oscillatory behavior is observed
as the heater power is varied. A simple way to capture
this behavior in the model is to include third and fifth
order nonlinear terms in the expression for heat release
rate instead of adopting a more general nonlinear func-
tion. The constants are chosen such that the bistable
behavior observed in experiments can be captured. The
model for heat release rate given in Eq. (8) is similar
to the functions adopted in earlier studies by Campa &
Juniper [33] and Subramanian et al. [2]. In Eq. (7), we
include a Gaussian white noise term ξ with 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t + τ)〉 = Iδ(τ) to capture the influence of noise
present in the system, where I is the noise intensity.

III. RESULTS

The time series of unsteady pressure is acquired from
experiments in the presence and absence of external noise
for a range of the bifurcation parameter. The heater
power is used as the bifurcation parameter in experi-
ments. The median of the peak acoustic pressure P is
non-dimensionalised with the limit cycle amplitude at the
Hopf point attained in the absence of external noise (PH)
to obtain p = P/PH . The heater power K in experiments
is non-dimensionalised with the value of heater power at
the Hopf point attained in the absence of external noise
(KH). Thus, k = 1 −K/KH . The bifurcation diagram
between the non-dimensional variables p and k is pre-
sented in Fig. 2. It is to be noted that the system is not
forced with external noise in the case of Fig. 2a. How-
ever, there will be inherent fluctuations in the system
which must be accounted for. The amplitude of these
fluctuations or the noise level in the system is estimated
by measuring the rms amplitude of the acoustic pressure
when the system is in the non-oscillatory state. Then the
noise amplitude is non-dimensionalized by the amplitude
of limit cycle attained at the Hopf point in the absence
of external noise. The non-dimensional noise intensity α
is estimated to be 0.02 in the absence of external forcing.

A clear hysteresis region or bistable zone can be ob-
served in Fig. 2a. We observe that the width of the
bistable zone decreases with increase in the intensity of
external noise [23]. Further, in the presence of external
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noise of intensity α = 0.5, the bistable zone gets sup-
pressed as evident from Fig. 2b. The bifurcation points
are not discernable in the case of high intensity noise
as opposed to the case where external noise is absent.
In the presence of fluctuations, multiple realizations are
required to describe the transition as any measured ob-
servable from the system is a stochastic variable. In this
case, the peaks in the time series of acoustic pressure will
follow a definite distribution rather than a single value.
The transition could be meaningfully described in terms
of the nature of the amplitude distribution in such cases.
Bifurcations in the system could be observed as changes
in the distribution of the amplitude.

FIG. 2. Bifurcation diagram corresponding to the time series
of unsteady pressure obtained from experiments with non-
dimensional noise intensity (a) α = 0.02 and (b) α = 0.5.
A significant bistable zone can be observed in (a) where the
critical points of transition (Hopf and fold points) are clearly
seen. In the presence of high intensity noise, the hysteresis
zone is completely suppressed as seen in (b). N- Increasing k;
∇- Decreasing k

We intend to obtain the steady state amplitude distri-
bution in three parameter regimes, k < kf , kf < k < kH
and k > kH , where kf and kH correspond to the fold
and Hopf points of the thermoacoustic system in the ab-
sence of external noise. We performed a Hilbert trans-
form of the time series of unsteady pressure to obtain
the variation of amplitude and phase with time [34]. A
histogram of the amplitudes provides the amplitude dis-
tribution for the cases k < kf and k > kH . In the regime
kf < k < kH , the system remains in only one of the
two asymptotic states; i.e., either in the non-oscillatory
state or in the oscillatory state. However, we require the
amplitude distribution, obtained for a parameter chosen
in the bistable regime, to capture both the stable states.
Therefore, we adopt the following procedure to acquire
the time series (of 120 seconds long) of unsteady pressure
and develop the amplitude distribution. Initially the pa-
rameters are chosen such that the system is in the non-
oscillatory state of the bistable regime. The system is
given an excitation of amplitude greater than the unsta-
ble limit cycle amplitude at the middle of the run for 10
seconds. The frequency of the excitation is same as that
of the stable limit cycle. This perturbation transitions
the system to the oscillatory state allowable for the same
parameter. During this process, we acquire the time se-

ries of fluctuating pressure to capture the non-oscillatory
and oscillatory states attained by the system.
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FIG. 3. The left panel shows the distribution of amplitude
of acoustic pressure N(a) in the presence of non-dimensional
noise intensity α = 0.02 for (a) k < kf (b) kf < k < kH (c)
k > kH . The right panel shows the distribution of amplitude
of acoustic pressure N(a) in the presence of non-dimensional
noise intensity α = 0.5 for (d) k < kf (e) kf < k < kH (f)
k > kH . P-bifurcation is observed as the distribution changes
from unimodal to bimodal and then back to unimodal as the
parameter is changed in the presence of low intensity noise
(left panel). However, the distribution remains unimodal ir-
respective of the change of control parameter in the presence
of high intensity noise as seen in right panel. kf and kH cor-
respond to parameter values at the fold and Hopf points of
the system in the presence of low intensity noise respectively.

The amplitude distributions obtained for the param-
eter regimes k < kf , kf < k < kH and k > kH in the
absence (Figs. 3a, 3b, 3c) and presence (Figs. 3d, 3e,
3f) of external noise are shown in Fig. 3. The length
of the time series was maintained constant to obtain the
amplitude distribution for all the subfigures in Fig. 3
except for Fig. 3b. A longer time series was required
for Fig. 3b in order to obtain a smooth distribution.
In the absence of external noise, the amplitude distri-
bution changes from unimodal to bimodal and again to
unimodal as the parameter is changed. In the presence of
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high intensity external noise, the amplitude distribution
remains unimodal for all the parameter regimes. Thus,
no change in the amplitude distribution is observed in
the presence of high intensity noise. To study this be-
havior of the probability distribution of amplitudes, we
derive the Fokker-Planck equation corresponding to Eqs.
6 & 7. The probability distribution is a solution to the
Fokker-Planck equation.

A. Stationary probability distribution from the
Fokker-Planck equation

We write the state variables η and η̇ (used in Eq. 6 &
7) in terms of slowly varying amplitude and phase [35].

η(t) = a(t)cosθ(t) (9)

η̇(t) = −ωa(t)sinθ(t) (10)

where θ(t) = ωt+φ(t). We define a parameter β = 2εω−
c1τ . The term ε will be absorbed into the parameter β
which is subsequently used as the bifurcation parameter.
Then, we transform Eqs. (6) & (7) in terms of the new
variables a(t) and φ(t).

da

dt
= f1(a, θ)sinθ + g1(a, θ)ξ(t) (11)

dφ

dt
= f2(a, θ)cosθ + g2(a, θ)ξ(t) (12)

where,

f1 = −aβsinθ +
c1acosθ

ω
+
c2a

3(cosθ + ωτsinθ)3

ω

−c3a
5(cosθ + ωτsinθ)5

ω

(13)

f2 =
f1
a
, g1 = −sinθ

a
, g2 = −cosθ

aω
(14)

To derive the stochastic equations for a and φ, we per-
form averaging of Eqs. (11) and (12) over one cycle of
oscillation. More details on averaging can be found in
Roberts & Spanos [36].

da = F1dt+
I

4aω2
dt+

√
I

2ω2
dW1(t) (15)

dφ = F2dt+
1

a

√
I

2ω2
dW2(t) (16)

where W1(t),W2(t) are independent Wiener processes
and

F1 =
1

2π

∫ 2π

0

f1sinθdθ (17)

F2 =
1

2π

∫ 2π

0

f2cosθdθ (18)

Clearly, the equation for amplitude is independent of the
phase. Therefore, it is not necessary to write the joint
probability density for amplitude and phase. The transi-
tion probability density function p(a, t) for the amplitude
can be obtained as a solution of the following Fokker-
Planck equation.

∂p(a, t)

∂t
=

∂

∂a

[(βa
2
− 3c2na

3

8ω
+

5c3ma
5

16ω
− I

4aω2

)
p(a, t)

]

+
∂2

∂a2

[
I

4ω2
p(a, t)

]
(19)

where, n = ωτ + (ωτ)3 and m = ωτ + 2(ωτ)3 + (ωτ)5.
The stationary probability density p(a) can be obtained
from Eq. (19) as given below.

p(a) = Caexp[−a
2ω2β

I
+

3c2nωa
4

8I
− 5c3mωa

6

24I
] (20)

where C is the normalization constant. The extrema of
the stationary probability density function p(a) can be
obtained from the roots of the equation given below.

8βa2 − 6c2na
4

ω
+

5c3ma
6

ω
− 4I

ω2
= 0 (21)

The extrema can be obtained for different values of β and
I, where I is the intensity of additive noise. The number
of real roots of Eq. (21) indicates the nature of the prob-
ability distribution. The distribution is unimodal if the
number of real roots is 1 while the distribution is bimodal
if the number of real roots is 3 [1].

FIG. 4. The regimes of unimodal and bimodal stationary
probability distribution in the (µ, I) plane, where µ is the
control parameter and I is the intensity of the noise. Regions
I and III correspond to the parameter regimes where the am-
plitude distribution is unimodal whereas region II corresponds
to the parameter regime of bimodal amplitude distribution.
The boundaries of the regions represent the locus of points
where P-bifurcation occurs. P-bifurcations are not observed
above a noise intensity.

Here, we define a normalized parameter, µ = 1 − β/
βh, where βh is the value of the parameter β at the Hopf
point.
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The bifurcation diagram in the (µ, I) plane is shown
in Fig. 4. Regions I and III correspond to unimodal
probability distribution of amplitude while region II cor-
responds to bimodal amplitude distribution. For low in-
tensities, P-bifurcations can be observed when the pa-
rameter µ is varied. As the noise intensity is increased,
the bimodality region reduces which corresponds to the
reduction in width of the hysteresis zone observed in the
experiments. Beyond a noise level (noise intensity I =
0.06 in the model), P-bifurcations are not observed. In
this case, the probability distribution remains unimodal
for changes in the parameter µ. The same behavior is
observed in experiments for high external noise levels as
evident from Fig. 3.

IV. DISCUSSIONS

We studied the influence of noise in a thermoacoustic
system using the time series of unsteady pressure ob-
tained from experiments and a mathematical model. We
observed stochastic P-bifurcations in the system in the
presence of noise. In experiments and in the model, a

reduction in the width of the bistable zone is observed
with increase in the intensity of external noise. The hys-
teresis region gets suppressed in the presence of high in-
tensity noise. We used stationary amplitude distribu-
tion along with the median of peaks to describe the bi-
furcation, as the observables are obtained from a noisy
system. We identified stochastic P-bifurcations in the
system as changes in the stationary probability distri-
bution in the presence of low intensity noise. However,
P-bifurcations are not observed in the presence of high
intensity noise. Therefore, the noise intensity at which
hysteresis region is suppressed corresponds to the regime
where P-bifurcations do not exist.
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