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Abstract We explore correlations between dynamics
of different microtubules in a bundle, via numerical
simulations, using a one-dimensional stochastic model
of a microtubule. The GTP-bound tubulins undergo
diffusion-limited binding to the tip. Random hydrol-
ysis events take place along the filament, and converts
GTP-tubulin to GDP-tubulin. The filament starts de-
polymerising when the monomer at the tip becomes
GDP-bound; in this case, detachment of GDP-tubulin
ensues and continues until either GTP-bound tubulin
is exposed or complete depolymerisation is achieved. In
the latter case, the filament is defined to have under-
gone a “catastrophe”. Our results show that, in general,
the dynamics of growth and catastrophe in different fil-
aments are coupled to each other; closer the filaments
are, the stronger the coupling. In particular, all fila-
ments grow slower, on average, when brought closer to-
gether. The reduction in growth velocity also leads to
more frequent catastrophes. More dramatically, catas-
trophe events in the different filaments forming a bun-
dle are found to be correlated; a catastrophe event in
one filament is more likely to be followed by a similar
event in the same filament. This propensity of bunching
disappears when the filaments move farther apart.
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1 Introduction

The dynamical instability of microtubule filaments, and
in particular, the “catastrophe” transition, has been
the subject of a large number of experimental, theoret-
ical and computational studies[1-8]. Catastrophe refers
to the sudden and abrupt transition of a growing mi-
crotubule to a shrinking state, which originates from
the hydrolysis of guanine tri-phosphate (GTP) molecule
bound to adsorbed tubulin. In vivo, the reverse “res-
cue” transition is also often observed, which resurrects
a microtubule before it shrinks away completely. The
combination of catastrophe and rescue transitions gen-
erates the characteristic zig-zag growth curves of mi-
crotubules. This unique dynamics of microtubules is
crucial in facilitating the search and capture of chro-
mosomes during cell division.

In many cells, a bundle of microtubules, rather than
a single one, is found to attach to a single kinetochore.
The number of filaments forming the bundle varies from
one in budding yeast ( S. cerevisiae) to 15-35 in mam-
mals. In such situations, for efficient segregation of chro-
mosomes, it is important that the the dynamics of dif-
ferent filaments are coordinated. Earlier experiments
have indicated that a bundle of microtubules pushing
against a common barrier undergoes collective catas-
trophes[9], which has also been studied in numerical
simulations[10]. In this case, collective behaviour arises
from the sharing of the total resistive force among all
the filaments in the bundle.

But, is it possible for different microtubules in a
bundle to interact with each other even in the absence
of external force ? Experimental observations in C. el-
egans embryos [11] during metaphase show that as-
tral microtubules form dynamic and persistent fibres
which survive throughout spindle oscillations. It was
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suggested that parallel microtubules take turn in main-
taining contact with the cell cortex; while a long fila-
ment enters a shrinking phase after undergoing catas-
trophe at the cortex, a neighbouring filament under-
goes persistent growth and thereby rescues the fibre.
However, whether the dynamics of the different micro-
tubules forming a bundle occur in a coordinated man-
ner or not, and if so, what possible mechanisms might
underlie it, are unclear.

In a recent paper, Jemseena and Gopalakrishnan
[12] showed that the net polymerisation force of a two-
filament bundle consisting of rigid parallel filaments is,
in general, sub-additive owing to the “diffusive interac-
tion” between the growing tips of the filaments. Here,
the term diffusive interaction refers to the following ef-
fect: the growth-rate of (any) one filament is dependent
on the location of the tip of the other filament, since
both the tips are competing for monomers from the
same pool. Hence, the effective single-filament growth
rate in a two-filament bundle is dependent on the base
separation between the filaments, and is an increas-
ing function of the same. Consistent with this expecta-
tion, it was confirmed in numerical simulations that the
net polymerization force generated by this two-filament
bundle is smaller than twice the force generated by a
single filament. This remarkable non-additivity of poly-
merisation force is also consistent with earlier experi-
mental observations[9] on polymerisation force of a sin-
gle microtubule, which was found to be much smaller
than the maximum (additive) force originating from the
13 protofilaments.

The motivation for the work reported here arises
from the above observations, and may be stated clearly
as follows. The catastrophe frequency of a microtubule
is known to depend strongly on the growth rate (which
can be observed through a dependence of the former on
the tubulin concentration in solution [13,14]). There-
fore, it seems plausible that the catastrophe frequency
for a filament which is part of a bundle should also de-
pend on the distance to the neighbouring filament(s).
Here, we confirm this effect by performing numerical
simulations with a simple one-dimensional stochastic
model of microtubule filaments in various bundle con-
figurations, with Brownian diffusion of tubulin monomers
explicitly included. Our results suggest that catastro-
phe events in neighbouring parallel filaments occur in
a correlated manner, which could have implications for
the dynamics of microtubule filaments in a bundle.

1.1 Model Details

For our numerical simulations, we use a one-dimensional
model of a microtubule, similar to what has been used

in a few earlier studies[15-19]. In this model, a sin-
gle microtubule is a straight, rigid polymeric filament,
which grows by the attachment of (GTP-bound) tubu-
lin at its tip. A free tubulin monomer is assumed to be
a point particle which diffuses with diffusion coefficient
D inside a rectangular box of dimensions L x L x H,
one face of which contains the nucleation sites for mi-
crotubules. The binding of a tubulin monomer to the
tip of a filament is diffusion-limited; after incorpora-
tion in a polymer, the monomer is visualised as a solid
cylinder of radius a. Once a tubulin molecule binds
to the tip, the length of the polymer increases by one
monomer length. In order to approximately account for
the 13-protofilament structure of a microtubule, we as-
sume that a single monomer’s length ¢ is 1/13 of the
length of a tubulin dimer (8 nm). A polymer with m > 1
monomers is assumed to have the shape of a solid cylin-
der of radius 12 nm and length m#.

A polymerized GTP-tubulin may undergo sponta-
neous and irreversible hydrolysis and become GDP-
tubulin with rate r. This could happen anywhere in the
filament. We assume that the free GTP-tubulin is pro-
hibited from binding to a GDP-tubulin; this means that
once a filament undergoes catastrophe, further growth
of the filament cannot take place. The filament then
enters a state of shrinking, accompanied by release of

GDP-bound tubulin to the solution (which are not tracked)

with rate kg. The shrinking continues until the filament
completely disappears at the nucleation site or until
an inner island of GTP-tubulin is exposed, whichever
comes earlier. The latter events may be characterised
as rescue, but we find that they are rare, and typically
a filament which undergoes catastrophe will shrink en-
tirely. In such cases, we ensure that another filament
starts growing again at the same location without de-
lay.

At the start of the simulation, our box is populated
with N,, monomers, placed at various random loca-
tions, which then start diffusing. The equation of mo-
tion of a single particle is given by the discrete form of
the standard over-damped Langevin equation

r(t+ At) = r(t) + V2D Atn (1)

where r(t) is the three-dimensional position vec-
tor of the diffusing particle and n = (12,7,,7.) is a
set of Gaussian random numbers with zero mean and
unit variance, representing thermal noise. In our simu-
lations, we used At = 10~%s. The polymer tips act as
absorbing surfaces for the diffusing monomers. In order
to eliminate any effect due to global depletion of free
tubulin due to filament growth, we ensure that for ev-
ery tubulin molecule adsorbed at the tip of a growing
filament, another one is added to the system at a ran-
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Fig. 1 The figure illustrates the geometrical arrangements in
N =2, N =4and N = 4+1 configurations of the microtubule
bundle.

Table 1 List of important parameters used in the numerical
simulations.

Parameter symbol  numerical value
Monomer diffusion coefficient D 10° nm?3s—?!
Simulation box height H 1.5pum
Simulation box side length L 3pum (N = 2)
1.5pum (N > 2)
Spontaneous hydrolysis rate r 0.5s~1[19]
Detachment rate kq 300s~1[3,7,19]
Radius of the monomer disc a 12 nm
Monomer length 0 0.6nm
Total number of free monomers N, 2000

dom location on the boundary of the rectangular box.
Hence, the number of free monomers remains constant
in our simulations.

We carried out simulations of bundles of N micro-
tubules, with N taking values 2,4 and 5, while N = 3
was avoided for reasons of symmetry (since the con-
fining box is rectangular in shape, the three filaments
whose bases form an equilateral triangle will not be
equidistant from the walls). For N = 2 and 4, the fila-
ments are equidistant from each other, with base sep-
aration d, which is varied. This means that a bundle
with N = 2 consists of two filaments whose bases are
placed symmetrically in the middle of the relevant face
of the box, such that the mid-point of the line join-
ing the bases coincides with the geometric centre of the
face. Likewise, the configuration N = 4 consists of 4
parallel microtubules which nucleate from the four cor-
ners of a square of side d, such that the centre of the
square coincides with the centre of the box. For N = 5,
we place an additional filament at the centre of the
square. To emphasise this difference, the five-filament
bundle shall be referred to as “N=4+1", while the oth-
ers are designated as N = 2 and 4. A schematic figure
showing the cross-sections of the various configurations
is provided in Fig. 1.

Table 1 lists the numerical values of all the param-
eters used in our simulations. Note that a smaller box
was used for simulations with more than 2 filaments to
reduce computation time.
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Fig. 2 The figure shows length as a function of time for
the two microtubules in the N = 2 configuration, with the
filament bases touching each other, such that base separation
d = 2nm. Note that multiple catastrophes may occur in one
filament between two consecutive catastrophes in the other.
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Fig. 3 The geometry is similar to that in Fig. 2, but the hori-
zontal separation between the base centres has been increased
to d = 70nm. Unlike the previous case, the catastrophe events
in the two filaments are distributed more or less evenly along
time.

Fig. 2 shows a typical length versus time trajec-
tory in the two-filament bundle, for base separation
d = 2nm. Fig. 3 shows the same, when the base sep-
aration is larger, with d = 70nm. It is interesting to
note the obvious difference between the statistics of oc-
currence of catastrophe events in both the cases. For
small base separation (Fig. 2), we observe that between
two consecutive catastrophes in any one filament, there
are typically multiple catastrophes in the other fila-
ment, suggesting that after one catastrophe event has
occurred in one filament, the next catastrophe event is
more likely to occur in the same filament. When the
base separation is increased to 70 nm (see Fig. 3), this
correlation is weakened.

We measured the following quantities in our sim-
ulations: (a) the mean velocity of growth of a single
filament in a bundle (b) the mean time to catastrophe
of a single filament (c) a set of correlation coefficients
that characterise how likely a catastrophe event in one
filament will be followed by a second one in the same
filament, or one of the other filaments. The data was
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Fig. 4 Growth velocity of a filament in a two-filament bundle
is plotted as a function of the base separation between the
filaments.

collected from 9 different sample systems, each run for
10% seconds.

2 Results
2.1 Growth velocity and catastrophe frequency

To measure the mean growth velocity of a filament in
the growing phase, we identified segments of positive
slope in the length versus time plots, as in Fig. 2. The
velocity for a given segment with positive slope was
found using the chi-squared fitting method. The mean
and standard deviation of the velocity was found using
the data from different segments. The data is shown
in the set of figures Fig. 4 - 6. The plots show that
the mean growth velocity is lower when the filaments
are closer together. This clearly indicates the presence
of diffusive interaction between filament tips, whereby
each filament (tip) affects the growth of the other be-
cause of overlap of the individual “depletion zones” (re-
gions of space around each tip where the free monomer
concentration is lower than the spatial average, due to
continuous adsorption). As the filaments are moved far-
ther apart in space, this overlap is reduced, resulting in
enhanced growth rate, as the figures show. In all fig-
ures, the error bars depict the standard deviation in
the measured slope in different growth segments.

We defined the catastrophe time 7T, as the the time
interval between the instant a filament starts growing
and the instant when it enters a shrinking phase. The
inverse of the mean catastrophe time is defined to be the
catastrophe frequency v., which is plotted in Fig. 7-9
for various bundle configurations. Typically, a filament
that enters the shrinking phase disappears completely,
and it is only these events that we considered in com-
puting the catastrophe time. As expected intuitively,
the catastrophe time shows an effect similar to growth
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Fig. 5 Growth velocity of a filament in a four-filament bun-
dle is plotted as a function of the base separation between
the filaments.
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Fig. 6 Growth velocity of the centre filament in a bundle in
441 configuration is plotted as a function of the base separa-
tion between the filaments.
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Fig. 7 The catastrophe frequency (see definition in text) of
a filament in a two-filament bundle are plotted as functions
of the base separation between the filaments.

velocity, hence catastrophe frequency is a decreasing
function of the distance between filaments.

2.2 Correlation in catastrophe events

We defined a set of “splitting probabilities” to charac-
terise the spatio-temporal correlations between catas-
trophe events occurring in different filaments in a bun-
dle, as follows. In a two-filament bundle, we arbitrarily
assigned an identification label ¢ = 1 for one of the fila-
ments, while the second filament was designated i = 2.
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Fig. 8 The catastrophe frequency (see definition in text) of
a filament in a four-filament bundle are plotted as functions
of the base separation between the filaments.
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Fig. 9 The catastrophe frequency (see definition in text) of
the centre filament in a bundle in 441 configuration are plot-
ted as functions of the base separation between the filaments.
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Fig. 10 A schematic diagram of the cross-sections of vari-
ous microtubule bundle configurations studied in this paper,
specifying the identification labels for each.

The identification of the filaments in the other config-
urations are indicated in Fig. 10.

The sequence of catastrophe events observed is now
recorded in a binary sequence of the form 12111221......
The information on catastrophe times is disregarded.
The number of 12 type intervals (an interval of time,
whose origin is a catastrophe event in filament 1, and
which ends with a catastrophe event in filament 2, with
no catastrophe events in between) is denoted Njs, and
similarly we define Ny1, Nio2 and Nas. The probabil-
ity that a 1 is succeeded by a 2 is defined as ¢12 =
Nia/(N1a+Ni1). We may similarly define ¢1; = 1— 12,
as well as ¢g2 and ¢o1 = 1 — ¢oo. We shall refer to
the fractions ¢;; as splitting probabilities. Note that
since the filaments are identical, we expect ¢11 = ¢ao
and ¢21 = ¢12. In the absence of any correlation be-

tween catastrophe events in different filaments, we ex-
pect equal splitting of probability, i.e., ¢11 = ¢12 = 0.5,
hence any deviation in this value indicates that the
catastrophe events in different filaments occur in a cor-
related manner. Specifically, if ¢1; > 0.5, we conclude
that an event in a certain filament is more likely to be
followed by an event in the same filament.

In Fig. 11, we have plotted these probabilities as
functions of the base separation d between the fila-
ments. It is observed that for small d, ¢11 > ¢12, and
as the distance increases, both quantities approach each
other and become equal to 0.5. This indicates the ex-
istence of strong correlation between the dynamics of
catastrophe events in the two filaments, which is weak-
ened by their increasing separation. For small separa-
tions, a certain filament is likely to undergo multiple
catastrophes while the other filament undergoes persis-
tent growth. However, since the filaments are identical
in every way, symmetry will be maintained and after a
while, we expect that the roles will be reversed between
the filaments. Our observations in Fig. 2 and Fig. 3 sup-
port this picture.

Why is ¢11 > ¢12 for small d 7 Although we do not
have a rigorous quantitative explanation, the following
argument appears plausible. The two filaments initially
grow together, thus creating a tubulin-depleted region
around their tips as they grow. A catastrophe in ei-
ther filament is most probable when the tips are close.
Imagine that one filament now undergoes catastrophe
and shrinks away. This event releases the other (sec-
ond) filament from the “influence” of the first one, and
the second one will consequently enter a phase of con-
tinuous growth. At the same time, the first filament
will now shrink to origin and starts to grow again, but
suffers from the disadvantage of being trapped in a
monomer-poor region. Hence, it suffers multiple catas-
trophe events before, eventually, it catches up with the
first filament and the competition ensues again. Since
the filaments are identical in a statistical sense, neither
of them has a long-term advantage over the other and
reversal of roles happens over a period of time.

The identification of the filaments in the NV = 4 and
N = 4+1 configurations is shown in the schematic dia-
gram Fig. 1. In all the cases, we define the probabilities
using the formula

N,
bij = =
Zj:l Nij

The probabilities are normalised as Zjvzl pi; = 1
for all 4. Since filaments 2 and 4 are identical nearest
neighbours, when 1 is used as the filament of reference,
it is also convenient to define

b12 = 12 + du4, (3)

(2)
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Fig. 11 The probabilities ¢11 and ¢12 in a two-filament bun-
dle are plotted against the filament-filament base separation
d. For small d, ¢11 > ¢12, implying a propensity for bunching
together of catastrophe events in the same filament, between
two catastrophe events in the other filament.
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Fig. 12 The probabilities ¢11, (1;12 and ¢13 in a 4 filament
bundle are plotted against the filament-filament base separa-
tion d. See the text for the definitions of these probabilities.

which gives the probability that a catastrophe event
in filament 1 is followed by a catastrophe event in either
one of the nearest neighbour filaments..

In the N = 4 bundle, we observe that ¢;; and d~>12
have similar behaviour, as functions of d, as the cor-
responding quantities in the N = 2 bundle, while ¢g2
is more or less independent of d. In this case, though,
since two filaments (1 and 3) contribute to ¢1o (nearly
equally), a crossing between ¢11 and élg occurs between
d = 100nm and d = 200nm, unlike N = 2. There is
very little correlation observed between events in 1 and
3, presumably because of the larger separation (dv/2).

For N = 4 + 1, with the centre filament taken as
the reference for reasons of symmetry, the observations
are similar to the N = 2 and N = 4 configurations, as
shown in Fig. 13. Here, we show ¢55 (the probability
that a catastrophe event in the centre filament will be
followed by one in the same filament) in comparison
with

4
bs1 = Z ®555 (4)
j=1
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d (nm)

Fig. 13 The probabilities ¢55 and ¢s1 in 4+1 filament bun-
dle are plotted against the filament-filament base separation
d. See the text for definitions of these probabilities.

which gives the probability that an event in 5 is
followed by an event in one of the (equidistant) corner
filaments. For small d, ¢55 > 51, but as d is increased,
the statistical multiplicative factor of 5 helps the latter
overtake the former, and we again encounter a crossing
of the probability curves, similar to N = 4.

3 Discussion and conclusions

In this paper, we have investigated the spatio-temporal
correlations between catastrophe events occurring in
different microtubules that form a bundle, using a one-
dimensional computational model. In a recent theoret-
ical study, it had been shown that the net polymerisa-
tion force produced a bundle of parallel filaments scales
sub-linearly with the number of filaments, owing to the
presence of diffusive interaction between the filament
tips[12]. The diffusive interaction refers to a competi-
tion effect between absorbing sinks which irreversibly
capture diffusing particles from a common pool, and
increases in significance as the sinks come closer to-
gether[20]. In the present work, we show that diffusive
interaction leads to an an enhancement of catastro-
phe frequency for individual filaments in the bundle.
While this result is along expected lines, a more dra-
matic manifestation of diffusive interaction appears in
the correlation between catastrophe events. Our results
demonstrate clearly that when the filaments are closely
bundled together, a catastrophe event in one filament
is more likely to be followed by another in the same
filament. These self-catastrophe events show a propen-
sity for bunching together: two consecutive catastrophe
events in any one filament separated by a long inter-
val will likely have multiple catastrophes in the other
filament sandwiched between them.

Our results are likely to be significant in understand-
ing the dynamics of microtubule bundles. Microtubule
bundles growing against a forced barrier have been ob-
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served to undergo collective catastrophes[9] where the
individual filaments switch to a state of shrinking in an
apparently coordinated manner. We believe that this
is likely a consequence of diffusive interaction between
the growing tips of different filaments. In the presence
of the barrier, the tips are forced to stay close to each
other, which enhances the negative effect they exert on
each other’s growth and thereby increases the likelihood
of catastrophes. In addition, after one filament under-
goes catastrophe, the contact time of the rest of the
filaments with the barrier would increase on average,
and this would lead to more catastrophes. If this argu-
ment were true, we should observe the opposite effect
in a free bundle; here, the occurrence of a catastrophe
event in one filament should have a negative effect on
catastrophe in a neighbouring filament by promoting
its growth. On an average, this mechanism is beneficial
to the growth of a filament bundle by ensuring that
while some of the filaments are undergoing catastro-
phes one after another, the rest of the filaments persist
in a state of growth. This is similar to experimental ob-
servations on the dynamics of astral microtubules in C.
elegans embryos[11], where persistent fibres have been
shown to be a crucial factor in spindle oscillations. The
observed “anti-correlation” between growth of neigh-
bouring microtubules in our simulations might also be
relevant for search and capture processes[21-23], where
the dynamic instability of microtubules plays a central
role.

To conclude, in the present study, we have uncov-
ered a novel mode of interaction between parallel micro-
tubules in a bundle, which leads to correlated growth
and catastrophe events. A number of preliminary re-
sults have been obtained via Brownian dynamics-based
numerical simulations. The findings presented here pro-
vide solid evidence for the existence of this interaction
and its significance. In future, we plan to expand this
study to investigate the effects of this interaction on col-
lective force generation of a parallel microtubule bun-
dle. Experimental validation of these results is highly
desirable, as would be a mathematical theory.
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