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A B S T R A C T   

The design of cold-formed steel flexural members using the Direct Strength Method (DSM), use signature curves 
of cross-sections with the assumption of equal end moments and uniform stresses in the longitudinal direction. 
However, for beams subjected to general transverse loads, the assumption of longitudinal uniform stress is 
conservative. In calculating elastic critical loads of thin-walled flexural members, to incorporate a non-uniform 
variation of longitudinal stresses, this paper presents a spline finite strip computational procedure, which can 
also be used for beams with intermediate restraints. To the authors’ knowledge, such a procedure using spline 
finite strip is presented for the first time in the literature. The present formulation is comprehensive in its 
generality compared with similar works published. The membrane and shear stresses due to transverse loads on 
the beam are determined in the local direction of the plate at section knots of the spline strip. These stresses are 
incorporated in the geometric stiffness matrix, and buckling analysis is performed for calculating the elastic 
buckling load. Restraint matrices are incorporated in buckling analysis for the decomposition of buckling modes 
and for calculating mode participation. The proposed formulation is compared with generalized beam theory 
(GBT) for lipped channel cross-section with variation in span, general loading, and intermediate restraints. This 
method is demonstrated to be good for calculating elastic buckling stresses for the practical design of thin-walled 
flexural members.   

1. Introduction 

Cross-sectional and member instabilities such as local, distortional, 
and global buckling are the main parameters determining the design 
capacity of thin-walled steel sections. Direct strength method (DSM) 
design of thin plated steel compression and flexural members considers 
these instabilities in the form of elastic buckling stress. Elastic buckling 
strength of the thin-walled steel section is dependent mainly on the 
geometry of member, and the buckling stresses for global, distortional, 
and local buckling can be evaluated either by analytical expression or 
numerical methods. Finite strip method (FSM), which requires less 
computational effort, has been recommended in DSM for determining 
global, distortional, and local buckling stress. This method is developed 
initially for static analysis of thin plates [1] and extended to generate the 
signature curve of thin-walled flexural members [2]. The signature 
curve in FSM has been developed using the assumption of uniform 
compressive or flexural stresses in the longitudinal direction of the 
member with simply supported boundary condition for columns and 

beams. 
Practical thin-walled flexural members can have variation in bending 

stress along the longitudinal direction in the presence of different 
transverse loads/moments, and these members may also have different 
supports and intermediate restraint conditions. Since a continuous 
trigonometric function is used for longitudinal interpolation, analysis 
with discrete intermediate constraints and non-uniform stresses in the 
longitudinal direction of the plate is difficult in traditional FSM. How-
ever, research on the application of general loading conditions in the 
context of traditional FSM is presented in Ref. [3]. The strategy adopted 
is to divide the longitudinal strip into different cells, and numerical 
integration is performed separately on each cell for corresponding 
stresses. In a recent study [4], multiple series terms are incorporated for 
longitudinal interpolation in the context of FSM for buckling analysis of 
thin-walled beams subjected to localized loading. A study has been re-
ported on the influence of uniformly distributed load on local and 
distortional buckling capacity of cold-formed steel members based on 
FSM [5]. Also, buckling analysis has been presented for localized 
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loading conditions in flexural members using FSM by considering 
pre-buckling membrane and flexural stresses [6]. Generalized beam 
theory (GBT) is ideally suited for buckling analysis and mode extraction 
of thin-walled sections, and this technique is used for first and 
second-order analysis of thin-walled steel members [7]. The 
non-standard support conditions and different transverse loading con-
ditions have been incorporated in classical GBT [8]. 

Spline finite strip method (SFSM) is introduced for static analysis of 
thin-walled members by considering different loading, and support 
conditions [9] and this formulation is further modified for buckling 
analysis by introducing geometric stiffness matrix, which incorporates 
membrane stresses in the form of transverse and longitudinal 
compression and also shear stress acting along the edges of plate strip 
[10]. Other developments in the incorporation of SFSM in thin-walled 
steel members include nonlinear analysis for calculating post-buckling 
response [11–13], iso-parametric spline finite strip formulation for 
elastic buckling analysis of perforated thin-walled members [14] and its 
extension to nonlinear analysis by considering the material and geo-
metric nonlinearity [15–17]. 

The buckling stresses calculated for different member lengths using 
SFSM is the interactive solution, where buckling modes like local, 
distortional, global and other (shear/transverse extension) modes 
interact each other, and the stress calculated using SFSM may not be 
suitable as design input for practical member lengths using DSM. A 
technique for extracting pure buckling modes in the context of FSM has 
been proposed [18–20] by developing restraint matrices corresponding 
to global, distortional, and local buckling modes calculated based on 
GBT fundamental assumptions. The proposed technique termed as 
constrained finite strip method (cFSM) has also been developed for 
thin-walled cross-sections with closed and branched shapes [21], clas-
sification of deformation modes into different subfields [22,23], mem-
bers with different boundary conditions [24] and calculation of 
percentage participation of different modes in buckling analysis using 
FSM [25]. Similarly, studies are reported on the integration of GBT 
principles in finite element formulation for mode decomposition [26, 
27], mode identification for elastic buckling analysis [28–30], and 
nonlinear analysis [31]. Recent studies in this area include the devel-
opment of constrained shell finite element model [32], development of 
constrained finite element technique for thin-walled steel members [33, 
34], and its extension to perforated sections [35]. A mode decomposi-
tion strategy has also been proposed in the context of FSM using energy 
principles for the decomposition of buckling modes [36,37]. 

Considering the advantages of SFSM, constrained spline finite strip 
method (cSFSM) and identification of buckling modes in generalized 
buckling analysis [38,39] have been proposed by integrating GBT 
principles in SFSM. The validation problems in the study are presented 
mainly for cold-formed steel members under uniform flexural and 
compressive stress in longitudinal direction. Constrained spline finite 
strip analysis that decomposes global and distortional modes for mem-
bers with branched open cross-sections and closed cross-sections has 
also been proposed [40]. 

Of course, several studies in the direction of the theme of the paper 
have been published. The objective of this paper is the development of 
cSFSM for thin-walled flexural members subjected to variation in flex-
ural stress along the longitudinal direction of the member under 
different transverse loading conditions. Existing studies on cSFSM 
consider uniform flexural stress distribution along member length for 
decomposition and identification of buckling modes. The present study 
is more comprehensive in its generality by incorporating longitudinal 
discontinuities in terms of stresses and intermediate restraints in the 
context of cSFSM compared to existing studies that are available in the 
literature. The incorporation of variation in flexural stress along the 
length of member enables the utilization of additional elastic buckling 
strengths in terms of different buckling modes in DSM design for 
members subjected to transverse loads. In this study, uncoupled buck-
ling loads for global, distortional, and local buckling are calculated for 

members subjected to different transverse loadings, and the percentage 
contribution of each buckling mode in generalized buckling analysis is 
determined. Also, the flexibility of the proposed cSFSM in incorporating 
discrete intermediate restraints with different end conditions and the 
enhancement in buckling stresses due to incorporation of flexural stress 
variation in the longitudinal direction for the analysis of flexural 
members is demonstrated. 

2. A brief on constrained spline finite strip method (cSFSM) 

Basic spline finite strip analysis and incorporation of GBT principles 
for decomposition and identification of individual buckling modes in 
SFSM are available in various works presented in literature [9,38,39]. 
However, for completeness, the procedure incorporated in SFSM and 
cSFSM for buckling analysis are briefly presented. A cold-formed steel 
member as a result of longitudinal discretization with a global-local 
coordinate system and stress distribution of a plate strip is provided in 
Fig. 1. The nodal line in a plate strip corresponds to several section knots 
with four degrees of freedom (u, v, w, θ) at each knot along the nodal 
line. The membrane and shear stress acting on the edges of the plate strip 
is dependent on the type of load acting on the member. 

The deformation of the plate strip is classified as flexural (w, θ) and 
membrane (u, v) displacements based on Kirchhoff’s thin plate theory 
and plane stress condition, respectively. For both flexural and mem-
brane deformation, cubic splines are used for interpolating displace-
ments in the longitudinal direction with different spline amendment 
schemes for end conditions. In the transverse direction of the plate, 
flexural displacements are interpolated using cubic Hermitian functions 
and membrane displacements using the Lagrangian interpolation 
function. 

For buckling analysis, the geometric stiffness matrix is calculated 
under the assumption of longitudinal (σy), transverse (σx) and shear 
(σxy) stresses acting at the edges of the plate as given in Fig. 1b. The work 
done by flexural and membrane displacements due to nonlinear strains 
acting on the plate under membrane and shear edge stresses is calculated 
for individual plate strip. The Eigenvalue problem for buckling analysis 
is developed by minimizing the total potential energy in SFSM. 

The constraining condition for different buckling modes is imposed 
by introducing a restraint matrix containing base vectors contributing to 
a particular mode. Using a transformation technique, the constraints are 
imposed in the Eigenvalue equation. The percentage contribution of 
individual base vectors in a particular mode shape in generalized spline 
finite strip analysis is obtained by representing the displacement func-
tion corresponding to a particular mode as a combination of ortho-
normal base vectors linearly, and approximating the error to be 
minimum. 

3. Incorporation of general loading conditions and intermediate 
restraints in SFSM 

For determining the elastic buckling stresses to be adopted in DSM 
using FSM for the design of thin-walled flexural members, the assump-
tion of uniform flexural stress in the longitudinal direction and simply 
supported flexural end conditions are incorporated. The variation of 
bending stresses along the length of the beam is not considered in FSM. 
This results in lower bound strength prediction for general loading 
conditions. Also, in professional practice, cold-formed steel members 
may have intermediate web/flange restraints. The incorporation of non- 
uniform flexural stresses in the longitudinal direction and intermediate 
restraints in SFSM for calculating elastic buckling stresses are explained. 

3.1. cSFSM for general loading conditions 

For buckling analysis in SFSM, the geometric stiffness matrix ([Kg]) 
corresponding to general loads need to be developed. The edge stresses 
acting on each plate strip (σx, σy, σxy) corresponding to transverse loads 
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applied on the beam is determined from the static analysis of the 
member, as shown in Eq. (1), where [K] is the elastic global stiffness 
matrix, {δ} is the global displacement vector and {F}G is the global load 
vector corresponding to general loads acting on the member. 
[K]{δ}={F}G (1) 

The element displacement vector of each plate strip in the global 
direction ({δe,G}) considering all the section knots in a plate strip is 

determined (Eq. (2)) from the global displacement vector ({δ}) devel-
oped as a result of static analysis of the member. The element dis-
placements are transformed into displacements in the local direction of 
the plate using coordinate transformation, as shown in Eq. (3), where α 

is the inclination of the plate strip with respect to reference axis in global 
X direction. The local displacements corresponding to both nodal lines 
of a plate strip are assembled to obtain the strip displacement vector in 
the local direction (Eq. (4)) 

Fig. 1. Thin-walled member with the degree of freedom and coordinate system.  
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From the local displacement vector of plate strip, longitudinal, 
transverse, and shear strains are evaluated, as shown in Eq. (5), where N 
and Φ represents the interpolation functions in the transverse and lon-
gitudinal direction, and the superscript (′) represents the first derivative. 
The membrane and shear stresses are evaluated from strains using 
constitutive relation as depicted in Eqs. (6) and (7). Here Ex, νx and Ey, νy 
represents the modulus of elasticity and Poisson’s ratio in x and y di-
rection of plate strip and Gxy represents rigidity modulus of plate strip. 
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The evaluated stresses corresponding to transverse loading on the 
beam are incorporated in the geometric stiffness matrix for membrane 
and flexural deformations as provided in Eqs. (8)–(12). The stress vari-
ation between section knots and nodal lines are assumed to be linear in 
the case of longitudinal, transverse, and shear stresses. 
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The critical buckling load is determined by calculating the Eigen-
values from buckling equation (Eq. (13)) using an updated geometric 

stiffness matrix from stresses corresponding to applied loading after 
combining membrane and flexural stiffness matrices. Similarly, mode 
decomposition and mode identification can be performed using the 
updated geometric stiffness matrix. 
(

[K] − λ
[

Kg

])

{δ}= 0 (13) 
To demonstrate the development of membrane strains for general 

loading conditions in SFSM, the static analysis results of a lipped channel 
with simply supported ends have been compared with finite element 
method (FEM) calculated using the FEM package, ABAQUS [41]. The 
span of the beam is selected as 2000 mm and the beam is subjected to a 
distributed load of 100 N at the web-flange junction on all the section 
knots along the longitudinal direction. Longitudinally, the member is 
divided into 20 sections. The cross-sectional dimensions and loading 
points are depicted in Fig. 2. The plate thickness is taken as 1 mm and 
modulus of elasticity and Poisson’s ratio for the present study is assumed 
to be 200000 N/mm2 and 0.3 respectively. 

The static analysis of the flexural member is performed using SFSM 
and the vertical and lateral displacements at web-compression flange 
junction along the length of the member is compared with FEM results, 
as shown in Fig. 3. This simple benchmark problem is shown because the 
stresses that are used in the geometric stiffness matrices have to be 
necessarily accurate. It has to be noted that the displacement values are 
considered at 19 intermediate points along the longitudinal direction of 
the beam, and close comparison is observed between SFSM and FEM 
results. The cross-section of the beam has been discretized using six, 
three, and one intermediate node in the web, flange, and lip, respec-
tively. The mesh size incorporated in FEM is the same as that of SFSM, 
and the finite element used for analysis in FEM is S8R5, which is a shell 
element having 8 nodes and 5 degrees of freedom per node. 

Since the transverse load is acting away from shear center of the 
cross-section, the member is subjected to torsion along with bending. 
This is evident from the displacements plotted in Fig. 3 along the length 
of the member, which has significant lateral displacement along with 
vertical displacement. From the displacements of plate strips evaluated 
in the global direction of the member, the membrane and flexural dis-
placements corresponding to each plate strip in local direction have 
been evaluated using the transformation of coordinates (Eq. (3)). Dis-
placements in the local direction of the plate are used for calculating the 
membrane strains in local x and y direction and shear strain (Eq. (5)) 
acting on the edges of the plate strip. From these strains, the longitu-
dinal, transverse, and shear stresses are calculated using Eq. (6) for 
application in buckling analysis. The stress values computed using the 
present formulation agrees well with classical solutions. 

Fig. 2. Cross section dimensions and loading point.  
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3.2. Incorporation of intermediate flange/web restraints 

The constraints for the degree of freedom on section knots in the 
spline finite strip model are imposed using the Lagrange multiplier 
technique in which the algebraic equation corresponding to static 
analysis is written of the form given in Eq. (14). 
[

[K] [CL]
T

[CL] [0]

]{

{δ}
{λL}

}

=

{

{F}
{FL}

}

(14) 

In the expression, [CL] represents the matrix corresponding to co-
efficients in constraint equation, {λL} is the vector of multipliers and 
{FL} is the load vector corresponding to imposed constraints depending 
upon the number of constraints considered in the analysis. [K], {δ} and 
{F} represents elastic stiffness matrix, displacement vector, and load 
vector, respectively. The incorporation of constraints increases the size 
of the elastic and geometric stiffness matrix depending upon the number 
of constraints imposed in the analysis. In buckling analysis corre-
sponding to SFSM, the constraints are imposed in Eigenvalue analysis as 
given in Eq. (15). 
[

[K] [CL]
T

[CL] [0]

]

− λ

[
[

Kg

]

[CL]
T

[CL] [0]

]

= 0 (15) 

The minimum value of load factor λ corresponds to the critical 
buckling load, and the participation of individual buckling modes is 
calculated from the deformation vector obtained in buckling analysis. In 
this study, the constraints are incorporated in static analysis for deter-
mining the membrane stresses of the plate and also for calculating the 
elastic buckling load in Eigenvalue analysis. 

4. Application of general loading conditions and intermediate 
restraints in SFSM 

The demonstration of unconstrained and constrained buckling 
analysis is performed on the lipped channel cross-section for different 
lengths of the flexural member. The ends of the beam are assumed as 
simply supported, and transverse loads are applied at the compression 
flange-web junction of the beam. The dimensions and discretization of 
the cross-section is shown in Fig. 2. For all the spans, twenty-one sec-
tions knots are assumed along the length of the beam. Fig. 4 represents 
different loading conditions assumed at the web-compression flange 
junction of the lipped channel section for unconstrained and constrained 
buckling analysis. 

4.1. Unconstrained buckling analysis 

Buckling analysis has been performed for different transverse loads 

acting along the web-compression flange junction represented in Fig. 4, 
and the critical buckling load calculated using SFSM is compared with 
FEM results calculated using ABAQUS and generalized beam theory 
(GBT) results calculated using GBTUL [42]. Lipped channel member 
with cross-section details and discretization shown in Fig. 2 has been 
adopted in SFSM, and the elastic buckling analysis is performed for 
spans varying from 500 mm to 5000 mm. The discretization of the 
member is selected based on a mesh sensitivity analysis for four different 
member lengths, as shown in Fig. 5. It has to be noted that the element 
size of 10 mm is incorporated in the web, flanges, and lips, as shown in 
Fig. 2 for the present study. For uniformly distributed load (UDL) and 
uniformly varying load (UVL), concentrated forces are applied on all the 
19 intermediate section knots, excluding the edge supports on 
web-compression flange junction along the longitudinal direction. 

For comparison with SFSM results, elastic buckling analysis using 
FEM in ABAQUS is performed using a three-dimensional shell finite 
element model using S8R5 element having 8 nodes within the element 
and 5 degrees of freedom per node. The material properties and dis-
cretization of plate strips are incorporated exactly similar to SFSM. 
Simply supported boundary conditions are applied at cross-sectional 
nodes at both ends of the member, and load is applied as concentrated 
forces on nodes along web-compression flange junction. The Eigenvalue 
analysis is performed using ‘LINEAR PERTURBATION’ analysis option 
available in ABAQUS, and critical buckling load and deformed shapes 
corresponding to the first mode is evaluated. For comparing buckling 
loads using GBTUL, a numerical solution is considered, and analysis is 
performed by considering 20 GBT beam finite elements in the longitu-
dinal direction, and cross-sectional discretization, material properties, 

Fig. 3. Comparison of displacement along length of member.  Fig. 4. Loading conditions for comparison of buckling loads.  

Fig. 5. Mesh sensitivity analysis in SFSM.  
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and end conditions are incorporated as same as that of SFSM and FEM. In 
the unconstrained buckling analysis, all the GBT modes are considered 
for calculating elastic buckling load, whereas in constrained buckling 
analysis, only specified modes are considered in GBTUL. 

The comparison of critical buckling load for different member 
lengths corresponding to uniformly distributed load (UDL), uniformly 
varying load (UVL) and concentrated load (CONC) is shown in Figs. 6–8, 
respectively. For the span of beam less than 1000 mm, local buckling 
mode has been observed in the cross-section, and for lengths greater 
than 3000 mm, the beam buckles in the flexural torsional mode for all 
the loading cases. For intermediate lengths, the interaction of different 
modes is observed. For UDL and UVL, the SFSM results are comparable 
with FEM and GBT results. Minor variations exist in the buckling load 
prediction for spans between 1000 mm and 1600 mm determined using 
all the three methods, and this may be due to the differences in the 
points of modal change and nodal degrees of freedom considered in all 
the three analysis methods. For concentrated loading, variations up to 
15% exist in the elastic buckling load prediction by SFSM for spans less 
than 1000 mm. Such short beams are seldom used in practice. However, 
for spans greater than 1000 mm, a reasonable comparison is achieved 
for predictions by all the three methods. 

Fig. 9 shows the buckled mode shapes of beams for spans 500 mm 
and 1000 mm determined from buckling analysis in SFSM and FEM for 
UDL with simply supported end condition. It may be noted that the 
beams are plotted not to scale, and the buckling modes are amplified for 
clarity in deformed mode shape. It is evident that the fundamental mode 
shape is identical while comparing both the methods, and localized 
buckling is observed at regions of maximum flexural stress along the 
length of the beam. 

4.2. Mode decomposition for different loads 

Constrained buckling analysis is performed using SFSM on flexural 
member with lipped channel cross-section shown in Fig. 2 to decompose 
the buckling load in SFSM into pure local (L), distortional (D) and global 
(G) buckling loads for UDL, UVL, and CONC loading conditions. Since 
decomposition of buckling modes is not directly possible in FEM using 
ABAQUS, the comparison of pure buckling mode evaluated used SFSM is 
performed with GBTUL by considering local, distortional and global 
buckling modes separately for different spans of the member. The beam 
is divided into 20 sections along the length of the beam to incorporate 
local spline functions, and hence the restraint matrices in SFSM are 
evaluated by considering all the 20 possible half buckling waves along 
the longitudinal direction of the beam. 

The comparison of SFSM and GBT results for pure buckling loads 
corresponding to global, distortional, and local buckling for different 
member lengths are presented in Figs. 10–12 respectively for UDL, UVL, 

and CONC loading conditions. Though SFSM is not able to exactly 
replicate GBT results, there is a good agreement in pure buckling modes. 
The variations in local buckling load prediction are due to the differ-
ences in the pure local buckling assumption implemented in GBT and 
cSFSM, respectively. In GBT, pure buckling modes are determined 
directly from GBT fundamental equations, whereas in cFSM and cSFSM, 
the restraint matrix corresponding to local buckling mode is determined 
from a set of mechanical assumptions [20]. Also, for the discretization of 
cross-section incorporated in the present study, GBT produces 18 local 
buckling modes, whereas SFSM incorporates 36 base vectors for local 
mode in the restraint matrix corresponding to pure local buckling mode. 

4.3. Calculation of mode participation in SFSM 

From generalized buckling mode shape of flexural member deter-
mined using SFSM, the participation of local distortional, global, and 
shear/transverse extension modes are calculated, and percentage 
participation of different modes are compared with GBT results. Uni-
formly distributed load (UDL) with simply supported end condition is 
considered in the analysis for spans varying from 500 mm to 5000 mm. 
The load position and cross-sectional as well as longitudinal dis-
cretization is the same as that of mode decomposition study in section 
4.2. For calculation of mode participation percentages, the restraint 
matrices are interpolated for section knots along the length of the beam 
by considering the participation of all the 20 half buckling waves along 
the length of the beam. 

Fig. 13 represents the mode participation percentages corresponding 
to UDL for different member lengths determined using SFSM and GBT. It 
has to be noted that only local (L) or global (G) buckling modes are 
predominant for all the member lengths corresponding to the selected 

Fig. 6. Comparison of critical buckling load for uniformly distributed 
load (UDL). 

Fig. 7. Comparison of critical buckling load for uniformly varying load (UVL).  

Fig. 8. Comparison of critical buckling load for concentrated load (CONC).  
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Fig. 9. Buckled modes of beams.  

Fig. 10. Decomposition of buckling modes for uniformly distributed 
load (UDL). 

Fig. 11. Decomposition of buckling modes for uniformly varying load (UVL).  

Fig. 12. Decomposition of buckling modes for concentrated load (CONC).  

Fig. 13. Identification of buckling modes for UDL.  
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cross-section dimensions. The participation percentages of distortional 
(D) and shear/transverse extension (S/T) basis vectors are less than 10% 
for all the member lengths compared in the analysis. For spans less than 
700 mm, the contribution of local buckling modes determined using 
GBT is lesser compared to SFSM, and the global buckling contribution 
calculated using GBT is nearly 10%. However, SFSM predicts local 
buckling participation percentage greater than 90% and global buckling 
contribution less than 3% as per engineering expectation for spans less 
than 700 mm. For beam spans greater than 700 mm, the mode partici-
pations for local and global buckling determined using SFSM and GBT 
are comparable. The variations in the participation of local and global 
modes determined using SFSM and GBT are due to the differences in 
basic assumption for local buckling mode, as highlighted in section 4.2. 
It is evident that the higher participation of local mode in SFSM for a 
span greater than 2000 mm is due to consideration of a greater number 
of base vectors corresponding to local mode than GBT. In all these ex-
amples, a lower limit of beam length of 500 mm is considered, because 
beams of this size and less are rarely used in practice. 

4.4. Incorporation of intermediate restraints and other support conditions 

Intermediate restraints, as well as different end supports, are incor-
porated in flexural members subjected to transverse load to calculate 
elastic buckling load using SFSM. The example problems shown in 
Fig. 14 includes three different conditions; (a) beam subjected to uni-
formly distributed load (UDL) having one end with fixed support and 
other end having roller support, (b) simply supported beam subjected to 
UDL in the presence of discrete intermediate lateral restraints (3 re-
straints) at web-compression flange junction and (c) simply supported 
beam with uniformly varying loading (UVL) and continuous lateral re-
straints (on all load points). Lipped channel cross-section with di-
mensions, discretization, and loading details depicted in Fig. 2 has been 
used for this study. The lateral constraints are imposed at intermediate 
locations by arresting the global degree of freedom in X direction using 
the Lagrange multiplier technique. Different end conditions are incor-
porated in SFSM by amendment of cubic end splines in the formulation. 

The modified elastic and geometric stiffness matrix developed after 
imposing constraints are utilized for unconstrained buckling analysis 
and mode decomposition. 

Unconstrained buckling analysis is performed for the three example 
problems using SFSM and the critical buckling load evaluated are 
compared using FEM for spans varying from 500 mm to 5000 mm as in 
Figs. 15–17. For all the support conditions considered, the beam buckles 
in local mode for span less than 1000 mm. For larger spans (greater than 
3000 mm), global buckling mode is observed, and for intermediate 
lengths, interactive buckling mode is visible. The presence of lateral 
supports arrest the lateral deformation in the case of intermediate and 
continuous lateral supports, and the global mode is governed by torsion 
rather than lateral displacement in those cases. For beam having fixed 
and roller end supports, a close comparison of critical elastic buckling 
load has been observed. When intermediate restraints are imposed in the 
beam, variations exist in the calculations by SFSM and FEM for 

Fig. 14. Incorporation of intermediate restraints and different end conditions.  

Fig. 15. Unconstrained buckling analysis for UDL with fixed and roller 
end supports. 
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intermediate spans (between 1000 mm and 3000 mm). However, these 
variations are less than 10%, and the possible reason can be the differ-
ences in the nodal degree of freedom incorporated in SFSM and FEM. 

The decomposition of buckling modes for calculating pure elastic 
buckling loads for spans varying from 100 mm to 10000 mm using SFSM 
for different supports and intermediate restraints are shown in 
Figs. 18–20, and the calculated buckling loads are compared with GBT 
results. It is evident that for the cross-section incorporated in this study, 
the percentage contribution of local or global mode is more than 85% for 
all the spans considered (Fig. 13). Since distortional mode is a cross- 

sectional buckling mode, the same trend has been observed for exam-
ples present in this section and hence omitted in the present comparison. 
The trend observed in the calculation of pure elastic buckling load for 
global and local buckling is comparable in all the three examples 
highlighted in this section. The variations in local buckling loads are due 
to the difference in the mechanical assumption incorporated in GBT and 
cSFSM for the calculation of local mode, as highlighted in section 4.2. 

4.5. Influence of moment gradient on pure buckling stresses 

Since the present study deals with flexural stress variation along the 
length of the thin-walled flexural member, it is important to highlight 
the influence of moment gradient on pure buckling modes. A plot of pure 
elastic buckling stresses for a beam having simply supported ends with 

Fig. 16. Unconstrained buckling analysis for UDL with intermediate 
lateral restraints. 

Fig. 17. Unconstrained buckling analysis for UVL with continuous 
lateral restraints. 

Fig. 18. Mode decomposition for UDL with fixed and roller end supports.  

Fig. 19. Mode decomposition for UDL with intermediate lateral restraints.  

Fig. 20. Mode decomposition for UVL with continuous lateral restraints.  

Fig. 21. Influence of moment gradient on pure buckling stresses.  

S.S. Ajeesh and S. Arul Jayachandran                                                                                                                                                                                                     



Thin-Walled Structures 158 (2021) 107171

10

variation of the span is presented in Fig. 21 on lipped I beam by applying 
uniform flexural stress (US) along the length of the member. The results 
are compared with maximum flexural stress due to concentrated force 
(CONC) applied at the centroid of the cross-section at mid-span, which 
provides a triangular variation of flexural stress along the length of the 
member. The lipped I section has been chosen to avoid torsion on the 
member, since the load passes through the shear center of cross-section. 
The cross-section is discretized by considering three intermediate nodes 
in the web, two in flanges and one in lips respectively, and the thickness 
of cross-section is adopted as 1 mm. 

The moment gradient imposed in the member due to concentrated 
force provides a definite advantage in terms of pure distortional and 
global buckling stresses. For spans between 1000 mm and 10000 mm, 
the pure buckling stresses increase for distortional and global buckling 
with a maximum variation of 95% and 75% respectively for a range of 
spans. However, the increase in buckling stress due to moment gradient 
on local buckling stress is marginal (less than 20%) for a certain range of 
spans. Also, it is interesting to note the reduction in local buckling stress 
for spans less than 1000 mm due to high shear stress arising in the plate 
in addition to longitudinal flexural stress. 

5. Conclusion 

Though mode decomposition studies in the context of SFSM are re-
ported in the literature, the added advantages of cSFSM over cFSM in 
incorporating longitudinal variations of stresses and intermediate re-
straints for mode decomposition and mode identification is the novelty 
of the present formulation. For incorporating longitudinal stress varia-
tion for beams subjected to general transverse loading, the membrane 
stresses are evaluated by performing static analysis of beam subjected to 
transverse loads. The deflection corresponding to transverse loads is 
calculated, and the membrane stresses corresponding to different plate 
strips are calculated and imposed in the geometric stiffness matrix cor-
responding to the membrane and flexural degree of freedom. The 
modified geometric stiffness matrix is incorporated for calculating 
elastic buckling loads, pure buckling loads, and mode participation 
percentages. The intermediate restraints to the degree of freedom are 
incorporated using Lagrange multiplier technique in static and Eigen-
value analysis, and different support conditions are imposed by 
amendment of cubic end splines. 

Example problems are presented for different spans corresponding to 
unconstrained buckling analysis, mode decomposition, mode identifi-
cation, and analysis in the presence of intermediate restraints and 
different supports. The elastic buckling loads determined using SFSM are 
comparable with FEM and GBT results for most of the practical spans for 
the thin-walled flexural member. Mode decomposition and mode iden-
tification results determined using cSFSM follow the same trend as in 
GBT, even though the analysis procedures in both these methods are not 
identical. The developed formulation is useful for determining elastic 
buckling stresses for local, distortional, and global buckling and calcu-
lation of mode participation percentages in the context of the design of 
thin-walled steel members using DSM for flexural members subjected to 
general transverse loads. 
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[22] S. Ádány, B.W. Schafer, Generalized constrained finite strip method for thin-walled 
members with arbitrary cross-section: primary modes, Thin-Walled Struct. 84 
(2014) 150–169, https://doi.org/10.1016/j.tws.2014.06.001. 
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