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Abstract

Service systems are labor intensive due to the large variation in the tasks required to address service

requests from multiple customers. Aligning the staffing levels to the forecasted workloads adaptively in

such systems is nontrivial because of a large number of parameters and operational variations leading to

a huge search space. A challenging problem here is to optimize the staffing while maintaining the system

in steady-state and compliant to aggregate service level agreement (SLA) constraints. Further, because

these parameters change on a weekly basis, the optimization should not take longer than a few hours. We

formulate this problem as a constrained Markov cost process parameterized by the (discrete) staffing lev-

els. We propose novel simultaneous perturbation stochastic approximation (SPSA) based SASOC (Staff

Allocation using Stochastic Optimization with Constraints) algorithms for solving the above problem.

The algorithms include both first order as well as second order methods and incorporate SPSA based

gradient estimates in the primal, with dual ascent for the Lagrange multipliers. Both the algorithms that

we propose are online, incremental and easy to implement. Further, they involve a certain generalized

smooth projection operator, which is essential to project the continuous-valued worker parameter tuned

by SASOC algorithms onto the discrete set. We validated our algorithms on five real-life service systems

and compared them with a state-of-the-art optimization tool-kit OptQuest. Being 25 times faster than

OptQuest, our algorithms are particularly suitable for adaptive labor staffing. Also, we observe that our

algorithms guarantee convergence and find better solutions than OptQuest in many cases.

Keywords: Service systems, labor optimization, Adaptive labor staffing, Simultaneous perturbation

stochastic approximation.

1 Introduction

A Service System (SS) is an organization composed of (i) the resources that support, and (ii) the processes

that drive service interactions so that the outcomes meet customer expectations ((Alter 2008; Spohrer et al.

2007)). This paper focuses on SS in the data-center management domain, where customers own data centers

and other IT infrastructures supporting their businesses. Owing to size, complexity, and uniqueness of these

technology installations, the management responsibilities of the same are outsourced to specialized service

providers. A delivery center is a remotely located workplace from where the service providers manage

the data-centers. Each service request (SR) that arrives at a delivery center requires a specific skill and is

supported by a service worker (SW) with the corresponding skill set. The SWs work in shifts which are

typically aligned to the business hours of the supported customers. Hence, a group of customers supported

by a group of SWs, along with the operational model of how SRs are routed constitutes an SS in this paper.

A delivery center may consist of many SS.
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We consider the problem of adaptive labor staffing in the context of service systems. The objective is

to find the optimal staffing levels in a SS for a given dispatching policy (i.e., a map from service requests

to service workers) while maintaining system steady-state and compliance to aggregate service level agree-

ment (SLA) constraints. The staffing levels constitute the worker parameter that we optimize and specify

the number of workers in each shift and of each skill level. The SLA constraints specify the target resolution

time and the aggregate percentage for an SR originating from a particular customer and with a specified pri-

ority level. For instance, a sample SLA constraint could specify that 95% of all SRs from customer 1 with

‘urgent’ priority must be resolved within 4 hours. While the need for SLA constraints to be met is obvious,

the requirement for having queues holding unresolved SRs bounded is also necessary because SLA attain-

ments are calculated only for the work completed. The problem is challenging because analytical modeling

of SS operations is difficult due to aggregate SLA constraints and also because the SS characteristics such as

work patterns, technologies, and customers supported change frequently. An important aspect to consider in

the design of the adaptive labor staffing algorithm is its computational efficiency, as an algorithm with low

running time helps in making staffing changes on a shorter timescale, for instance, every week.

We formulate this problem as a constrained Markov cost process that depends on the worker param-

eter. To have a sense of the search space size, an SS consisting of 30 SWs who work in 6 shifts and

3 distinct skill levels corresponds to more than 2 trillion configurations. We design a novel single-stage

cost function for the constrained Markov cost process that balances the conflicting objectives of worker

under-utilization and SLA under/over-achievement. SLA under-achievement implies violation of the SLA

constraint. Whereas worker under-utilization clearly points to suboptimal staffing, SLA over-achievement

points to ‘over-delivery’ and hence is also suboptimal. The performance objective is a long-run average of

this single stage cost function and the goal is to find the optimum steady state worker parameter (i.e., the

one that minimizes this objective) from a discrete high-dimensional parameter set. However, our problem

setting also involves constraints relating to queue stability and SLA compliance. Thus, the optimum worker

parameter is in fact a constrained minimum. Another difficulty in finding the optimum (constrained) worker

parameter is that the single stage cost and constraint functions can be estimated only via simulation. Hence,

the need is for a simulation-optimization algorithm that incrementally updates the worker parameter along

a descent direction, while adhering to a set of queue stability and SLA constraints.

In this paper, we develop two novel discrete parameter simulation-based optimization algorithms for

solving the above problem. Henceforth, we shall refer to these algorithms as SASOC (Staff Allocation

using Stochastic Optimization with Constraints) algorithms. The core of each of the algorithms is a multi-

timescale stochastic approximation scheme that incorporates a random perturbation based algorithm for

‘primal descent’ and couples it with a ‘dual ascent’ scheme for the Lagrange multipliers. The first order

algorithm 1 proposes the simultaneous perturbation stochastic approximation (SPSA) based technique for

gradient estimation in the primal. We also develop a second order (Newton) methods that estimates the

Hessian of the objective function using SPSA and leverages Woodbury’s identity to directly estimate the

inverse of the Hessian. Both the SASOC algorithms that we propose are online, incremental and easy

to implement. Further, all SASOC algorithms involve a certain generalized smooth projection operator,

which is essential to project the continuous-valued worker parameter tuned by SASOC algorithms onto

the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the

constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter) - a

critical requirement to prove the convergence of all SASOC algorithms. We evaluate our algorithms on

five real-life SS in the data-center management domain. For each of the SS, we collect operational data on

work arrival patterns, service times, and contractual SLAs and feed this data into the simulation model of

(Banerjee et al. 2011). From the simulation experiments, we observe that our algorithms show overall better

performance in comparison with the state-of-the-art OptQuest optimization toolkit ((April et al. 2001)).

1A part of this work appeared as a short paper in ICSOC 2011 (Prashanth et al. 2011)
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Further, our algorithms are 25 times faster than OptQuest and have a significantly lower execution runtime.

1.1 Contributions to theory and methodology

Newton-based algorithms usually suffer from the problem of high per-iterate computational requirement

because of the need to estimate the inverse of the Hessian matrix at each update epoch. We propose, for

the first time, a method for directly updating the inverse Hessian in Newton-based Simultaneous Perturba-

tion Stochastic Approximation algorithms based on incorporating the Woodbury identity. This is seen to

result in significant computational savings as the resulting Newton algorithm shows fast convergence. Our

algorithm is based on a novel generalized projection scheme. Since our problem setting is one of discrete

constrained optimization, we first transform the problem for purposes of proving convergence (using the

proposed generalized projection scheme) to a continuous constrained optimization setting. Note that SPSA

is primarily a continuous optimization technique. Our main observation is that SPSA also serves as a power-

ful method in the context of discrete optimization even when inequality constraints are considered. We prove

the convergence of the proposed SPSA algorithms. In the context of discrete optimization problems (with

or without inequality constraints) based on simulation, ours is the first work that develops Newton-based

search algorithms.

1.2 Contributions to practice

Optimizing staff allocation in the context of service systems is challenging and the problem is further com-

plicated by SLA constraints which are aggregate in nature. Our system model (constrained Markov cost

process) incorporates non-stationary workload arrivals and service times whose distribution is fitted from

historical data and follows a lognormal (and not exponential) distribution. We present novel simulation

optimization algorithms based on simulataneous perturbation technique that solve this problem. The pro-

posed algorithms include both first order as well as second order optimization schemes and attempt to find

the optimal staffing levels working with simulated data. Further, the proposed schemes are guaranteed to

work with any given dispatching policy. Both our algorithms are online, incremental and computationally

efficient - characteristics that make them amenable for their use in real service systems, especially with

shorter periodicity for staff changes. From the numerical experiments based on data from real-life service

systems, we observe that our SASOC algorithms exhibited overall superior performance in comparison to

the state-of-the-art simulation optimization toolkit OptQuest. The experiments were performed with two

different dispatching policies and it was observed that in each case SASOC algorithms converged rapidly to

solutions of good quality at lower computational overhead as compared to OptQuest.

2 Related Work

We now review literature in two different areas of related work: (1) techniques pertaining to service systems

analysis and (2) developments in stochastic optimization approaches.

2.1 Service Systems

In (Verma et al. 2011), a two-step mixed-integer program is formulated for the problem of dispatching SRs

within service systems. While their goal is similar to ours, their formulation does not model the stochastic

variations in arrivals and service times. Further, unlike our framework, the SLAs in their formulation are

not aggregated over a month long period. In (Wasserkrug et al. 2008), the authors propose a scheme for

shift-scheduling in the context of third-level IT support systems. Unlike this paper, they do not validate

their method against data from real-life third-level IT support. In (Cezik and L’Ecuyer 2008; Bhulai et al.
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2008), simulation-optimization methods are proposed for finding the optimal staffing in a multiskill call

center, where the constraints are on long-term SLA requirements. While the paper by (Cezik and L’Ecuyer

2008) proposes a cutting plane algorithm for solving an integer program, (Bhulai et al. 2008) relies on

obtaining a linear programming solution. However, unlike SASOC algorithms, steady-state system analysis

is not performed there. Instead, they solve a sample problem and show that the optimal solution of the

sample problem converges to that of the exact problem when the number of samples go to infinity. In

(Robbins and Harrison 2008), usage of a simulation based search method is proposed for finding the optimal

staffing levels in the context of a call-center domain. They evaluate the system given a staffing level with an

analytical model, which is possible in their simplified domain but would not be feasible for service systems

due to aggregate SLA constraints and dynamic queues. An analysis of service systems using the ARENA

simulation tool is presented in (Brickner et al. 2010). Unlike our model, the system there is not subjected to

aggregate SLA constraints and they do not consider preemption of low priority SRs by higher priority SRs

and assignment of higher skilled SWs to growing queues of SRs requiring lower skill levels. In (Banerjee

et al. 2011), a simulation framework for evaluating dispatching policies is proposed. While we share their

simulation model, the goal in this paper is to develop simulation optimization methods for optimizing the

worker parameter in a constrained setting. In general, none of the above papers propose an optimization

algorithm that is geared for SS and that leverages simulation to adapt optimization search parameters, when

both the objective and the constrained functions are suitable long-run averages.

In (Prasad et al. 2013), some algorithms based on the smoothed functional technique for gradient es-

timation were proposed for the problem of staffing optimization in service systems. The algorithms there

used certain random perturbations based on Gaussian and Cauchy density functions to estimate the gradi-

ent of the Lagrangian. While we use random perturbations using i.i.d., symmetric, ±1-valued, Bernoulli

random variables, the computational cost involved in our algorithms is significantly low when compared to

(Prasad et al. 2013) because generating Bernoulli distributed random variables is significantly less expensive

than generating Gaussian or Cauchy random variates. Further, we also propose second-order Newton based

methods, which are more robust than the first order methods in the aforementioned reference. We compare

our proposed algorithms with the ones from (Prasad et al. 2013) in the numerical experiments.

2.2 Stochastic Optimization

SPSA ((Spall 1992)) is a popular and highly efficient simulation based local optimization scheme for gradi-

ent estimation. SPSA has the critical advantage that it needs only two samples of the objective function to

estimate its gradient for any N -dimensional parameter. In (Spall 1997), a one-simulation variant of SPSA

was proposed. However, the algorithm in (Spall 1997) was not found to work as well in practice as its two

simulation counterpart. Usage of deterministic perturbations instead of randomized was proposed in (Bhat-

nagar et al. 2003). The deterministic perturbations there were based either on lexicographic or Hadamard

matrix generated sequences and were found to perform better than their randomized perturbation coun-

terparts. Another approach that is seen to improve the performance of gradient SPSA is to use a chaotic

nonlinear random number generator, see (Bhatnagar and Borkar 2003). A Newton based SPSA algorithm

that needs four system simulations with Bernoulli random perturbations was proposed in (Spall 2000). In

(Bhatnagar 2005), three other SPSA based estimates of the Hessian that require three, two and one system

simulations, respectively, were proposed. In (Bhatnagar 2007), certain smoothed functional (SF) Newton

algorithms that incorporate Gaussian-based perturbations were proposed. In (Bhatnagar et al. 2011b) con-

tinuous optimization techniques such as SPSA and SF, have been adapted to a setting of discrete parameter

optimization. Two simulation based optimization algorithms that involve randomized projections have been

proposed there for an unconstrained setting. In (Bhatnagar et al. 2011a), several simulation based algo-

rithms for constrained optimization have been proposed. Two of the algorithms proposed there use SPSA

for estimating the gradient, after applying the Lagrange relaxation procedure to the constrained optimization
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problem, while the other two incorporate SF approximation. For a detailed survey of gradient estimation

techniques in the context of simulation optimization, the reader is referred to (Bhatnagar et al. 2013).

Our SASOC algorithms differ from the stochastic optimization approaches outlined above in various

ways. Many algorithms, for instance those proposed in (Spall 2000; Bhatnagar 2005, 2007), are for uncon-

strained optimization and in a continuous optimization setting. However, our staff optimization problem is

for a discrete worker parameter and requires SLA and queue stability constraints to be satisfied in the long-

run-average sense. While the algorithms of (Bhatnagar et al. 2011a) have been developed for constrained

optimization in the case of a continuously-valued parameter, our SASOC algorithms optimize a discrete

parameter. Further, unlike (Bhatnagar et al. 2011a) where an explicit inversion of the Hessian at each update

step was advocated, we incorporate the Woodbury’s identity to obtain a novel update step for the inverse

of the Hessian in our algorithm SASOC-W. Unlike (Bhatnagar et al. 2011b) where fully randomized pro-

jections were used, we incorporate a generalized projection operator that is continuously differentiable in

the parameter and works as a deterministic operator over a large portion of the search space and incorpo-

rates randomization over a small portion. This helps in bringing down the computational requirement as

a deterministic projection scheme requires less computation than a fully randomized one. To the best of

our knowledge, we are the first to present adaptations of Newton-based search approaches for constrained

discrete optimization problem.

The rest of the paper is organized as follows: First, we present the detailed problem formulation. Second,

we introduce our solution methodology and present simultaneous perturbation based SASOC algorithms for

adaptive labor staffing. Third, we provide an outline of the convergence proof and state the main results.2

Fourth, we discuss the implementation of our algorithms as well as the OptQuest algorithm and present the

performance simulation results. Finally, we provide the concluding remarks and discuss interesting future

research directions.

3 Problem Formulation

A service system is characterized by the following entities.

• A finite set of customers, denoted by C, supported by the service system.

• A finite set of shifts, denoted by A, across which the service workers are distributed.

• A finite set of skill or complexity levels, denoted by B.

• A finite set of priority levels, denoted by the set P .

• A finite set of time intervals, denoted by I, where during each interval the arrivals stay stationary, with

the number of arrivals following a Poisson distribution whose rate parameter is given by the function α
described next.

• Arrival rates specified by the mapping σ : C × I → R. We assume that each of the SR arrival processes

from the various customers Ci are independent and Poisson distributed with α(Ci, Ij) specifying the rate

parameter. Owing to the finite-buffer nature of the system, we assume that the number of arrivals during

any interval (∈ I) is upper-bounded by a sufficiently large constant.

• Service time distributions characterized by the mapping τ : P × B → (r1, r2), ri ∈ R, i = 1, 2. Here r1
represents the mean and r2 the standard deviation of a truncated lognormal distributed random variable

2The detailed proofs have been provided for review in a separate document attached to the paper.

5



Table 1: Sample workers, utilizations and SLA targets

(a) Workers θi

Skill levels

Shift High Med Low

S1 1 3 7

S2 0 5 2

S3 3 1 2

(b) Utilizations ui,j

Skill levels

Shift High Med Low

S1 67% 34% 26%

S2 45% 55% 39%

S3 23% 77% 62%

(c) SLA targets γi,j

Customers

Priority Bossy Corp Cool Inc

P1 95%4h 89%5h

P2 95%8h 98%12h

P3 100%24h 95%48h

P4 100%18h 95%144h

corresponding to a particular priority-complexity pair. In other words, if M is a random variable follow-

ing a normal distribution with mean r1 and standard deviation r2, then the truncated lognormal random

variable is eM ∧ ⊤, where ⊤ is a truncation constant that is chosen to be large in practice.

• SLA constraints, given by the mapping γ : C ×P → (r1, r2), ri ∈ R, i = 1, 2. Here γ(Ci, Pj) = (r1, r2)
implies that the SLA target for SRs from customer Ci and with priority Pj is (r1, r2), with r1 specifying

the SLA percentage target and r2 the resolution time target (in hours). For instance, γ(C1, P1) = (95, 4)
translates to the requirement that at least 95% of the SRs from customer C1 with priority level P1 should

be closed within 4 hours. Note that the SLAs are computed at the end of each month and hence the

aggregate SLA targets are applicable to all SRs that are closed within the month under consideration.

Henceforth, we shall adopt the notation γi,j to denote γ(Ci, Pj).

Note that each arriving SR has a customer identifier (∈ C), a priority identifier (∈ P ) and a complexity

identifier (∈ B), whereas any SW works in a particular shift (∈ A) and possesses a skill level (∈ B). In other

words, each customer can issue multiple SRs with their respective SLA targets and the SWs with the right

skill level and relevant shift have to pull these SRs from the complexity queues and close them within the

deadline specified by the SLA. The set I and the mapping α allow us to model the variations in arrival rates

better than in a setting where the arrivals are assumed to be Poisson-distributed for the entire period. Further,

the time taken by an SW to complete an SR is stochastic and follows a lognormal distribution, where the

parameters of the distribution are learned by conducting time and motion exercises described in (Banerjee

et al. 2011).

Table 1(a) illustrates a simple SS configuration, specifying the staffing levels across shifts and skill

levels. This essentially constitutes the worker parameter that we optimize. In this example, A = {S1, S2,
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S3} and B = {high, medium, low}. Tables 1(b) and 1(c) provide sample utilizations and SLA targets on a

SS with three shifts, two customers and four priority levels.

Figure 1 shows the main components of the SS. The SRs arrive from multiple customers and the arrival

rate is specific to the hour of week, i.e., within each hour of week, and for each customer-priority pair, the

arrivals follow a Poisson distribution. The parameters of this distribution are learned from historical data

over a period of at least 6 months. Once the SR arrives, it is queued up in a matching complexity queue by

the queue manager and the dispatcher would then assign it to an SW based on the dispatching policy. For

instance, in the PRIO-PULL policy, SRs are queued in the complexity queues based directly on the priority

assigned to them by the customers. On the other hand, in the EDF policy, the time left to SLA target deadline

is used to assign the SRs to the SWs i.e., the SW works on the SR that has the earliest deadline. Note that we

have a finite buffer system, i.e., the number of SRs in each of the complexity queues is upper-bounded by a

sufficiently large constant. Any arriving SR that finds the corresponding complexity queue full will depart

the system.

A SW works in exactly one shift (working days and times) and a SS may operate in multiple shifts.

We say that a particular configuration of workers across shifts and skill levels is feasible if (a) the SLA

constraints are met and (b) the complexity queues do not become unbounded when using this configuration.

While the need for (a) is obvious, the requirement for having bounded complexity queues is also necessary.

This is because SLA attainments are calculated only for work completed and not for work waiting for

completion in the complexity queues. For instance, say in a given month, 100 SRs arrive at various times

from a customer to a SS and only 50 of them are completed within the target completion time stipulated by

the SLA constraints. The remaining 50 SRs are still in progress without a known completion time and hence

do not have an impact on the SLA attainment measures. Thus, a healthy SLA attainment alone is insufficient

and the bound on the growth of complexity queues fills the gap.

3.1 Constrained parameterized Markov Cost Process

We consider the setting of a constrained parameterized Markov cost process that we describe in detail be-

low 3. Our setting, however, involves a discrete-time, continuous-space Markov process represented by

{Xn(θ), n ≥ 0}. We describe Xn more clearly in Section 3.3. The transition probabilities of this process

depend on the worker parameter θ = (θ1, . . . , θN )T ∈ D, where N = |A| × |B|. In the above, θi indicates

the number of service workers whose skill level is (i− 1)%|B| and whose shift index is (i− 1)/|B|. As an

example, the worker parameter for the setting in Table 1(a) is θ = (θ1, . . . , θ9)
T = (1, 3, 7, 0, 5, 2, 3, 1, 2)T .

The parameter vector θ takes values in the set D, where D
△
= {0, 1, . . . ,Wmax}

N . Here Wmax serves as an

upper bound for the number of workers in any shift and of any skill level. Note that one can enumerate all

the points in D as D = {D1, D2, . . . , Dp} for some p > 1.

As illustrated in Figure 2, the system stochastically transitions from one state to another, while incurring

a state-dependent cost. In addition, there are state-dependent single-stage (constraint) functions described

via gi,j(Xn), h(Xn), i = 1, . . . , |C|, j = 1, . . . , |P |. These shall correspond to the SLA and queue stability

constraints. The state together with the cost and constraint functions constitutes the constrained Markov cost

process. The nth system transition of this underlying process involves a simulation of the service system for

a fixed period T with the current worker parameter θ(n). However, arrivals are stopped after time T and

the service system is simulated until the complexity queues are empty. In our experiments, T = 10, i.e.,

we simulate the service system for a period of ten months with the staffing levels specified by θ(n). Also,

note that this is a continuously running simulation where, at discrete time instants nT , we update the worker

3A similar framework is considered, for instance, in (Marbach and Tsitsiklis 2001; Prasad et al. 2013). However, the setting

considered in (Marbach and Tsitsiklis 2001) is unconstrained and the parameter is continuous-valued. Our formulation, though

similar to that in (Prasad et al. 2013), is simpler as it does not involve hidden state components.
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Figure 1: Operational model of an SS
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nT (n+ 1)T

Xn

Instant

State Xn+1

Simulate(θ(n), T )

Figure 2: A portion of the time-line illustrating the process
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parameter θ(n) and the simulation output causes a probabilistic transition from the current state Xn to the

next state Xn+1, while incurring a single-stage cost c(Xn). The precise definitions of the state, the cost and

the constraints functions are given in Section 3.3. By an abuse of notation, we refer to the state at instant

nT as Xn.

3.2 The Objective

We use the long-run average cost as the performance objective in our setting. Thus, we are interested in

optimizing the steady-state system performance. The optimization problem is the following:

Find min
θ

J(θ)
△
= lim

n→∞

1
n

n−1∑
m=0

c(Xm)

subject to

Gi,j(θ)
△
= lim

n→∞

1
n

n−1∑
m=0

gi,j(Xm) ≤ 0,

∀i = 1, . . . , |C|, j = 1, . . . , |P |,

H(θ)
△
= lim

n→∞

1
n

n−1∑
m=0

h(Xm) ≤ 0.

(1)

We assume below that the Markov process {Xn} under any parameter θ is ergodic. In such a case, the

limits in (1) are well-defined. If this is not the case, one may replace the “lim” with “limsup” in the def-

initions of J(θ), Gi,j(θ) and H(θ) in (1). Given the above constrained Markov cost process formulation,

the optimization problem (1) essentially stipulates that the optimal worker parameter θ∗ should minimize

the long-run average cost objective J(·) while maintaining queue stability in steady-state (i.e., the long-run

average of h(Xn) should not be above zero) and adhering to contractual SLAs, i.e., that the long-run average

of gi,j(Xn) should not be above zero, for any feasible (i, j)-tuple.

The SASOC algorithms that we design subsequently (see Section 4) use the cost c(Xn) and constraint

functions gi,j(Xn), h(Xn) to tune the worker parameter θ(n) at instant nT and the system simulation would

now continue with the updated worker parameter. While it is desirable to find the optimum θ∗ ∈ S, i.e.,

θ∗ = argmin

{
J(θ) s.t. θ ∈ D, Gi,j(θ) ≤ 0, i = 1, . . . , |C|, j = 1, . . . , |P |, H(θ) ≤ 0

}
,

it is in general very difficult to achieve a global minimum. We apply the Lagrange relaxation procedure to

the above problem and then provide SPSA based algorithms - both first as well as second order, for finding a

locally optimum parameter θ∗. We now describe in detail the state, single-stage cost and constraint functions

that we adopt for the constrained Markov cost process formulated for optimizing the staffing in the context

of service systems.

3.3 State, Cost and Constraints

The state Xn at instant n is the vector of the length of waiting SR queues corresponding to each skill level,

the current utilization of workers for each shift and skill level, and the current SLA attainments for each

customer and SR priority. Thus,

Xn = (N (n), u(n), γ′(n), q(n)), (2)

where,

• N (n) = (N1(n), . . . ,N|B|(n))
T , withNi(n) being the number of SRs in the system queue corresponding

to skill level i ∈ B. As all the complexity queues are of finite size, we have Ni(n) ≤ ς, i = 1, . . . , |B|,
where ς > 0 is a sufficiently large constant.
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• The utilization vector u(n) = (u1,1(n), . . . , u|A|,|B|(n)), with each ui,j(n) ∈ [0, 1] being the average

utilization of the workers in shift i and skill level j, at instant n.

• The SLA attainment vector γ′(n) = (γ′1,1(n), . . . , γ
′
|C|,|P |(n)), with γ′i,j(n) ∈ [0, 1] being the SLA

attainment for customer i and priority j, at instant n.

• q(n) is an indicator variable that denotes the queue feasibility status of the system at instant n. In other

words, q(n) is 0 if the growth rate of the SR queues (for each complexity) is beyond a threshold and is 1
otherwise. We need q(n) to ensure system steady-state which is independent of SLA attainments because

the latter are computed only on the SRs that were completed and not on those queued up in the system.

Let S denote the state space. We observe that S is a compact set. This is because each of the state com-

ponents in Xn take values in sets that are closed and bounded. In particular, each element of u(n), γ′(n)
takes values in [0, 1] and 0 ≤ q(n) ≤ 1, respectively. The system SR queues N are also of finite length and

hence, Xn is bounded.

Considering that the queue lengths, utilizations and SLA attainments at instant n+1 depend only on the

state Xn at instant n, we observe that {Xn(θ), n ≥ 0} is a constrained Markov cost process for any given

(fixed) parameter θ. We now describe in detail the single-stage cost function, whose long-run average sum

we try to optimize in (1). We let the cost function c(Xn) have the form:

c(Xn) = r ×
(
1−

∑|A|
i=1

∑|B|
j=1 αi,j × ui,j(n)

)
+ s×



∑|C|

i=1

∑|P |
j=1

∣∣∣γ′i,j(n)− γi,j

∣∣∣
|C| × |P |


 , (3)

where r, s ≥ 0 and r+ s = 1. Further, 0 ≤ γi,j ≤ 1 denotes the contractual SLA for customer i and priority

j. The single-stage cost function here is a linear function of the state and remains bounded. In fact, from

(3), we observe that 0 ≤ c(Xn) ≤ 1. This is because ui,j(n), γi,j , γ
′
i,j(n) ∈ [0, 1] and each component in

(3) is upper-bounded by 1.

The cost function is designed to balance between two conflicting objectives of maximizing the utilization

of workers and meeting the SLA requirements simultaneously. By the first component in (3), we seek to

minimize the under-utilization of workers as it is more fine-grained and hence, allows tighter minimization in

comparison to minimizing just the sum of workers across shifts and skill levels. The second component in (3)

represents the over/under-achievement of SLAs, which is the distance between attained and the contractual

SLAs. While the need for meeting the target SLAs motivates the under-achievement part in the second

component, it is also necessary to minimize over-achievement of SLAs. This is because an over-achieved

SLA, for instance meeting 100% instead of the target of 95% for a particular customer, while being desirable

for the customer, requires more time and effort from some of the workers and does not bring in additional

rewards.

Note that the first term in (3) uses a weighted sum of utilizations over workers from each shift and

across each skill level. Further, the weights αi,j are fixed and not time-varying. Using historical data on

SR arrivals, the percentage of workload arriving in each shift and for each skill level is obtained. These

percentages decide the weights αi,j used in (3), that in turn satisfy

0 ≤ αi,j ≤ 1, and

|A|∑

i=1

|B|∑

j=1

αi,j = 1,

for i = 1, 2, . . . , |A|, and j = 1, 2, . . . , |B|. This prioritization of workers helps in optimizing the worker

set based on the given workload. For instance, if 70% of the SRs requiring low skill worker attention arrive

in shift 1, then one may set α1,0 = 0.7, in the cost function (3), where 0 denotes the low skill level index.
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The single-stage constraint functions gi,j(·), h(·), i = 1, . . . , |C|, j = 1, . . . , |P |, are given by:

gi,j(Xn) = γi,j − γ′i,j(n), ∀i = 1, . . . , |C|, j = 1, . . . , |P |, (4)

h(Xn) = 1− q(n). (5)

Here (4) specifies that the attained SLA levels should be equal to or above the contractual SLA levels for

each customer-priority tuple. Further, (5) ensures that the SR queues for each complexity in the system stay

bounded. In the constrained optimization problem formulated below, we attempt to satisfy these constraints

in the long-run average sense (see (1)).

The SASOC algorithms treat the parameter as continuous-valued and tune it accordingly. Let us denote

this continuous version of the worker parameter by θ̄ = (θ̄1, . . . , θ̄N ). Note that θ̄i ∈ [0,Wmax], i =
1, 2, . . . , N . We now design a smooth projection operator Γ that projects θ̄ on to the discrete space D so

that the same can be used for performing the simulation of the service system. We call the Γ-operator

as a generalized projection scheme as it lies in between a fully deterministic projection scheme based on

mere rounding off and a completely randomized scheme, whereby depending on the value of θ̄j (for any

j = 1, . . . , N ) one can find points Dk and Dk+1 with Dk < Dk+1, Dk,Dk+1 ∈ D such that Dk and Dk+1

are the immediate neighbours of θ̄j in the set D. Then, one sets the corresponding discrete parameter as

θj =





Dk+1 w.p.
θ̄j −D

k

Dk+1 −Dk
,

Dk w.p.
Dk+1 − θ̄j
Dk+1 −Dk

,

(6)

where, w.p. stands for ‘with probability’.

3.4 A Generalized Projection Operator

For any θ̄ = (θ̄1, . . . , θ̄N ) with θ̄j ∈ [0,Wmax], j = 1, 2, . . . , N , we define a projection operator Γ(θ̄) =
(Γ1(θ̄1), . . . ,ΓN (θ̄N )) ∈ D which projects any θ̄ onto the discrete set D as follows:

For convenience, lets enumerate the elements of D as D = {D1,D2, . . . ,Dp} for some p > 1. Let

ζ > 0 be a fixed real number and θ̄i be such that Dj ≤ θ̄i ≤ D
j+1,Dj < Dj+1 for some Dj ,Dj+1 ∈ D.

Let us consider an interval of length 2ζ around the midpoint of [Dj ,Dj+1] and denote it as [D̃1, D̃2], where

D̃1 =
Dj+Dj+1

2 − ζ and D̃2 =
Dj+Dj+1

2 + ζ. Then,

Γi(θ̄i) for θi ∈ [Dj , D̃1] ∪ [D̃2,D
j+1] is defined by

Γi(θ̄i) =





0 if θ̄i < 0

Dj if θ̄i ≤
Dj+Dj+1

2 − ζ

Dj+1 if θ̄i ≥
Dj+Dj+1

2 + ζ

Wmax if θ̄i ≥Wmax.

(7)

Further, Γi(θ̄i) for θ̄i ∈ [D̃1, D̃2] is given by

Γi(θ̄i) =

{
Dj w.p. f( D̃2−θ̄i

2ζ )

Dj+1 w.p. 1− f( D̃2−θ̄i
2ζ )

(8)

In the above, f is any continuously differentiable function defined on [0, 1] such that f(0) = 0 and f(1) =
1. Note that we deterministically project onto either Dj or Dj+1 if θ̄i is outside of the interval [D̃1, D̃2].
Further, for θ̄i ∈ [D̃1, D̃2], we project randomly using a smooth function f . It is necessary to have a
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smooth projection operator to ensure convergence of our SASOC algorithms as opposed to a deterministic

projection operator that would project θ̄i ∈ [Dj , D
j+Dj+1

2 ) to Dj and θ̄i ∈ [D
j+Dj+1

2 ,Dj+1] to Dj+1. The

problem with a deterministic projection operator is that there is a jump at the midpoint of the interval and

hence, when extended for any θ in the convex hull D̄, the transition dynamics of the process {Xn, n ≥ 0} is

not continuously differentiable. A non-smooth projection operator makes the dynamics non-smooth at the

boundary points.

The SASOC algorithms that we present subsequently tune the worker parameter in the convex hull of

D, denoted by D̄, a set that can be defined as D̄ = [0,Wmax]
N . This idea has been used in (Bhatnagar et al.

2011b) for an unconstrained discrete optimization problem. However, the projection operator used there

was a fully randomized operator. The generalized projection scheme that we incorporate has the advantage

that while it ensures that the transition dynamics of the parameter extended Markov process is smooth (as

desired), it requires a lower computational effort because in a large portion of the parameter space (assuming

ζ is small), the projection operator is essentially deterministic.

We also require another projection operator Γ̄ that projects any θ ∈ R
N onto the set D̄ and is defined as

Γ̄(θ) = (Γ̄1(θ1), . . . , Γ̄N (θN )), where Γ̄i(θi) = min(0,max(θi,Wmax)), i = 1, . . . , N . Thus, Γ̄(·) keeps

the parameter updates within the set D̄ and Γ(·) projects them to the discrete set D. The projected updates

are then used as the parameter values for conducting the simulation of the service system.

3.5 Assumptions

We now make the following standard assumptions: One amongst (A2) and (A2’) will be assumed for the

algorithms that follow.

(A1) The Markov process {Xn(θ), n ≥ 0} under a given dispatching policy and parameter θ is ergodic.

(A2) The single-stage cost functions c(·), gi,j(·) and h(·) are all continuous. The long-run average cost

J(·) and constraint functions Gi,j(·), H(·) are twice continuously differentiable with bounded third

derivative.

(A2’) The single-stage cost functions c(·), gi,j(·) and h(·) are all continuous. The long-run average cost J(·)
and constraint functions Gi,j(·), H(·) are continuously differentiable with bounded second derivative

.

(A3) The step-sizes {a(n)}, {b(n)} and {d(n)} satisfy

∑
n a(n) =

∑
n b(n) =

∑
n d(n) =∞;

∑
n(a

2(n) + b2(n) + d2(n)) <∞,

b(n)

d(n)
,
a(n)

b(n)
→ 0 as n→∞.

Assumption (A1) ensures that the process {Xn} is stable for any given θ and ensures that the long-run

averages of the single stage cost and constraint functions in (1) are well-defined. As stated earlier, we require

one of (A2) and (A2’) for our various algorithms. More specifically, (A2) will be assumed for Hessian based

schemes, while (A2’) will be assumed for gradient approaches. (A2) and (A2’) are technical requirements

needed to push through suitable Taylor’s arguments in order to prove the convergence of the algorithms.

The first two conditions in (A3) are standard requirements for step-size sequences and the last condition

there ensures a separation of time scales between the different recursions in SASOC algorithms discussed

in detail in Section 4.

Remark 1 As seen before, the state space S is compact and ergodicity of the underlying Markov process

{Xn} will follow if one ensures that there is at least one worker for each complexity class.
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4 Our algorithms

The constrained long-run average cost optimization problem (1) can be expressed using the standard La-

grange multiplier theory as an unconstrained optimization problem given below.

max
λ

min
θ

L(θ, λ)
△
= lim

n→∞

1

n

n−1∑

m=0

E



c(Xm) +

|C|∑

i=1

|P |∑

j=1

λi,jgi,j(Xm) + λfh(Xm)





= J(θ) +

|C|∑

i=1

|P |∑

j=1

λi,jGi,j(θ) + λfH(θ), (9)

where λi,j ≥ 0, ∀i = 1, . . . , |C|, j = 1, . . . , |P | represent the Lagrange multipliers corresponding to

constraints gi,j(·) and λf represents the Lagrange multiplier for the constraint h(·), in the optimization

problem (1). Also, λ = (λi,j , λf , i = 1, . . . , |C|, j = 1, . . . , |P |)T . The function L(θ, λ) is commonly

referred to as the Lagrangian. An optimal (θ∗, λ∗) is a saddle point for the Lagrangian, i.e., L(θ, λ∗) ≥
L(θ∗, λ∗) ≥ L(θ∗, λ), ∀θ, ∀λ. Thus, it is necessary to design an algorithm which descends in θ and ascends

in λ in order to find the optimum point. The simplest iterative procedure for this purpose would use the

gradients of the Lagrangian with respect to θ and λ to descend and ascend respectively. However, for the

given system, the computation of gradient with respect to θ would be intractable due to lack of a closed

form expression of the Lagrangian. Thus, a simulation based algorithm is required. The above explanation

suggests that an algorithm for computing an optimal (θ∗, λ∗) would need three stages in each of its iterations.

1. The inner-most stage which performs one or more simulations over several time steps and aggregates

data, i.e., does the averaging of the single-stage cost and constraint functions c(·), gi,j(·) and h(·) for

any given θ and λ updates.

2. The next outer stage which estimates the gradient of the Lagrangian along θ and updates θ along a

descent direction. This stage would perform several iterations for a given λ and find a good estimate

of θ; and

3. The outer-most stage which updates the Lagrange multipliers λ along an ascent direction, using the

converged values of the inner two loops.

The above three steps will have to be performed iteratively till the solution converges to a saddle point

described previously. Note that the loops are nested in the sense that the loop in iteration (1) would be a

sub-loop for iteration (2). Likewise, iteration (2) would be a sub-loop for iteration (3). Thus, in between

two successive updates of an outer loop (iterations (2) or (3)), one would potentially have to wait for a long

time for convergence of the inner loop procedure (iteration (1) or iterations (1) and (2), respectively). This

problem gets addressed by using simultaneous updates to all three stages in a stochastic recursive scheme

but with different step-size schedules, the outer-most having the smallest while the inner-most having the

largest of step-sizes. The resulting scheme is a multiple time-scale stochastic approximation algorithm

(Borkar 2008, Chapter 6).
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+

p(n)

Simulate(Γ(θ̂), T )

Simulate(Γ(θ), T )

UpdateRule(·)

△

θ̂(n)
X̂(n)

X(n)

θ(n+ 1)

θ(n) θ(n)

Figure 3: Overall flow of the algorithm 1.
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Algorithm 1 Skeleton of SASOC algorithms

Input:

• R, a large positive integer;

• θ0, initial parameter vector; p(·); ∆; K ≥ 1

• UpdateRule(), the algorithm-specific update rule for the worker parameter θ and Lagrange multi-

plier λ.

• Simulate(θ, T )→ X , the simulator of the SS

Output: θ∗
△
= Γ(θ(R)).

θ ← θ0, n← 1
loop

Observe Ĵθ ← Simulate(Γ(θ(n)), T ).

X̂ ← Simulate(Γ(θ(n) + p(n)), T ).

UpdateRule().

n← n+ 1
if n = R then

Terminate and output Γ(θ(R)).
end if

end loop

16



The overall flow of all SASOC algorithms can be diagrammatically represented as in Figure 3. Each

iteration of the algorithm involves two simulations (each for a period T ) - one with Γ(θ(n)), i.e., the current

estimate of the parameter projected using the generalized projection operator so that it takes values in the

discrete setD and the other with the (projected) perturbed parameter, Γ(θ(n)+p(n)), where the perturbation

p(n) is algorithm-specific. For instance, in the case of SASOC-G, p(n) = δ∆(n) and for SASOC-H/W,

p(n) = δ1∆(n) + δ2∆̂(n), respectively. The rationale behind the choice of p(n) will be subsequently

clarified when the individual SASOC algorithms are presented. In every stage of SASOC algorithms, the

two simulations are carried out as shown in Figure 3. Using the state values of the two simulations, X(n) and

X̂(n), the worker parameter θ is updated in an algorithm-specific manner. Algorithm 1 gives the structure

of all three of our incremental update SASOC algorithms.

4.1 SASOC-G Algorithm

SASOC-G is a three time-scale stochastic approximation algorithm that does primal descent using a two-

measurement SPSA while performing dual ascent on the Lagrange multipliers.

4.1.1 SPSA based gradient estimate

Here, the gradient of the Lagrangian w.r.t. θ is obtained according to

∇θL(θ, λ) = lim
δ↓0

E

[(
L(θ + δ∆, λ)− L(θ, λ)

δ

)
∆−1

]
, (10)

where ∆ is a vector (of the same dimension as θ) of perturbation random variables that are independent,

zero-mean, ±-valued and have the symmetric Bernoulli distribution. More general distributions on these

random variables can be chosen as described in (Spall 1992, 2000). In (10), ∆−1 represents element-wise

inverse of the ∆ vector. This is a one-sided estimate whose convergence is shown in (Chen et al. 1999,

Lemma 1).

4.1.2 Update rule of SASOC-G

From the form of the gradient estimator, it is clear that the Lagrangian function would be needed to compute

the gradient estimate. However, for our problem, obtaining a closed-form expression for the Lagrangian

itself is an intractable task. We overcome this by running two simulations with parameters Γ(θ(n)) and

Γ(θ(n) + p(n)). Here, p(n) = δ∆(n), a choice motivated by the form of the gradient estimate in (10).

Using the output of the two simulations, we estimate the quantities L(θ + δ∆, λ) and L(θ, λ), respectively,

on the faster timescale. These estimates are in turn used to tune the worker parameter θ in the negative

gradient descent direction. For λi,j and λf , values of gi,j(·) and h(·) respectively provide a stochastic ascent

direction, proof of which will be given later in Theorem 11. Since maximization of the Lagrangian w.r.t. λi,j

and λf represents the outer-most step, these parameters are updated on the slowest time-scale. The overall
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update rule for this scheme, SASOC-G, is as follows: For all n ≥ 0,

θi(n+ 1) = Γ̄i

(
θi(n) + b(n)

(
L̄(nK)−L̄′(nK)

δ△i(n)

))
, ∀i = 1, 2, . . . , N,

where for m = 0, 1, . . . ,K − 1,

L̄(nK +m+ 1) = L̄(nK +m)+

d(n)(c(XnK+m) +
|C|∑
i=1

|P |∑
j=1

λi,j(nK)gi,j(XnK+m) + λfh(XnK+m)− L̄(nK +m)),

L̄′(nK +m+ 1) = L̄′(nK +m)+

d(n)(c(X̂nK+m) +
|C|∑
i=1

|P |∑
j=1

λi,j(nK)gi,j(X̂nK+m) + λfh(X̂nK+m)− L̄′(nK +m)),

λi,j(n+ 1) = (λi,j(n) + a(n)gi,j(Xn))
+ , ∀i = 1, 2, . . . , |C|, j = 1, 2, . . . , |P |,

λf (n+ 1) = (λf (n) + a(n)h(Xn))
+ .





(11)

In the above,

• K ≥ 1 is a fixed parameter which controls the rate of update of θ in relation to that of L̄ and L̄′. This

parameter allows for accumulation of updates to L̄ and L̄′ for K iterations in between two successive θ
updates;

• Xm represents the state at iteration m from the simulation run with nominal parameter Γ(θ[ n
K
]) while X̂m

represents the state at iteration m from the simulation run with perturbed parameter Γ(θ[ n
K
] + δ∆[ n

K
]).

Here [ n
K
] denotes the integer portion of n

K
. For simplicity, hereafter we use θ to denote θ[ n

K
] and θ + δ∆

to denote θ[ n
K
] + δ∆[ n

K
];

• δ > 0 is a fixed perturbation control parameter while ∆ is a vector of perturbation random variables that

are independent, zero-mean and have the symmetric Bernoulli distribution;

• The operator Γ̄(·) ensures that the updated value for θ stays within the convex hull D̄ and is defined in

Section 3.4; and

• L̄ and L̄′ represent Lagrange estimates corresponding to θ and θ + δ∆ respectively.

We achieve separation of time-scales between the recursions of θi, L̄, L̄
′ and λ via the difference in the

step-sizes a(n), b(n) and d(n) (see (A3)). The chosen step-sizes ensure that the recursions of Lagrange

multipliers λi,j proceed ‘slower’ in comparison to those of the worker parameter θ, while the updates of the

average cost - L̄ and L̄′ proceed the fastest.

4.2 SASOC-H Algorithm

This is a second-order algorithm for adaptive labour staffing which uses SPSA based techniques to estimate

both the gradient and the Hessian. As discussed before, the overall algorithm structure is represented by

Figure 3 with p(n) = θ(n) + δ1∆(n) + δ2∆̂(n) in this case. Thus, each iteration of the algorithm involves

two simulations (each for a period T ) - one with Γ(θ(n)) and the other with Γ(θ(n) + δ1∆(n) + δ2∆̂(n))
as the respective parameters in the nth iteration cycle. As explained in the next section, the two perturbation

sequences ∆ and ∆̂ are used to estimate both the gradient and the Hessian of the Lagrangian w.r.t. θ.
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4.2.1 SPSA based simultaneous estimates for the gradient and the Hessian

Suppose the Lagrangian in (9) is twice differentiable w.r.t. θ, then we can look at possible second order

schemes for computing updates to θ. If the Lagrangian (9) were a quadratic, then the exact solution for the

θ update to reach the minimum point would have been −[∇2
θL(θ0)]

−1∇θL(θ0) with θ0 as the starting point,

i.e.,

θ∗ = θ0 − [∇2
θL(θ0)]

−1∇θL(θ0),

would be the optimal parameter. For a higher-degree Lagrangian, the above solution can be used with a

step-size parameter iteratively till convergence to an optimal θ∗. Let ∆ and ∆̂ be two independent vec-

tors of perturbation random variables that are independent, zero-mean, ±1-valued and have the symmetric

Bernoulli distribution. More general distributions for ∆ and ∆̂ may however be used, see (Spall 1992,

2000). We use the following estimates for the gradient and Hessian, respectively, as described in (Bhatnagar

et al. 2011a, Section 3.2.1):

∇θL(θ, λ) = lim
δ1,δ2↓0

E

[(
L(θ + δ1∆+ δ2∆̂, λ)− L(θ, λ)

δ2

)
∆̂−1

]
,

∇2
θL(θ, λ) = lim

δ1,δ2↓0
E

[
∆−1

(
L(θ + δ1∆+ δ2∆̂, λ)− L(θ, λ)

δ1δ2

)(
∆̂−1

)T
]
,

where ∆−1 and ∆̂−1 represent vectors of element-wise inverses of the ∆ and ∆̂ vectors respectively. Thus,

the inner terms of the above two expectations can be used for estimating the Hessian and also updating θ.

4.2.2 Update rule of SASOC-H

For n ≥ 0, we have

θi(n+ 1) = Γ̄i


θi(n) + b(n)

N∑

j=1

Mi,j(n)

(
L̄(nK)− L̄′(nK)

δ2△̂j(n)

)
 , (12)

Hi,j(n+ 1) = Hi,j(n) + b(n)

(
L̄′(nK)− L̄(nK)

δ1△j(n)δ2△̂i(n)
−Hi,j(n)

)
, (13)

for i, j = 1, . . . , N . Note that

• The update equations corresponding to L̄, L̄′, λi,j , i = 1, . . . , |C|, j = 1, . . . , |P | and λf are the same as

in SASOC-G (11). However, note that the perturbed parameter in this case is (θ(n)+ δ1∆(n)+ δ2∆̂(n)).
Thus, unlike SASOC-G, X̂m represents the state at iteration m from the simulation run with perturbed

parameter Γ(θ(n) + δ1∆(n) + δ2∆̂(n)), while Xm continues to have the same interpretation as with

SASOC-G.

• δ1, δ2 > 0 are fixed perturbation control parameters while ∆ and ∆̂ are two independent vectors of pertur-

bation random variables that are independent, zero-mean, ±1-valued, and have the symmetric Bernoulli

distribution;

• H = [Hi,j ]
|A|×|B|,|A|×|B|
i=1,j=1 represents the Hessian (second-derivative w.r.t. θ) estimate of the Lagrangian.

H(0) is a positive definite and symmetric matrix. We let H(0) = ωI , with ω > 0 and I being the identity

matrix; and

19



• M(n) = Υ(H(n))−1 = [M(n)i,j ]
|A|×|B|,|A|×|B|
i=1,j=1 represents the inverse of the Hessian estimate H of the

Lagrangian, where Υ(·) is a projection operator ensuring that the Hessian estimates remain symmetric

and positive definite. The Υ operation is assumed to satisfy assumption (A4).

Assumption (A4)

The projection operator Υ(·) projects a square matrix to a symmetric positive definite matrix. If {An} and

{Bn} are sequences of matrices inRN×N such that lim
n→∞

‖ An −Bn ‖= 0, then lim
n→∞

‖ Υ(An)−Υ(Bn) ‖

= 0 as well. Further, for any sequence {Cn} of matrices in RN×N , if sup
n
‖ Cn ‖ < ∞, then supn ‖

Υ(Cn) ‖<∞ and supn ‖ {Υ(Cn)}
−1 ‖<∞, as well.

4.3 Efficient implementation of SASOC-H

The SASOC-H algorithm is more robust than SASOC-G. However, it requires computation of the inverse

of the Hessian H at each stage which is a computationally intensive operation. We propose an enhancement

using Woodbury’s identity to the previous algorithm that results in significant computational gains. In

particular, an application of Woodbury’s identity brings down the computational complexity from O(n3)4

to O(n2) where n = |A| × |B|.

4.3.1 Woodbury’s Identity based Update for Hessian Inverse

Woodbury’s identity states that

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1

where A and C are invertible square matrices and B and D are rectangular matrices of appropriate sizes.

The Hessian update in (12) without projection can be rewritten as

H(n+ 1) = (1− b(n))H(n) + P (n)Z(nK)Q(n)

where

P (n) =
1

δ1

[
1

∆1(n)
,

1

∆2(n)
, . . . ,

1

∆|A|×|B|(n)

]T
, Q(n) =

1

δ2

[
1

∆̂1(n)
,

1

∆̂2(n)
, . . . ,

1

∆̂|A|×|B|(n)

]
, and

Z(nK) = b(n)
(
L̄′(nK)− L̄(nK)

)
.

Now, applying the Woodbury’s identity to H(n+ 1)−1 = M(n+ 1) gives us the following update:

M(n+ 1) =

(
M(n)

1− b(n)

[
I −

b(n)
(
L̄′(nK)− L̄(nK)

)
P (n)Q(n)M(n)

1− b(n) + b(n)
(
L̄′(nK)− L̄(nK)

)
Q(n)M(n)P (n)

])
,

which is a recursive update rule for directly updating the matrix M(n), which is the inverse of H(n), n ≥ 0.

The modified update scheme of SASOC-H after incorporating the Woodbury’s identity for estimating

the inverse of the Hessian, is as follows: For n ≥ 0,

θi(n+ 1) =Γ̄i


θi(n) + b(n)

N∑

j=1

Mi,j(n)

(
L̄(nK)− L̄′(nK)

δ1△̂j(n)

)
 , (14)

M(n+ 1) =Υ

(
M(n)

1− b(n)

[
I −

b(n)
(
L̄′(nK)− L̄(nK)

)
P (n)Q(n)M(n)

1− b(n) + b(n)
(
L̄′(nK)− L̄(nK)

)
Q(n)M(n)P (n)

])
.

4The popular Gauss-Jordan procedure for matrix inverse of a matrix requires O(n3) computations.
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In the above, M(0) is initialized to ωI , I being an identity matrix and ω > 0. The rest of the update rule

corresponding to L̄, L̄′, λi,j , i = 1, . . . , |C|, j = 1, . . . , |P | and λf are the same as before (see (11)–(12)).

Our SASOC algorithms differ from the algorithms of (Bhatnagar et al. 2011a) in the following ways:

(i) Unlike the algorithms of (Bhatnagar et al. 2011a) which are for a continuous-valued parameter, our

SASOC algorithms are for a constrained discrete optimization setting and involve a generalized projection

operator that renders the transition probabilities of the extended Markov process for any θ ∈ D̄ smooth.

(ii) Since the SASOC-W algorithm does not involve explicit computation of the Hessian inverse, it is com-

putationally more efficient than the second-order algorithms of (Bhatnagar et al. 2011a).

5 Notes on convergence

Here we provide a sketch of the convergence of SASOC-G and SASOC-H algorithms.5.

Step 1: Extension of the transition dynamics pi,j(θ)

The first step in the convergence analysis is common to both the SASOC algorithms and involves the exten-

sion of the transition dynamics pθ(i, j) of the constrained parameterized Markov process to the convex hull

D̄.

Recall that the discrete parameter θ of the Markov process {Xn(θ)} takes values in the set D defined

earlier. Using the members of D, one can extend the transition dynamics pθ(i, j) of the underlying Markov

process to any θ in the convex hull D̄ as follows:

pθ(i, j) =

p∑

k=1

βk(θ)pDk(i, j), ∀θ ∈ D̄, i, j ∈ S, (15)

where the weights βk(θ) satisfy 0 ≤ βk(θ) ≤ 1, k = 1, . . . , p and
p∑

k=1

βk(θ) = 1. For this choice of

βk(θ), pθ(i, j), i, j ∈ S, θ ∈ D̄ can be seen to satisfy the properties of transition probabilities. We now

explain the manner in which these weights are obtained. It is worth noting here that the weights βk(θ) must

be continuously differentiable in order to ensure that the extended transition probabilities are continuously

differentiable as well and our SASOC algorithms converge. Moreover, in the SASOC algorithms, we do not

require an explicit computation of these weights while trying to solve the constrained optimization problem

(1). Consider the case when θ = θ1 and suppose θ1 lies between Dj and Dj+1 (both members of D). By

construction, βk(θ1) will correspond to the probability with which projection is done on [Dj , Dj+1] and

is obtained using the Γ-projection operator as follows: Let us consider an interval of length 2ζ around the

midpoint of [Dj , Dj+1] and denote it as [D̃1, D̃2], where D̃1 =
Dj+Dj+1

2 −ζ and D̃2 =
Dj+Dj+1

2 +ζ. Then,

the weights βk(θ1) are set in the following manner: βk(θ1) = 0, ∀k /∈ {j, j + 1} and βj(θ1), βj+1(θ1) is

given by:

(βj(θ1), βj+1(θ1)) =





(1, 0) if θ1 ∈
[
Dj , D̃1

]

(f( D̃2−θ1
2ζ ), 1− f( D̃2−θ1

2ζ )) if θ1 ∈
[
D̃1, D̃2

]

(0, 1) if θ1 ∈
[
D̃2, D

j+1
] (16)

In the above, f to be a continuously differentiable function defined on [0, 1] such that f(0) = 0 and f(1) = 1
and the Γ-projection is derived from such an f . The above can be similarly extended when the parameter θ

5The detailed proofs of the various results are provided in a supplementary file for review
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has N components. It can thus be seen that βk(θ), k = 1, . . . , p are continuously differentiable functions of

θ. Thus, from (20) and the fact that βk(θ) are continuously differentiable, it can be seen that the extended

transition dynamics pθ(i, j), ∀θ ∈ D̄, i, j ∈ S are continuously differentiable. We now claim the following:

Lemma 1 Under the extended dynamics pθ(i, j), i, j ∈ S of the Markov process {Xn(θ)} defined over all

θ ∈ D̄, we have

(i) SASOC-G algorithm is analogous to its continuous counterpart where Γ(θ) and Γ(θ + δ△) are re-

placed by Γ̄(θ) and Γ̄(θ + δ△) respectively.

(ii) SASOC-H algorithm is analogous to its continuous counterpart where Γ(θ) and Γ(θ + δ1△ + δ2△̂)
are replaced by Γ̄(θ) and Γ̄(θ + δ1△+ δ2△̂) respectively.

Step 2: Analysis of fastest timescale recursion

The fastest time-scale in SASOC-G is {d(n)} which is used to update the Lagrangian estimates L̄ and L̄′

corresponding to simulations with θ and θ + δ∆ respectively. First, we show that these estimates indeed

converge to the Lagrangian values L(θ, λ) and L(θ + δ∆, λ) defined in (10). By the choice of step-sizes

satisfying (A3), we have a time-scale separation between the updates to the Lagrangian estimates L̄n and

the parameters - θ and λ. Hence, for the purpose of analysis of these Lagrangian estimates, θ and λ can be

assumed to be time invariant quantities. We now have the following result:

Lemma 2 (i) For SASOC-G algorithm, ‖L̄(n)− L(θ(n), λ(n))‖ → 0 w.p. 1, as n→∞.

(ii) For SASOC-H algorithm, ‖L̄(n)−L(θ(n), λ(n))‖, ‖L̄′(n)−L(θ(n) + δ1∆(n) + δ2∆̂(n), λ(n))‖ →
0 as n→∞.

Step 3: Analysis of the θ-recursion

We show that the evolution of θ in SASOC-G descends in the Lagrangian value and converges to a limiting

set that depends on λ. For this purpose, we first show that the resulting martingale from the θ update

recursion in (11) is convergent and then use V λ(·) = L(θ, λ) as an associated Lyapunov function for the

following ODE

θ̇(t) = Γ̌ (−∇θL(θ(t), λ)) , (17)

where Γ̌ is defined as follows: For any bounded continuous function ǫ(·),

Γ̌(ǫ(θ(t))) = lim
η↓0

Γ(θ(t) + ηǫ(θ(t)))− θ(t)

η
. (18)

The projection operator Γ̌(·) ensures that the evolution of θ via the ODE (23) stays within the bounded set

D̄. Again for the analysis of the θ-update, the value of λ which is updated on the slowest time-scale is

assumed constant.

Theorem 3 Under (A1), (A2’) and (A3), with λ(n) ≡ λ, ∀n, in the limit as δ → 0, θ(R) → θ∗ ∈ Kλ

almost surely as R→∞, where Kλ = {θ ∈ S : Γ̌ (−∇L(θ(t), λ)) = 0}.

Similarly, we show that the parameter updates θ(n) of SASOC-H converge to a limit point of the ODE

θ̇(t) = Γ̌
(
−Υ(∇2

θL(θ(t), λ))
−1∇θL(θ(t), λ)

)
. (19)
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Theorem 4 Under (A1), (A2), (A3) and (A4), with λ(n) ≡ λ, ∀n, in the limit as δ1, δ2 → 0, θ(R) → θ∗ ∈
K̄λ almost surely as R→∞, where

K̄λ =

{
θ ∈ S :

dL(θ(t), λ)

dt
= −∇θL(θ(t), λ)

TΥ(∇2
θL(θ(t), λ))

−1∇θL(θ(t), λ) = 0

}
.

Note that Kλ and K̄λ can differ in spurious fixed points on the boundary of D̄.

Step 4: : Analysis of the λ-recursion

For {λ(n)} updates on the slowest time-scale {a(n)}, we can assume that θ has converged to θ∗ ∈ Kλ. We

show that λi,js and λf converge respectively to the limit points of the ODEs

λ̇i,j(t) = Π̌ (Gi,j(θ
∗)) , ∀i = 1, 2, . . . , |C|, j = 1, 2, . . . , |P |,

λ̇f (t) = Π̌ (H(θ∗)) ,

where θ∗ is the converged parameter value of SASOC-G/H corresponding to Lagrange parameter λ(t)
△
=

(λi,j(t), λf (t), i = 1, . . . , |C|, j = 1, . . . , |P |)T , and for any bounded continuous functions ǭ(·),

Π̌(ǭ(λ(t))) = lim
η↓0

(λ(t) + ηǭ(λ(t)))+ − λ(t)

η
.

Here again, the projection operator Π̌ ensures that the evolution of each component of λ stays non-negative.

From the definition of the Lagrangian given in (9), the gradient of the Lagrangian w.r.t. λi,j can be seen to

be Gi,j(θ
∗) and that w.r.t. λf is H(θ∗). Thus, the above ODEs suggest that in SASOC-G/H λi,js’ and λf

are ascending in the Lagrangian value and converge to a local maximum point. We now have the following

result:

Theorem 5 Let F θ∗ =
{
λ ≥ 0 : Π̌ (Gi,j(θ

∗)) = 0, ∀i = 1, 2, . . . , |C|, j = 1, 2, . . . , |P |; Π̌ (H(θ∗)) = 0
}
.

Then, λ(R)→ λ∗ for some λ∗ ∈ F θ∗ w.p. 1 as R→∞.

Step 5: Convergence to a locally saddle point

Finally, we argue that the algorithm indeed converges to a (local) saddle point of the Lagrangian. Suppose

H1 denote a local neighborhood in which θ∗ is a minimum. Then, through an application of the envelope

theorem of mathematical economics (Mas-Colell et al. 1995, pp. 964-966), applied in the ‘Caratheodory

sense’ (Borkar 2005, Lemma 4.3, pp.211), it can be seen that

λ∗ ∈ arg min
λ∈H2

min
θ∈H1

L(θ, λ),

where H2 is some local neighborhood that contains λ∗. The SASOC algorithms thus converge to a locally

saddle point. As mentioned at the beginning of this section, the detailed proofs of the above results are

available in an attached supplementary file.

6 Simulation Experiments

We use the simulation framework developed in (Banerjee et al. 2011) for implementing all our algorithms.

A number of dispatching policies have been developed in (Banerjee et al. 2011). In particular, we study the

PRIO-PULL and EDF policies for performance comparisons of the various algorithms. In addition to the
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Figure 4: Characteristics of the service systems used for simulation
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(a) SS1 and SS2 work arrival pattern

(b) SS3, SS4 and SS5 work arrival pattern

Figure 5: Work arrival patterns over a week for each SS
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three SASOC algorithms, we implemented an algorithm that uses the state-of-the-art optimization tool-kit

OptQuest, for the sake of comparison. OptQuest employs an array of techniques including scatter and tabu

search, genetic algorithms, and other meta-heuristics for the purpose of optimization and is quite well-known

as a hybrid search tool for solving simulation optimization problems ((April et al. 2001)). In particular, we

have used the scatter search variant of OptQuest for our experiments.

We choose five real-life SS from two different countries providing server support to IBM’s customers.

The five SS cover a variety of characteristics such as high vs. low workload, small vs. large number

of customers to be supported, small vs. big staffing levels, and stringent vs. lenient SLA constraints.

Collectively, these five SS staff more than 200 SWs with 40%, 30%, and 30% of them having low, medium,

and high skill level, respectively. Also, these SS support more than 30 customers each, who make more than

6500 SRs every week with each customer having a distinct pattern of arrival depending on its business hours

and seasonality of business domain. Figure 4(a) shows the total work hours per SW per day for each of the

SS. The bottom part of the bars denotes customer SR work, i.e., the SRs raised by the customers whereas

the top part of the bars denotes internal SR work, i.e, the SRs raised internally for overhead work such as

meetings, report generation, and HR activities. This segregation is important because the SLAs apply only

to customer SRs. Internal SRs do not have deadlines but they may contribute to queue growth. Note that

while average work volumes are significant, they may not directly correlate to SLA attainment. Figure 4(b)

shows the effort data, i.e., the mean time taken to resolve an SR (a lognormal distributed random variable

in our setting) across priority and complexity classes. As shown in Figures 5, the arrival rates for SS4 and

SS5 show much higher peaks than SS1, SS2, and SS3, respectively, although their average work volumes

are comparable. The variations are significant because during the peak periods, many SRs may miss their

SLA deadlines and influence the optimal staffing result.

Some of the specific details of the service system setting (see Section 3) are as follows: I, the set of

time intervals, contains one element for each hour of the week. Hence, |I| = 168. The set of priority levels,

P = {P1, P2, P3, P4}, where, P1 > P2 > P3 > P4. The set of skill levels B is {High, Medium, Low},
where, High > Medium > Low. The simulation framework also involves the swing and preemption policies

and the reader is referred to (Banerjee et al. 2011) for a detailed description of this.

We implemented our SASOC algorithms on the simulation framework from (Banerjee et al. 2011) for

both the perturbed and the unperturbed simulations (see X and X̂ computations in Algorithm 1). For

our SASOC algorithms, the simulations were conducted for 1000 iterations, with each iteration having 20
simulation replications - ten each with unperturbed parameter θ and perturbed parameter θ̂, respectively.

Each replication simulated the operations of the respective SS for a 30 day period. Thus, we set R = 1000
and K = 10 for SASOC algorithms. On the other hand, for the OptQuest algorithm, simulations were

conducted for 5000 iterations, with each iteration of 100 replications of the SS.

For all the SASOC algorithms, we set the weights in the single-stage cost function c(Xm), see (3), as

r = s = 0.5. We thus give equal weightage to both the worker utilization and the SLA over-achievement

components. The indicator variable q used in the constraint (5) was set to 0 (i.e., infeasible) if the queues

were found to grow by 1000% over a two-week period during simulation. We performed a sensitivity study

for the paramter δ and found that the choice of 0.5 gave the best results. For the second order methods, the

perturbation control parameters δ1 and δ2 were both set to 0.5. The function f in the generalized projection

operator was set as f(x) = x, with the parameter ζ = 0.1. Each of the experiments were run on a machine

with dual core Intel 2.1 GHz processor and 3 GB RAM.

The Υ operator implemented for SASOC-W can be described as follows. Let Ĥ be the Hessian update

which needs to be projected. The following sequence of operations represent this projection. (i) Ĥ ←
(Ĥ+ĤT )

2 ; (ii) Perform eigen-decomposition on Ĥ to get all eigen-values and corresponding eigen-vectors;

(iii) Project each eigen-value to
[
ǫ, 1

ǫ

]
where 1 > ǫ > 0. ǫ is chosen to be a small number so as to allow for

larger range of values, but not too small to avoid singularity. The upper limit in the projection range is to
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avoid singularity of the inverse of the Hessian estimate; and (iv) Reconstruct Ĥ using the projected eigen-

values but with same eigen-vectors. The Υ operator in the case of SASOC-H with diagonal Hessian is one

that simply projects each diagonal entry to
[
ǫ, 1

ǫ

]
. It is easy to see that the Υ operator satisfies assumption

(A4). For a closely related modification of the Hessian, the reader is referred to (Gill et al. 1981). In our

experiments, we set ǫ = 0.01.

On each SS, we compare our SASOC algorithms with the OptQuest algorithm using Wsum and mean

utilization as the performance metrics. Here Wsum
△
=
∑|A|

i=1

∑|B|
j=1 θi,j is the sum of workers across shifts

and skill levels. The mean utilization here refers to a weighted average of the utilization percentage achieved

for each skill level, with the weights being the fraction of the workload corresponding to each skill level.

As evident in Figures 5(a) and 5(b), the SS pools SS1, SS2 and SS3 are characterized by a flat SR arrival

pattern, whereas SS4 and SS5 are characterized by a bursty SR arrival pattern. We present and analyze the

results on these pools separately, starting with the flat arrival pools in the next section.

6.1 Flat-Arrival SS pools

Figures 6(a) and 6(b) compare the W ∗
sum achieved for OptQuest and SASOC algorithms using PRIO-PULL

and EDF on three real life SS with a flat SR arrival pattern (see Figure 5(a)). Here W ∗
sum denotes the

value obtained upon convergence of Wsum. On these SS pools, namely SS1, SS2 and SS3, respectively,

we observe that our SASOC algorithms find a better value of W ∗
sum as compared to OptQuest. Note in

particular that on SS1, SASOC algorithms perform significantly better than OptQuest with an improvement

of nearly 100%. Further, on SS2, OptQuest is seen to be infeasible whereas all the SASOC algorithms

obtain a feasible and good allocation.

It is evident that SASOC algorithms consistently outperform the OptQuest algorithm on these SS pools.

Further, among the SASOC algorithms, we observe that SASOC-W finds better solutions in general as

compared to the other two SASOC algorithms. Further, we observe that in all our experiments that include

both flat as well as bursty arrival pools, the optimal worker parameter obtained by all our SASOC algorithms

is feasible, i.e., satisfies both the SLA as well as the queue stability constraints.

Figure 6(b) presents similar results for the case of the EDF dispatching policy. The behavior of OptQuest

and SASOC algorithms was found to be similar to that of PRIO-PULL with SASOC showing performance

improvements over OptQuest here as well.

6.2 Bursty-Arrival SS pools

Figures 7(a) and 7(b) compare the W ∗
sum achieved for OptQuest and SASOC algorithms using PRIO-PULL

and EDF on two real life SS with a bursty SR arrival pattern (see Figure 5(b)). From these performance plots,

we observe that OptQuest is seen to be slightly better than SASOC-G and SASOC-W when the underlying

dispatching policy is PRIO-PULL, whereas in the case of EDF dispatching policy, the SASOC algorithms

clearly outperform OptQuest. The execution time advantage of SASOC algorithms over OptQuest hold in

the case of these pools as well.

Computational efficiency is a significant factor for any adaptive labor staffing algorithm. For instance,

if a candidate labor staffing algorithm takes too long to find the optimal staffing levels, it is not amenable for

making staffing changes in a real SS. Both from the number of simulations required as well as the wall clock

run time standpoints, SASOC algorithms are better than OptQuest. This is because OptQuest requires 5000
iterations with each iteration of 100 replications, whereas the SASOC algorithms require 1000 iterations of

20 replications each in order to find W ∗
sum. This results in a 25X speedup for SASOC algorithms and also

manifests in the wall clock runtimes of SASOC algorithms because simulation run-times are proportional

to the number of SS simulations. We observe that the SASOC algorithms result in at least 10 to 15 times

improvement as compared to OptQuest from the wall clock runtimes perspective. For instance, on SS1 the
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typical run-time of OptQuest was found to be 24 hours, whereas SASOC algorithms took less than 2.5 hours

each to converge.

In fact, we observed in the case of SS2, OptQuest does not find a feasible solution even after repeated

runs for 5000 search iterations. Also, because OptQuest depends heavily on SLA attainments and respective

confidence intervals of previous iterations, it requires higher number of replications than SASOC. Further,

we observed that SASOC algorithms converge within 500 iterations in all our experiments. Thus, SASOC

algorithms require 25 times less number of simulations as compared to OptQuest, while searching for the

optimal SS configuration. This runtime advantage ensures that an SS manager can make staffing changes

even at the granularity of every week by making use of SASOC algorithms and the same may not be possible

with OptQuest due to its longer runtimes.

6.3 Comparsion with SF approaches

Figure 6.1 compares the W ∗
sum achieved with EDF as the dispatching policy for the SASOC algorithms with

the smoothed functional (SF) based schemes from (Prasad et al. 2013). We observe that the SASOC algo-

rithms perform on par with the Cauchy variant (SASOC-SF-C), while performing better than the Gaussian

variant of the algorithm from (Prasad et al. 2013). An important advantage with our SASOC algorithms in

comparison with the SF based approaches, especially the Cauchy variant, is the low computational over-

head. While our algorithms require Bernoulli random variable for perturbing the worker parameter, the SF

approaches require Gaussian or Cauchy random variables for the same. Further, the second order method

that we propose here (SASOC-H) is more robust in comparison to the first order SF approaches and through

the use of Woodbury’s identity, we also achieve low computational overhead as well.
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6.4 Empirical Convergence of θ

We observe that the parameter θ (and hence Wsum) converges to the optimum value for each of the SS

pools considered. This is illustrated by the convergence plots in Figures 9(a) and 9(b). This is a significant

feature of SASOC as our algorithms are seen to converge analytically (see Section 5) and the plots confirm

the same. In contrast, the OptQuest algorithm is not proven to converge to the optimum even after repeated

runs, as illustrated in the case of SS2 in Figure 6(a).

6.5 Mean utilization results

We present the utilization percentages across different skill levels (low, medium and high) in Figure 6.1. The

underlying dispatching policy here is EDF. The results for the case of PRIO-PULL are similar. We observe

mean utilization of workers is a crucial factor for a labor staffing algorithm and it is evident from Figure 6.1

that SASOC algorithms exhibit a higher mean utilization of workers and hence, better overall performance

in comparison to the OptQuest algorithm.

From the above performance comparisons over SS pools with flat as well as bursty SR arrival patterns,

it is evident that our SASOC algorithms, which converge to a local saddle point, show overall better perfor-

mance in comparison with the scatter search-based algorithm of OptQuest. Among the SASOC algorithms,

we observe that the second order algorithms (SASOC-H and SASOC-W) perform better than the first order

algorithm (SASOC-G) in many cases, with SASOC-W being marginally better than SASOC-H.

7 Conclusions

We motivated the discrete optimization problem of adaptively determining optimal staffing levels in SS

and proposed two novel SASOC algorithms for solving this problem. The aim was to find an optimum

worker parameter that minimizes a certain long-run cost objective, while adhering to a set of constraint

functions, which are also long run averages. All SASOC algorithms are simulation-based optimization

methods as the single-stage cost and constraint functions are observable only via simulation and no closed

form expressions are available. For solving the constrained optimization problem, we applied the Lagrange

relaxation procedure and used an SPSA based scheme for performing gradient descent in the primal and at

the same time, ascent in the dual, for the Lagrange multipliers. All SASOC algorithms also incorporated

a smooth (generalized) projection operator that helped imitate a continuous parameter system with suitably

defined transition dynamics. Using the theory of multi-timescale stochastic approximation, we presented

the convergence proof of our algorithms. Numerical experiments were performed to evaluate each of the

algorithms based on real-life SS data against the state-of-the-art simulation optimization toolkit OptQuest

in the current context. SASOC algorithms in general showed overall superior performance compared to

OptQuest, as they (a) exhibited more than an order of magnitude faster convergence than OptQuest, (b)

consistently found solutions of good quality and in most cases better than those found by OptQuest, and

(c) showed guaranteed convergence even in scenarios where OptQuest did not find feasibility even after

repeated runs for 5000 iterations. Given the quick convergence of SASOC algorithms (in minutes), they are

particularly suitable for adaptive labor staffing where a few days of optimization run like in OptQuest would

fail to keep up with the changes. By comparing the results of the SASOC algorithms on two independent

dispatching policies, we showed that SASOC’s performance is independent of the operational model of SS.

As future work, one may consider single-stage cost function enhancements that include worker salaries

as well as other relevant monetary costs, apart from staff utilization and SLA attainment factors. An or-

thogonal direction of future work in this context is to develop skill updation algorithms, i.e., derive novel

work dispatch policies that improve the skills of the workers beyond their current levels by way of assigning

work of a higher complexity. However, the setting is still constrained and the SLAs would need to be met
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while improving the skill levels of the workers. The skill updation scheme could then be combined with the

SASOC algorithms presented in this paper to optimize the staffing levels on a slower timescale.

34



A Appendix: Convergence Analysis

Here we provide a sketch of the convergence of the SASOC-G and SASOC-H algorithms. The first step in

the convergence analysis is common to all the SASOC algorithms and involves the extension of the transition

dynamics pθ(i, j) of the constrained parameterized hidden Markov process to the convex hull D̄.

Extension of the transition dynamics pi,j(θ)

Recall that the discrete parameter θ of the Markov process {Xn(θ)} takes values in the setD defined earlier.

Using the members of D, one can extend the transition dynamics pθ(i, j) of the underlying Markov process

to any θ in the convex hull D̄ as follows:

pθ(i, j) =

p∑

k=1

βk(θ)pDk(i, j), ∀θ ∈ D̄, i, j ∈ S, (20)

where the weights βk(θ) satisfy 0 ≤ βk(θ) ≤ 1, k = 1, . . . , p and
p∑

k=1

βk(θ) = 1. pθ(i, j), i, j ∈ S, θ ∈ D̄

can be seen to satisfy the properties of transition probabilities. It is worth noting here that the weights

βk(θ) must be continuously differentiable in order to ensure that the extended transition probabilities are

continuously differentiable as well and our SASOC algorithms converge. Moreover, in the SASOC algo-

rithms, we do not require an explicit computation of these weights while trying to solve the constrained

optimization problem equation (1) of the main paper. Consider the case when θ = (θ1)
T and suppose θ1

lies between Dj and Dj+1 (both members of D). By construction, βk(θ) will correspond to the probability

with which projection is done on [Dj , Dj+1] and is obtained using the Γ-projection operator as follows: Let

us consider an interval of length 2 zeta around the midpoint of [Dj , Dj+1] and denote it as [D̃1, D̃2], where

D̃1 = Dj+Dj+1

2 − ζ and D̃2 = Dj+Dj+1

2 + ζ. Then, the weights βk(θ) are set in the following manner:

βk(θ) = 0, ∀k /∈ {j, j + 1} and βj(θ), βj+1(θ) is given by:

(βj(θ1), βj+1(θ1)) =





(1, 0) if θ ∈
[
Dj , D̃1

]

(f( D̃2−θ1
2ζ ), 1− f( D̃2−θ1

2ζ )) if θ1 ∈
[
D̃1, D̃2

]

(0, 1) if θ ∈
[
D̃2, D

j+1
] (21)

In the above, f is obtained from the definition of Γ-projection and hence, is a continuously differentiable

function defined on [0, 1] such that f(0) = 0 and f(1) = 1. The above can be similarly extended when the

parameter θ has N components. It can thus be seen that βk(θ), k = 1, . . . , p are continuously differentiable

functions of θ. Thus, from (20) and the fact that βk(θ) are continuously differentiable, it can be seen that

the extended transition dynamics pθ(i, j), ∀θ ∈ D̄, i, j ∈ S are continuously differentiable.

We now claim the following:

Lemma 6 For any θ ∈ D̄, {Xn(θ), n ≥ 0} is ergodic Markov.

Proof: Follows in a similar manner as Lemma 2 of Bhatnagar et al. (2011b). �
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Now, define analogues of the long-run average cost and constraint functions for any θ ∈ D̄ as follows:

J̄(θ)
△
= lim

n→∞

1
n

n−1∑
m=0

c(Xm(θ)), θ ∈ D̄

Ḡi,j(θ)
△
= lim

n→∞

1
n

n−1∑
m=0

gi,j(Xm(θ)) ≤ 0,

∀i = 1, . . . , |C|, j = 1, . . . , |P |, θ ∈ D̄

H̄(θ)
△
= lim

n→∞

1
n

n−1∑
m=0

h(Xm(θ)) ≤ 0, θ ∈ D̄.

(22)

The difference between the above and the corresponding entitites defined in equation (1) of the main paper

is that θ can take values in D̄ in the above. In lieu of Lemma 2, the above limits are well-defined for all

θ ∈ D̄.

Lemma 7 J̄(θ), Ḡi,j(θ), i = 1, . . . , |C|, j = 1, . . . , |P |, and H̄(θ) are continuously differentiable in θ ∈
D̄.

Proof: Follows in a similar manner as Lemma 3 of Bhatnagar et al. (2011b). �

We now prove the SASOC algorithms described previously are equivalent to their analogous continuous

parameter θ̄ counterparts under the extended Markov process dynamics.

Lemma 8 Under the extended dynamics pθ(i, j), i, j ∈ S of the Markov process {Xn(θ)} defined over all

θ ∈ D̄, we have

(i) SASOC-G algorithm is analogous to its continuous counterpart where Γ(θ) and Γ(θ + δ△) are re-

placed by Γ̄(θ) and Γ̄(θ + δ△) respectively.

(ii) SASOC-H algorithm is analogous to its continuous counterparts where Γ(θ) and Γ(θ + δ1△ + δ2△̂)
are replaced by Γ̄(θ) and Γ̄(θ + δ1△+ δ2△̂) respectively.

Proof: (i): Consider the SASOC-G algorithm which updates according to equation (11) of the main paper.

Let θ(m) be a given parameter update that lies in D̄o (where D̄o denotes the interior of the set D̄). Let δ > 0
be sufficiently small so that θ̄1(m) = (Γ̄j(θj(m) + δ∆j(m)), j = 1, . . . , N)T = (θj(m) + δ∆j(m)), j =
1, . . . , N)T .

Consider now the Γ-projected parameters θ1(m) = (Γj(θj(m) + δ∆j(m)), j = 1, . . . , N)T and

θ2(m) = (Γj(θj(m)), j = 1, . . . , N)T , respectively. By the construction of the generalized projection

operator, these parameters are equal to θk ∈ C with probabilities βk((θj(m) + δ∆j(m), j = 1, . . . , N)T )
and βk(θj(m), j = 1, . . . , N)T ), respectively. When the operative parameter is θk, the transition prob-

abilities are pθk(i, l), i, l ∈ S. Thus with probabilities βk((θj(m) + δ∆j(m), j = 1, . . . , N)T ) and

βk((θj(m), j = 1, . . . , N)T ), respectively, the transition probabilities in the two simulations equal pθk(i, l),
i, l ∈ S.

Next, consider the alternative (extended) system with parameters θ̄1(m) = (Γ̄j(θj(m) + δ∆j(m)) and

θ̄2(m) = Γ̄j(θj(m)), respectively. The transition probabilities are now given by

pθ̄i(m)(j, l) =

p∑

k=1

βk(θ̄
i(m))pθk(j, l),

i = 1, 2, j, l ∈ S. Thus with probability βk(θ̄
i(m)), a transition probability of pθk(j, l) is obtained in the

ith system. Thus the two systems (original and the one with extended dynamics) are analogous.
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Now consider the case when θ(m) ∈ ∂D̄, i.e., is a point on the boundary of D̄). Then, one or more

components of θ(m) are extreme points. For simplicity, assume that only one component (say the ith com-

ponent) is an extreme point as the same argument carries over if there are more parameter components that

are extreme points. By the ith component of θ(m) being an extreme point, we mean that θi(m) is either 0 or

Wmax. The other components j = 1, . . . , N, j 6= i are not extreme. Thus, θi(m) + δ∆i(m) can lie outside

of the interval [0,Wmax]. For instance, suppose that θi(m) = Wmax and that θi(m) + δ∆i(m) > Wmax

(which will happen if ∆i(m) = +1). In such a case, θ1i (m) = Γi(θi(m) + δ∆i(m)) = Wmax with prob-

ability one. Then, as before, θ1(m) can be written as the convex combination θ1(m) =

p∑

k=1

βk(θ
1(m))θk

and the rest follows as before.

(ii): Follows in a similar manner as part (i) above. �

As a consequence of Lemma 8, we can analyze the SASOC algorithms with the continuous parameter

θ̄ used in place of θ and under the extended transition dynamics (20). By an abuse of notation, we shall

henceforth use θ to refer to the latter.

SASOC-G

The convergence analysis of SASOC-G can be split into four stages:

(I) The fastest time-scale in SASOC-G is {d(n)} which is used to update the Lagrangian estimates L̄ and

L̄′ corresponding to simulations with θ and θ+δ∆ respectively. Firstly, we show that these estimates indeed

converge to the Lagrangian values L(θ, λ) and L(θ+ δ∆, λ) defined in equation (9) of the main paper. Note

that the θ and λ which are updated on slower time-scales, can be assumed to be time invariant quantities for

the purpose of analysis of these Lagrangian estimates.

(II) Next, we show that the parameter updates θ(n) using SASOC-G converge to a limit point of the ODE

θ̇(t) = Γ̌ (−∇θL(θ(t), λ)) , (23)

where Γ̌ is defined as follows: For any bounded continuous function ǫ(·),

Γ̌(ǫ(θ(t))) = lim
η↓0

Π(θ(t) + ηǫ(θ(t)))− θ(t)

η
. (24)

The projection operator Γ̌(·) ensures that the evolution of θ stays within the bounded set M . Again for the

analysis of the θ-update, the value of λ which is updated on the slowest time-scale is assumed constant.

(III) We show that λi,js and λf converge respectively to the limit points of the ODEs

λ̇i,j(t) = Π̌ (Gi,j(θ
∗)) , ∀i = 1, 2, . . . , |C|, j = 1, 2, . . . , |P |,

λ̇f (t) = Π̌ (H(θ∗)) ,

where θ∗ is the converged parameter value of SASOC-G/H corresponding to Lagrange parameter λ(t)
△
=

(λi,j(t), λf (t), i = 1, . . . , |C|, j = 1, . . . , |P |)T , and for any bounded continuous functions ǭ(·),

Π̌(ǭ(λ(t))) = lim
η↓0

(λ(t) + ηǭ(λ(t)))+ − λ(t)

η
.

Here again, the projection operator Π̌ ensures that the evolution of each component of λ stays non-negative.

From the definition of the Lagrangian given in equation (9) of the main paper, the gradient of the Lagrangian

w.r.t. λi,j can be seen to be Gi,j(θ
∗) and that w.r.t. λf to be H(θ∗). Thus, the above ODEs suggest that in

SASOC-G λi,js and λf are ascending in the Lagrangian value and converge to a local maximum point.

(IV) Finally, we show that the algorithm indeed converges to a (local) saddle point of the Lagrangian with

local maximum in λi,js and λf , and local minimum in θ.
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Lemma 9 ‖L̄(n)− L(θ(n), λ(n))‖ → 0 w.p. 1, as n→∞.

Proof: θ and λ values are being updated on slower time-scales, thus assumed to be constant in this proof.

Let

l(Xm)
△
= c(XnK+m) +

|C|∑

i=1

|P |∑

j=1

λi,j(nK)gi,j(XnK+m) + λfh(XnK+m).

The L̄ update can be re-written as

L̄(m+ 1) = L̄(m) + d(m)
(
L(θ(m), λ(m)) + ξ1(m)− L̄(m) +Mm+1

)
,

where ξ1(m) = (E[l(Xm)|Fm−1]−−L(θ(m), λ(m)),m ≥ 0 and

Fm = σ(Xn, λ(n), θ(n), n ≤ m),m ≥ 0 are the associated σ-fields. Also, Mm+1 = l(Xm)−E[l(Xm)|Fm−1],m ≥
0 is a martingale difference sequence. Let Nm =

∑m
n=0 d(n)Mn+1. It can be easily verified that (Nm,Fm),m ≥

0 is a square-integrable martingale obtained from the corresponding martingale difference {Mm}. Further,

from the square summability of d(n), n ≥ 0, and the facts that S is compact and l is Lipschitz continuous,

it can be verified from the martingale convergence theorem that {Nm,m ≥ 0}, converges almost surely.

Now from Lemma 6 {(Xm)} is ergodic Markov for any given θ(m). Hence, |E[l(Xm)|Fm−1] −
−L(θ(m), λ(m)| → 0 almost surely on the ‘natural timescale’, as m → ∞. The ‘natural timescale’ is

clearly faster than the algorithm’s timescale and hence ξ1(m) can be ignored in the analysis of L̄-recursion,

see (Borkar 2008, Chapter 6.2) for detailed treatment of natural timescale algorithms. The rest of the proof

follows from the Hirsch lemma (Hirsch 1989, Theorem 1, pp. 339). �

On similar lines, ‖L̄′(n)−L(θ(n) + δ∆(n), λ(n))‖ → 0 w.p. 1, as n→∞. Thus, θ updates which are

on the slower time scale {b(n)}, can be re-written as

Wi(n+ 1) = Wi(n)− b(n)

(
L(θ(n) + δ∆i(n), λ)− L(θ(n), λ)

δ∆i(n)

)
+ b(n)χn+1, (25)

∀i = 1, 2, . . . , |A| × |B|, where χn = o(1) in view of Lemma 9. Note here that λ(n) ≡ λ, ∀n. Now for

the ODE (23), V λ(·) = L(·, λ) serves as an associated Lyapunov function and the stable fixed points of this

ODE lie within the set Kλ = {θ ∈ S : Γ̌ (−∇L(θ(t), λ)) = 0}.

Theorem 10 Under (A1)-(A3), in the limit as δ → 0, θ(R) → θ∗ ∈ Kλ almost surely as R → ∞. Proof:

From assumption (A2), L(θ, λ) is assumed to be continuous. Hence over the compact set M , L(θ, λ) is

uniformly bounded. Thus, from Lasalle’s invariance theorem Lasalle and Le fschetz (1961) (Kushner and

Yin 1997, Theorem 2.3, pp. 76), θ(R)→ θ∗ ∈ Kλ a.s. as R→∞. �

Thus (25) can be seen to be an Euler discretization of (23) and converges a.s. to Kλ in the limit as

δ → 0.

For {λ(n)} updates on the slowest time-scale {a(n)}, we can assume that θ has converged to θ∗ ∈ Kλ.

Let

F θ∗ =
{
λ ≥ 0 : Π̌ (Gi,j(θ

∗)) = 0, ∀i = 1, 2, . . . , |C|, j = 1, 2, . . . , |P |; Π̌ (H(θ∗)) = 0
}
.

Theorem 11 λ(R) → λ∗ ∈ F w.p. 1 as R → ∞. Proof: The λ update in equation (11) of the main paper

can be re-written as

λi,j(n+ 1) = λi,j(n) + a(n) [Gi,j(θ
∗) +Nn+1 +Mn+1] ,
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where Nn+1 = E[gi,j(Xn)|Fn−1] − Gi,j(θ
∗), Mn+1 = gi,j(Xn) − E[gi,j(Xn)|Fn−1]. It is easy to see

that from Lemma 6 that Nn → 0 as n → ∞ along the natural timescale (see Lemma 9). Further, {Mn} is

a martingale difference sequence with
∑n

i=0 a(i)Mi+1, n ≥ 0, being the associated martingale that can be

seen to be a.s. convergent (See Prop. 4.4 of Bhatnagar et al. (2011a)). Thus from (Borkar 2008, Extension

3 of Section 2.2), the result follows for λi,js. Similarly, one can show convergence for λf . �

Now, we need to show that the convergence of the algorithm is indeed to a saddle point, i.e., θ∗ ∈ Kλ∗

and λ∗ ∈ F θ∗ . This can be shown by invoking the envelope theorem of mathematical economics (Mas-

Colell et al. 1995, pp. 964-966); see remark (2) in (Bhatnagar et al. 2011a, pp 15).

SASOC-H

Convergence analysis of SASOC-H follows along similar lines as that of the SASOC-G algorithm as given

below. Note that we first analyse the case when the Hessian is inverted directly in SASOC-H and then give

the necessary modifications for the proof to work when Woodbury’s identity is employed.

1. As in Lemma 9, one can see that L̄ and L̄′ iterations converge almost surely as follows:

‖L̄(n)− L(θ(n), λ(n))‖, ‖L̄′(n)− L(θ(n) + δ1∆(n) + δ2∆̂(n), λ(n))‖ → 0 as n→∞.

2. Next, we show that the parameter updates θ(n) of SASOC-H converge to a limit point of the ODE

θ̇(t) = Γ̌
(
−Υ(∇2

θL(θ(t), λ))
−1∇θL(θ(t), λ)

)
, (26)

where Γ̌ is as defined in equation (24).

3. The rest of the analysis of slower time-scale updates of λi,js and λf , and saddle point behaviour

follows from that of SASOC-G.

Lemma 12
∥∥∥∥∥
L(θ(n) + δ1∆(n) + δ2∆̂(n), λ(n))− L(θ(n), λ(n))

δ2∆̂i(n)
−∇θiL(θ(n), λ(n))

∥∥∥∥∥→ 0 w.p. 1,

with δ1, δ2 → 0 as n → ∞ ∀i ∈ {1, 2, . . . , |A| × |B|}. Proof: Follows from (Bhatnagar et al. 2011a,

Proposition 4.10). �

Lemma 13
∥∥∥∥∥
L(θ(n) + δ1∆(n) + δ2∆̂(n), λ(n))− L(θ(n), λ(n))

δ1∆i(n)δ2∆̂j(n)
−∇2

θi,j
L(θ(n), λ(n))

∥∥∥∥∥→ 0 w.p. 1,

with δ1, δ2 → 0 as n→∞, ∀i, j ∈ {1, 2, . . . , |A| × |B|}. Proof: Follows from (Bhatnagar et al. 2011a,

Proposition 4.9). �

Lemma 14 ∥∥∥Hi,j(n)−∇
2
θi,j

L(θ(n), λ(n))
∥∥∥→ 0 w.p. 1,

with δ1, δ2 → 0 as n→∞, ∀i, j ∈ {1, 2, . . . , |A| × |B|}.
Proof: Follows from Lemma 13 applied to the Hessian update of SASOC-H. �
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Lemma 15 ∥∥M(n)−Υ(∇2
θL(θ(n), λ(n)))

−1
∥∥→ 0 w.p. 1,

with δ1, δ2 → 0 as n→∞, ∀i, j ∈ {1, 2, . . . , |A| × |B|}.
Proof: Follows from Lemma 14 and (Bhatnagar 2007, Lemma A.9). �

Let

K̄λ =

{
θ ∈ S :

dL(θ(t), λ)

dt
= −∇θL(θ(t), λ)

TΥ(∇2
θL(θ(t), λ))

−1∇θL(θ(t), λ) = 0

}
.

Theorem 16 Under assumptions (A1)-(A4), in the limit as δ1, δ2 → 0, θ(R) → θ∗ ∈ K̄λ almost surely

as R → ∞. Proof: Following Lemmas 9, 12 and 15, with δ1, δ2 → 0, the update of parameter θ can we

re-written in vector form as

θn+1 = Π
(
θn − b(n)Υ(∇2

θL(θ(t), λ))
−1∇θL(θ(t), λ) + b(n)χn

)

with χn = o(1). Thus, the update of parameter θ can be viewed as a noisy Euler discretization of the ODE

(26) using a standard approximation argument as in (Kushner and Clark 1978, pp. 191-196). Note that

V λ(·) = L(·, λ) itself serves as the associated Lyapunov function (Kushner and Yin 1997, pp. 75) for the

ODE (26) with stable limit points of the ODE lying within the set K̄λ. From assumption (A2), L(θ, λ)
is assumed to be continuous. Hence over the compact set M , L(θ, λ) is uniformly bounded. Thus, from

Lasalle’s invariance theorem Lasalle and Le fschetz (1961), θ(n)→ θ∗ ∈ Kλ a.s. as n→∞. �

Convergence analysis of SASOC-H when the Hessian in inverted using an iterative procedure based on

Woodbury’s identity, follows from the above analysis for the SASOC-H algorithm (with direct inversion of

the Hessian) given the following lemma instead of Lemma 15.

Lemma 17 ∥∥M(n)−Υ(∇2
θL(θ(n), λ(n)))

−1
∥∥→ 0 w.p. 1,

with δ1, δ2 → 0 as n → ∞, ∀i, j ∈ {1, 2, . . . , |A| × |B|}. Proof: From Woodbury’s identity, since

M(n), n ≥ 1 sequence of SASOC-W is identical to the Υ(H(n))−1, n ≥ 1 sequence of SASOC-H, the

result follows from Lemma 15. �
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