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We study concentration-driven natural convection boundary layers on horizontal sur-
faces, subjected to a weak, surface normal, uniform blowing velocity Vi, for three orders
of range of the dimensionless blowing parameter 10−8 6 J = Re3x/Grx 6 10−5, where
Rex and Grx are the local Reynolds and Grashoff numbers at the horizontal location
x, based respectively on Vi and ∆C, the concentration difference across the boundary
layer. We formulate the integral boundary layer equations, with the assumption of no
concentration drop within the species boundary layer, which is valid for weak blowing
into the thin species boundary layers that occur at the high Schmidt number (Sc ≃ 600)
of concentration-driven convection. The equations are then numerically solved to show
that the species boundary layer thickness δd = 1.6x(Rex/Grx)

1/4, the velocity boundary
layer thickness δv = δdSc

1/5, the horizontal velocity u = Vi(Grx/Rex)
1/4f(η), where

η = y/δv, and the drag coefficient based on Vi, CD = 2.32/
√
J . We find that the vertical

profile of the horizontally averaged dimensionless concentration across the boundary
layer becomes, surprisingly, independent of the blowing and the species diffusion effects

to follow a Gr
2/3
y scaling, where Gry is the Grashoff number based on the vertical

location y within the boundary layer. We then show that the above profile matches
the experimentally observed mean concentration profile within the boundary layers that
form on the top surface of a membrane, when a weak flow is forced gravitationally from
below the horizontal membrane that has brine above it and water below it. A similar
match between the theoretical scaling of the species boundary layer thickness and its
experimentally observed variation is also shown to occur.
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1. Introduction

When a fluid layer exists above a horizontal bounding wall, natural convection is
triggered when the temperature of the wall is higher than that of the fluid by some extent.
Velocity and temperature boundary layers are formed over the bounding wall beyond
some value of the temperature difference (Gill et al. 1965; Rotem & Claassen 1969; Pera &
Gebhart 1973). These boundary layer flows are driven by the horizontal pressure gradient
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induced by the presence of denser fluid outside the boundary layer and lighter fluid inside
it (Stewartson 1958; Gebhart et al. 1988). Studies, both experimental (Clausing & Berton
1989; Kitamura & Kimura 1995; Radziemska & Lewandowski 2001; Kozanoglu & Lopez
2007) and theoretical (Merkin 1985; Chen, Tien & Armaly 1986; Umemura & Law 1990;
Samanta & Guha 2012), abound on such natural convection boundary layers due to their
presence in large number of applications. Equivalent phenomena, often at high Schmidt
numbers Sc = ν/D, where ν is the kinematic viscosity and D is the molecular diffusivity
of the species in the fluid, occur when the concentration of a species on the wall is lesser
than that in the fluid (Goldstein, Sparrow & Jones 1973; Lloyd & Moran 1974). In such
cases, the relative thicknesses of the velocity and concentration boundary layers depend
on the value of Sc.

When such boundary layers form over horizontal porous surfaces that have a normal
flow of lighter fluid through them, which we hereinafter refer to as blowing, the density
distribution and hence the driving pressure gradient within the boundary layers change
from the case of that in natural convection boundary layers (NBL hereinafter). Blowing
then modifies the velocities within these boundary layers, and the dependence of the
boundary layer thicknesses on the horizontal coordinate, x. These changes in turn drasti-
cally alter the instability of the boundary layers, leading to changes in the distribution of
flow structures and the transport of species across the boundary layers. Understanding
such boundary layers is important since they abound in industrial processes such as
catalysis (Shemilt & Sedahmed 1976), separation by membranes (Tanaka 1991; Slezak,
Grzegorczyn, Jasik-Slezak & Michalska-Malecka 2010), ultrafiltration (Youm, Fane &
Wiley 1996), carbon sequestration (Kneafsey & Pruess 2010; Huppert & Neufeld 2014),
membrane fabrication (Atkinson & Lloyd 2000), drying (Coussot 2000) and burning of
fuel films (Clarke & Riley 1976).

The governing equations for these boundary layers allow similarity solutions only for
practically difficult experimental configurations, namely, for a x−2/5 dependence of the
blowing velocity Vi (Clarke & Riley 1975; Merkin 1975; Lin & Yu 1988; Chen, Buchanan &
Armaly 1993). For the more practical, and often encountered, case of a spatially uniform
blowing velocity Vi, Chen et al. (1993) obtained numerical solutions for various values of

their non-similarity parameter ξ1 = 51/5Rex/Gr
1/5
x . Here, Rex = Vix/ν is the Reynolds

number based on Vi and x while Grx = gβ∆Cx3/ν2 is the Grashoff number based on the
driving concentration potential∆C and x, with g being the gravitational acceleration and
β the coefficient of salinity. These results are however limited to a low Prandtl number
of Pr = 0.7, which would occur in temperature driven convection in gases; they also did
not obtain closed-form scaling laws for the boundary layer thicknesses and the velocity
distributions. The case of a spatially constant Vi for these boundary layers were also
obtained by Puthenveettil & Arakeri (2004), however again only at a low Pr = 1 (or
Sc = 1), by numerical solutions of integral equations; the study did not give rise to any
understanding of the scaling of these boundary layers.

Unlike in the above cases, the most common occurrences of these boundary layer flows
are in liquid systems where the convection is driven by concentration differences, often
with a spatially constant blowing velocity (see Shemilt & Sedahmed (1976); Tanaka
(1991); Youm et al. (1996)). Since the molecular diffusivity of solutes are low, such
systems have high Sc (∼ 103), resulting in the formation of very thin species boundary
layers over the horizontal porous surface. The present study considers such high Sc
natural convection boundary layers forming over a horizontal permeable surface which
are subjected to a weak constant blowing velocity Vi through the membrane. When
such boundary layers at high Sc are subjected to transpiration, even a weak blowing
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would ensure uniform concentration, equal to the concentration of the transpiring fluid,
within the thin species boundary layer. For such boundary layers, we present a theoretical
analysis which proposes scaling laws for the boundary layer thicknesses, the horizontal
velocity and the drag.

We create these boundary layers experimentally on the surface of a horizontal micro
porous membrane by arranging a layer of brine over a layer of water across the membrane
and gravitationally forcing a steady and uniform stream of water through the membrane
from below. Thin, high Sc, natural convection boundary layers form at several spatially
and temporally random locations on the membrane surface (Puthenveettil & Arakeri
2005, 2008; Ramareddy & Puthenveettil 2011). These boundary layers are naturally
unstable due to the unstable density gradients across them, resulting in they rising
upward in the form of line plumes, after some longitudinal travel distance. The rising
plumes become turbulent after a short distance, resulting in a turbulent ambient and
diffusive boundary layers resulting in rising plumes on the membrane. We choose one of
such boundary layers that occur in our experiments, before their instability, and conduct
an integral analysis of their governing equations under the approximation that most of
the species boundary layer contains a uniform concentration of CB .

The analysis is conducted at large Grashoff numbers, GrL = gβ∆CL3/ν2 (∼ 104), for
weak blowing (VI 6 0.1mm/s) with no appreciable diffusion effects (Vi > 0.01mm/s) in
the species boundary layer, where L is the length of the boundary layer; the corresponding
range of Reynolds number of blowing is 0.112 6 ReL = Vi l/ν 6 1.12. Though there exists

a blowing velocity Vi into the boundary layers, since 105 < GrL/Re
5/2
L < 107, natural

convection effects dominate over the shear effects due to blowing. We observe similarity
of the boundary layer thicknesses and the velocity profile for such a regime; the similarity
allows us to propose simple relations for these quantities. We then obtain an expression
for the horizontally averaged concentration profile in the species boundary layer using
these relations, which surprisingly, is seen to be independent of Vi. Such a theoretical
average concentration profile, as well as the species boundary layer thicknesses, are then
shown to match with those obtained from the planar laser-induced fluorescence (PLIF)
images obtained in our experiments, thereby verifying these theoretical relations.

The paper is organised as follows. In § 2.1 we formulate the integral boundary layer
equations, which are then simplified using the uniform concentration approximation
discussed in Appendix A; the relevant characteristic scales are discussed in Appendix B.
In § 2.2 these scales are used to normalise the integral equations to arrive at their dimen-
sionless form. The theoretical variations of the species boundary layer thickness δd(x),
the horizontal velocity profiles u(x, y) and the velocity boundary layer thickness δv(x)
along with the wall shear stress are discussed in § 3.1, § 3.2 and § 3.3 respectively; these
sections also give the associated dimensionless relations for these variables. The details
on the theoretical mean concentration profile are given in § 3.4. What follows next is the
experimental setup and diagnostics, which are discussed in § 4.1 and § 4.2, respectively.
The theoretical and the experimental mean concentration profiles are compared in § 5,
before concluding in § 6.

2. Integral formulation

2.1. Integral boundary layer equations

Consider a steady, laminar, incompressible, natural convection boundary layer over a
horizontal porous surface with an upward vertical normal flow velocity (Vi) through the
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Figure 1. (a) Schematic of a laminar natural convection boundary layer on a horizontal porous
surface with a uniform normal blowing through the surface. The assumed uniform concentration
profile between the ambient concentration CT and the surface concentration CB is shown at
x = xd. (b) Schematic of a plume that results from the instability of a pair of such boundary

layers. λb is the mean distance between adjacent plumes given by (3.15)(Puthenveettil & Arakeri
2008). The zoomed view of the region in dotted ellipse is shown in figure 1(a).

surface as depicted in figure 1(a). The equations governing such a boundary layer are,

∂u

∂x
+
∂v

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂pm
∂x

+ ν
∂2u

∂y2
, (2.2)

1

ρ

∂pm
∂y

= gβ(CT − C), (2.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
, (2.4)

where u and v are the components of velocity in x and y directions, pm(x, y) = p − ps
is the motion-pressure, p the actual local pressure and ps the local hydrostatic pressure
when the fluid density is everywhere at ρ, the ambient density above the boundary layer.
C(x, y) is the concentration of species within the species boundary layer and CT is the
concentration of the species above the species boundary layer. The boundary conditions
for the wall-blowing case are,

at y = 0 : u = 0; v = Vi; C = CB and (2.5)

at y = δv : u = 0;
∂u

∂y
= 0; v = Vδv ; C = CT ;

∂C

∂y
= 0, (2.6)

where CB is the concentration of the species on the membrane, and Vδv is the vertical
velocity at the edge of the velocity boundary layer. In (2.6), ∂u/∂y|y=δv

= 0 is obtained
by applying (2.2) at y = δv, since pm = 0 for all y > δv, implying that ∂pm/∂x|y=δv

= 0,
u|y=δv

= 0, and neglecting the viscous resistance at y = δv.
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By integrating (2.2) from the membrane surface to δv(x), we obtain,

1

2

d

dx

∫ δv

0

u2dy +

∫ δv

0

v
∂u

∂y
dy +

1

ρ

∫ δv

0

∂pm
∂x

dy + ν
∂u

∂y

∣∣∣∣
y=0

= 0. (2.7)

Expanding the second term in (2.7) as
∫ δv
0

(∂(u v)/∂y − u ∂v/∂y), replacing ∂v/∂y with
−∂u/∂x from (2.1) and using the boundary condition for u from (2.5) and (2.6), we
obtain,

∫ δv

0

v
∂u

∂y
dy =

∫ δv

0

u
∂u

∂x
dy. (2.8)

Utilizing (2.8) in (2.7) and simplifying, we obtain the integral x-momentum equation as,

d

dx

∫ δv

0

u2dy +
1

ρ

∫ δv

0

∂pm
∂x

dy + ν
∂u

∂y

∣∣∣∣
y=0

= 0. (2.9)

Equation (2.9) expresses a balance between the driving force due to the motion pressure
gradient, the viscous resistance and the inertial forces.
Integrating (2.4) from y = 0 to δd(x), after replacing v ∂C/∂y with ∂(v C)/∂y −

C ∂v/∂y, and simplifying using v|y=δd
= Vδd , C|y=δd

= CT , v|y=0 = Vi and C|y=0 = CB ,
we get

∫ δd

0

u
∂C

∂x
dy + VδdCT − Vi CB −

∫ δd

0

C
∂v

∂y
dy = −D ∂C

∂y

∣∣∣∣
y=0

. (2.10)

In arriving at (2.10), we used ∂C/∂y|y=δd
= 0, obtained by applying equation (2.4) at

y = δd since diffusion and ∂C/∂x are negligible at y = δd. Replacing ∂v/∂y in (2.10)
with −∂u/∂x from (2.1) and since u ∂C/∂x = ∂(uC)/∂x−C ∂u/∂x, (2.10) simplifies to

∫ δd

0

∂

∂x
(uC) dy + VδdCT − Vi CB +D

∂C

∂y

∣∣∣∣
y=0

= 0. (2.11)

Expanding the first term in (2.11) using Leibnitz rule, we obtain (2.11) as,

d

dx

∫ δd

0

(uC) dy − CT u|y=δd

dδd
dx

+ VδdCT − Vi CB +D
∂C

∂y

∣∣∣∣
y=0

= 0. (2.12)

An expression for Vδd in (2.12) can be obtained by integrating (2.1) from y = 0 to δd(x)
to get,

d

dx

∫ δd

0

u dy − u|y=δd

d δd
dx

+ Vδd − Vi = 0. (2.13)

Now, replacing the second and third terms in (2.12) with CT Vi − CT d/dx
(∫ δd

0
u dy

)
,

obtained by multiplying (2.13) with CT , we obtain the integral species conservation
equation as,

d

dx

∫ δd

0

u (C − CT ) dy + Vi∆C +D
∂C

∂y

∣∣∣∣
y=0

= 0, (2.14)

where ∆C = CT − CB .

2.1.1. Reduced integral equations using uniform concentration approximation

In high Sc natural convection boundary layers, as the diffusivity of momentum would
be much larger than that of the species, the species boundary layer would be much
thinner than the velocity boundary layer. A weak wall-normal flow would hence produce
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B 0.012 0.023 0.035 0.046 0.058 0.069 0.081 0.092 0.104 0.12

Vi (cm s−1) 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

Reδv 0.03 0.05 0.08 0.10 0.13 0.16 0.26 0.18 0.21 0.24

J × 108 2 13 44 103 202 349 555 828 1179 1617

Table 1. Values of the blowing parameters B (2.21) and J (5.2), the blowing velocity (Vi) and
the Reynolds number Reδv for the value of ∆C and L shown in Table 2 at Sc = 600 used in the
present analysis.

a uniform concentration in most of the species boundary layer region. The concentration
in the species boundary layer could then be approximated to be uniform and equal to the
concentration at the surface of the membrane CB and thus, within the species boundary
layer,

CT − C ≃ CT − CB = ∆C. (2.15)

Such a uniform concentration approximation is valid only above a lower limit of the
blowing velocity, below which appreciable diffusive effects will be present to cause non-
negligible concentration drop across the species boundary layer. We show in Appendix A
that the approximation (2.15) is valid for Vi > 0.001 cm s−1, or in terms of the
dimensionless blowing parameter, defined in (2.21), B > 0.012. The corresponding upper
limit of the present analysis, Vi 6 0.01 cm s−1(B 6 0.012) is obtained in § 3 so that the
inertial effects are negligible within the boundary layers.
Integrating the y-momentum equation (2.3) with respect to y, using the condition

pm|y=δd
= 0, and since

∫ δd
0

(CT − C) dy = ∆C δd by the uniform concentration approxi-
mation (2.15), we obtain

pm = −ρ gβ∆C(δd − y) (2.16)

as the motion pressure distribution in the species boundary layer. Substituting (2.16) in

the second term in (2.9) and applying Leibnitz rule to write the term as ∂/∂x
∫ δd
0

(δd −
y) dy results in the integral momentum equation for high Sc NBL on a horizontal porous
surface with blowing, subject to the uniform concentration approximation (2.15),

d

dx

∫ δv

0

u2 dy − 1

2
gβ∆C

dδ2d
dx

+ ν
∂u

∂y

∣∣∣∣
y=0

= 0. (2.17)

In arriving at (2.17), the upper limit of the integral of the pressure gradient term in (2.9)
was changed to δd, as pm = 0 for y > δv. The integral species equation (2.14), under the
uniform concentration approximation (2.15), reduces to

d

dx

∫ δd

0

u dy = Vi. (2.18)

2.2. Dimensionless integral equations

Normalizing the terms in (2.17) with the corresponding characteristic scales, obtained
in Appendix B, we get the dimensionless integral momentum equation as

Sc2/5B5/4δ̂v

(
δ̂vIM

)′
− Sc1/5δ̂v δ̂dδ̂

′
d +

∂û(x̂, η)

∂η

∣∣∣∣
η=0

= 0. (2.19)
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L ∆C β∆C=∆ρ

ρ
ν GrL = g β ∆C L3

ν2 ReL D ρ Sc

(cm) (gl−1) (cm2s−1) (cm2s−1) (g cm−3)

1 10 7.1× 10−3 8.93× 10−3 8.69× 104 0.112-1.12 1.484 x 10−5 1.003 600

Table 2. List of parameters used in plotting figures 2 to 5, corresponding to a solution of 10 gl−1

of NaCl in water above a porous membrane, across which pure water flows vertically upwards.

Here, x̂ = x/L, δ̂d = δd/δdc, δ̂v = δv/δvc, û = u/uc, with all the ̂ variables hereinafter
indicating such normalised terms and ′ denoting differentiation with respect to x̂. IM =∫ 1

0
û(x̂, η)

2
dη and η = y/δv is the dimensionless vertical coordinate. The characteristic

scales δdc, uc and δvc are given by (B 5), (B 6) and (B 7) respectively in Appendix B.
Since the characteristic scales (B 5) and (B 6) were obtained under the condition that,

Reδv =
Viδvc
ν

≪ 1 (2.20)

the specific form of (2.19) is applicable only when (2.20) is satisfied. Note that in (2.19),
the dimensionless blowing parameter,

B =
ReL

Gr
1/5
L

, (2.21)

that characterises the strength of blowing compared to the buoyancy and the viscous ef-
fects, appears as the relevant dimensionless number, on which the dimensionless boundary
layer thicknesses and horizontal velocity depend.
Normalizing (2.18) with the characteristic scales, we get the dimensionless integral

species equation as
(
δ̂d IS

)′
= 1, (2.22)

where IS =
∫ 1

0
û(x̂, η) dηd , with ηd = η (δv/δd). The dimensionless boundary conditions

obtained from (2.5) and (2.6) are,

at η = 0 : û = 0; v̂ = 1; ĈB =
CB

∆C
and (2.23)

at η = 1 : û = 0;
∂û(x̂, η)

∂η
= 0; v̂ =

Vδv
Vi

; ĈT =
CT

∆C
, (2.24)

where v̂ = v/Vi.

Since equations (2.19) and (2.22) can be solved for δ̂v and δ̂d only when û(x̂, η) is
known, we approximate the dimensionless horizontal velocity distribution as

û(x̂, η) = K1 +K2 η +K3 η
2 +K4 η

3. (2.25)

The expressions for K1 to K4, given in Appendix C, are obtained by using the bound-
ary conditions for û and ∂û/∂η in (2.23) and (2.24), along with the dimensionless x-
momentum equation at the wall,

Sc1/5B5/4 δ̂v
∂û(x̂, η)

∂η

∣∣∣∣
η=0

− Sc2/5δ̂v
2
δ̂d

′ − ∂2û(x̂, η)

∂η2

∣∣∣∣
η=0

= 0. (2.26)

Substituting the expressions for K1 to K4 from (C1) to (C 4) in (2.25) and simplifying,
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(2.25) can be written as,

û(x̂, η) =
η (η − 1)2 δ̂v

2
δ̂d

′
Sc2/5

4 +B5/4 Sc1/5 δ̂v
. (2.27)

Substituting (2.27) in (2.19) and (2.22) we obtain two dimensionless, second order non-
linear ordinary differential equations,

E1 (δ̂d
′
)2 δ̂v

′
+ E2 δ̂d

′
+ E3 δ̂d

′
δ̂d

′′
= 0 and (2.28)

E4 (δ̂d
′
)2 + E5 δ̂d

′
δ̂v

′
+ E6 δ̂d

′′ − 1 = 0, (2.29)

where ′′ denotes double differentiation with respect to x̂ and the expressions for the
coefficients E1 to E6, that are functions of δ̂v, δ̂d and B, are given in Appendix C.

3. Theoretical profiles

We numerically solve (2.28) and (2.29) to obtain δ̂v and δ̂d as functions of x̂ for 0.012 6

B 6 0.12 at Sc = 600 (see Table 1). As discussed in Appendix A, the above lower limit
of B is chosen so that diffusive effects are not appreciable in the species boundary layer,
due to which the uniform concentration approximation can be applied. The above upper
limit of B is chosen so as to satisfy (2.20). This upper limit of the analysis, also defines
the upper limit of ‘weak’ blowing so that the inertial effects are negligible. The range of
Vi (0.001 cm s−1 - 0.01 cm s−1) specified in Table 1, corresponding to the above range of
B, corresponds to the specific ∆C, L and fluid properties specified in Table 2.
The physical situation envisaged is that of a fixed GrL = 8.69×104 for a brine layer of

10 gl−1 concentration above a horizontal porous surface, through which a weak upward
normal flow with a Reynolds number range of 0.112 6 ReL 6 1.12, corresponding to
a changing Vi, occurs into the layer. The dimensionless solutions are however valid for
other physical situations that satisfy 0.012 6 B 6 0.12 and Sc ≫ 1. The conditions at
the leading edge used to initiate the dimensionless solutions are δ̂v = δ̂d = 0.018 and

δ̂d
′
= 6369.7, calculated from the similarity solutions of Rotem & Claassen (1969) for the

corresponding no blowing case at x̂ = 10−6. The characteristic scales needed to convert
these dimensionless solutions to the needed dimensional values are also calculated using
the parameters shown in Table 2.

3.1. Species boundary layer thickness

Figure 2 shows the variation of the dimensionless species boundary layer thickness
δd/L with the dimensionless horizontal position x̂ for different blowing parameters B.
Blowing more lighter fluid into the species boundary layer results in a larger thickness
of the boundary layer as well as a larger slope of the boundary layer edge at any x̂,
the reason for which could be the following. Equation (2.18) implies that the additional
lighter fluid in the species boundary layer increases the horizontal momentum flux in
the species boundary layer which increases the inertial forces in the boundary layer
as per (2.17). This increase in inertial forces is then balanced by a corresponding net
increase in the motion pressure gradient and the wall shear stress. The integral of the
motion pressure gradient is proportional to δd dδd/dx, as inferred from (2.16) and the
second term in (2.17). With blowing, in addition to the increase of the viscous shear
stress, it appears that a simultaneous increase of δd and dδd/dx is necessary to balance
the increased inertial forces in the boundary layer; blowing then increases the species
boundary layer thickness and its longitudinal gradient.
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Figure 2. Variation of the dimensionless species boundary layer thickness with the dimensionless
horizontal position for various blowing parameter values. The inset shows that δd/δ

∗
dc, where δ

∗
dc

is given by (3.1), is independent of B and x̂ except very close to the leading edge.

The inset of figure 2 shows the dependence of δd/δ
∗
dc on x̂ for different blowing

parameters, where

δ∗dc =

(
νVix

2

gβ∆C

)1/4

(3.1)

is obtained by replacing L in (B 5) with x. The figure shows that δd/δ
∗
dc ≃ 1.6, which

implies that, contrary to the earlier observations (Chen et al. 1993; Puthenveettil &
Arakeri 2004) of non-similar nature of these boundary layers, for the present range of B,
at high Sc, these boundary layers do show a similar nature. The species boundary layer
thickness is then given by,

δd
x

≃ 1.6

(
νVi

gβ∆Cx2

)1/4

= 1.6

(
Rex
Grx

)1/4

= 1.6
B5/4

ReL

√
L

x
. (3.2)

The scaling (3.2), captures the increase of δd and dδd/dx with Vi at any x, seen in
figure 2. The physical explanation for such scaling, as is clear from (3.1), is that the
order of magnitude balance in (B 3) at a distance of L, which reduces to balance of
motion pressure gradient and viscous resistance at Reδv ≪ 1, also becomes valid at
each x to give rise to (3.2). It also implies that since δd/δ

∗
dc is of order one, δdc is the

appropriate characteristic scale for δd, implying that δd has a square root dependence
on x and a one-fourth power law dependence on Vi for a given fluid and concentration
difference.

The scaling (3.2) can also be written in terms of the length scales near the porous
surface as,

δd
x

≃ 1.6

(
Z3
wSc

ZVi
x2

)1/4

, (3.3)
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Figure 3. Effect of blowing on the vertical profiles of the horizontal velocity at x̂ = 1.0. The blue
curve, corresponding to the right y-axis, shows the Prandtl-Blasius horizontal velocity profile
(Schlichting & Gersten 2017) that would be created by a large scale flow in Rayleigh - Bénard
convection at the same Ra as that would occur in the transpiration case at B = 0.12, at a
Reynolds number, ReLS = ULSW/ν ≃ 294 and streamwise distance x = W/2 from the leading
edge (see Appendix D). The inset shows that u/u∗

c , where u
∗
c is given by (3.5), at different B and

x̂ collapse to a single curve f(η) given by (3.6). The symbols indicate the following horizontal
locations: ×, x̂ = 0.3; �, x̂ = 0.5; ∗, x̂ = 0.7; ⋄, x̂ = 0.9 and o, f(η) (3.6). The curves drawn at
different x̂ are for B = 0.023 and the curves drawn for different B are at x̂ = 1.0. The blue curve
in the inset is the dimensionless Blasius profile, u/ULS , plotted against η

99
, where η

99
= y/δ99

and δ99 = 5
√

νwx/ULS is the velocity boundary layer thickness when u = 0.99ULS (Schlichting
& Gersten 2017).

where

Zw =

(
νD

gβ∆C

)1/3

and ZVi
=

ν

Vi
(3.4)

are the near-wall length scale in turbulent convection obtained due to a balance of
diffusive and buoyancy forces (Theerthan & Arakeri 1998; Puthenveettil, Gunasegarane,
Agrawal, Schmeling, Bosbach & Arakeri 2011) and the advective-viscous length
scale (Puthenveettil & Arakeri 2008) respectively.

3.2. Velocity profiles

Figure 3 shows the effect of blowing on the horizontal velocity profiles in the boundary
layer at x̂ = 1.0. As discussed earlier, blowing lighter fluid into the boundary layer
causes the motion pressure gradient to increase, and hence an increase of the horizontal
momentum flux, which results in a higher horizontal velocity. The inset in figure 3 shows
the distribution of the normalised horizontal velocity u/u∗c at various x̂ and B, where

u∗c =

(
V 3
i x

2gβ∆C

ν

)1/4

(3.5)

is obtained by replacing L in (B 6) with x. All the black curves collapse approximately
to a single curve of the same form as that of û(x̂, η) profile, (2.27), with the mean value
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vc, where δ∗vc is given by (3.8), is a constant equal to 1.75.

of the coefficient equal to ≃ 7.1. Since u/u∗c = û(x̂, η)uc/u
∗
c , it follows that

u/u∗c = f(η) = 7.1 η(η − 1)2, (3.6)

implying similar nature of the velocity profiles; u/u∗c can now be written as,

u(x, y)

Vi
≃ f(η)

(
Grx
Rex

)1/4

= f(η)
ReL
B5/4

√
x

L
. (3.7)

The above scaling implies that u(x, y) has a square root dependence on x and a three-
fourth power law dependence on Vi. The relation (3.7) implies that u ∼ (u2ffV

3
i /uν)

1/4,

a function of the free fall velocity over x, uff =
√
gβ∆Cx, the viscous velocity scale

uν = ν/x and the blowing velocity Vi, showing the relative effect of each force in changing
the horizontal velocities.
Figure 3 also shows the Prandtl-Blasius velocity profile that would occur in the

corresponding Rayleigh - Bénard convection at the same near wall Rayleigh number Raw
(Raw = Ra/2) as that occurs at B = 0.12 in the present transpiration case; the details of
this estimation is given in Appendix D. The corresponding dimensionless Prandtl-Blasius
velocity profile is shown in the inset. For a given ∆C and Sc, it is evident from figure 3
that the shear boundary layer with no wall-blowing is an order thicker than the natural
convection boundary layer (NBL) with a weak wall-normal uniform blowing at the same
Raw. Accordingly, comparing the black and blue curves, it can be deduced that NBL
with a weak blowing offers a larger drag on the bounding plate.

3.3. Velocity boundary layer thickness and drag

It is clear from figure 3 that blowing increases the velocity boundary layer thickness at a
given x̂ since the height of the velocity profiles increase with increase in blowing strength.
The corresponding spatial development of the velocity boundary layer for different B is
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Figure 5. Effect of blowing on the wall shear stress (τ|y=0) at different dimensionless horizontal
positions. The bottom, right inset shows the variation of the coefficient of drag CD with ReL at
the different x̂ with ◦ showing (3.13). The top, left inset shows the variation of τ|y=0/(µu∗

c/δ
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dc)

with Vi at the different x̂ as in the main figure.

shown in figure 4. The fluid in the species boundary layer whose velocity is increased
owing to blowing, as we saw above, drags more fluid from above it thereby resulting in
an increased δv with B at any x̂. At any given B, the reason for the increased δv with x̂
is also similar since u increases with x. The inset of figure 4 shows the variation of δv/δ

∗
vc

with x̂ for different values of B, where

δ∗vc = Sc1/5
(
νVix

2

gβ∆C

)1/4

, (3.8)

obtained by replacing L in (B 7) with x. All the profiles of δv/δ
∗
vc collapse to a single

value of 1.75 implying similarity. Such a similarity implies,

δv
x

≃ 1.75Sc1/5
(

νVi
gβ∆Cx2

)1/4

= 1.75Sc1/5
B5/4

ReL

√
L

x
. (3.9)

Hence, δvc is the appropriate characteristic scale for the velocity boundary layer thickness.

Figure 5 shows the variation of the wall shear stress with Vi at various x̂, where the
wall shear stress is defined as

τ|y=0 = µ
∂u

∂y

∣∣∣∣
y=0

∼ ρ
ν2

L2
Sc−1/5 (GrLReL)

1/2

δ̂v

∂û

∂η

∣∣∣∣
η=0

, (3.10)

and evaluated using the computed values of δ̂d and δ̂v. The wall shear stress increases with
increase in Vi at all x̂; the dependence of τ |y=0 on x̂ at any Vi is quite weak. Note that the
increase in wall shear stress at any x̂, observed in figure 5, can also be observed in figure 3
as an increase in the vertical gradient of the velocity profile at the wall with increase in B.
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Weak blowing of lighter fluid increases the wall shear stress in NBL unlike in the case of
weak blowing into shear boundary layers. In shear boundary layers, the external forcing
from the free-stream flow creates the boundary layer, while it is the internal motion
pressure gradient, due to the lighter fluid in the boundary layer, that drives the NBL.
With increase in blowing velocities, within the weak blowing regime considered here, the
dominant effect appears to be an increase in motion pressure gradient resulting in larger
velocity gradients at the wall. The vertical momentum of blowing seems to be insufficient
to reduce the velocity gradients at the wall at the low blowing velocities encountered in
the present study.
The top, left inset in figure 5 shows that the dimensionless wall shear stress,

τ|y=0

(µu∗c/δ
∗
dc)

≃ 1.16, (3.11)

independent of Vi and x̂, where τ|y=0 is calculated from (3.10), with δ∗dc and u∗c given by
(3.1) and (3.5), respectively. Using the expression for τ|y=0 from (3.11) in the expression
for the coefficient of drag,

CD =
τ|y=0

ρu2c/2
(3.12)

and simplifying using (B 6), (3.1) and (3.5), we obtain,

CD ≃ 2.32

ReL
, (3.13)

independent of x̂. As shown in the bottom, right inset of figure 5, CD calculated using
(3.12), with τ|y=0 estimated by (3.10) using the computed velocity profiles, show a good
match with (3.13) for all x̂. Hence, in laminar natural convection boundary layers with
blowing, for Reδv < 1 and 0.012 < B < 0.12, the coefficient of drag varies as Re−1

L

unlike in laminar shear boundary layers, where the average coefficient of drag varies

as Re
−1/2
L (Schlichting & Gersten 2017). The relation (3.13) also implies that the drag

coefficient based on uν ,

CDν
=

τ |y=0

ρ u2ν/2
= 2.32

√
GrxRex, (3.14)

which clearly shows that increase of natural convection effects as well as blowing increases
the drag.

3.4. Theoretical mean concentration profile

Experimental verification of the expressions (3.2), (3.7), (3.9) and (3.13) pose consider-
able difficulties, since, in addition to being thin (∼ 0.3mm), these boundary layers are also
unstable beyond a certain horizontal distance (PA08). As shown in figure 1(b), plumes
arise from the instability of these boundary layers. Figure 6(a) shows the instantaneous
top view of the region close to a horizontal membrane in an experiment where lighter
water is forced from below the membrane at a velocity of Vi = 0.002 cm s−1, into a layer
of heavier brine above the membrane. The light green lines in the image are the line
plumes created by the instability of the natural convection boundary layers in between
these plumes, which are subjected to a transpiration through the membrane. In addition
to the fact that the boundary layer lengths are spatially random, the flow induced by
these plumes causes these plumes to keep merging (Gunasegarane & Puthenveettil 2014)
so that the random pattern in figure 6(a) keeps evolving spatially and temporally with
time. These boundary layers then form and are destroyed by the plume motion at various
random locations and at various temporal instants above a horizontal porous surface.
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Figure 6. a) Topview of the near-membrane sheet plumes observed in a forcing experiment
with Vi = 0.002 cm s−1 and Ra = 8.1 × 1011. b) Schematic of the idealised distribution of the
sheet-plumes in the laser sheet plane A-A in (a) when viewed from front. Figure 8 shows the
front-view images of the actual sheet plume distribution obtained in such laser sheet planes in
experiments with different blowing velocities.

Due to this reason, identifying an individual boundary layer and measuring its profile is
difficult in the parameter regime at which these boundary layers exist.

In spite of this difficulty, indirect experimental verification of the expression for the
species boundary layer thickness (3.2) could be obtained as follows. For steady convection,
at any instant, the distances over which these boundary layers exist on the surface are
distributed lognormally (PA08, Ramareddy & Puthenveettil (2011)). However, there exist
a mean spacing between the plumes,

λb = 2K2/3Sc1/6
√
ZwZVi

, (3.15)

where K = 0.325, equal to twice the mean distance over which the boundary layer forms
on the surface (PA08, Ramareddy & Puthenveettil (2011))†. For a given B, the actual
spatial distribution of boundary layers over the surface in steady state could then be
represented by an idealised distribution of pairs of boundary layers each of length equal
to λb/2 and facing each other (see figure 6(b)). The spatial average profiles in such
an idealised representation should be the same as that in the actual case, which gives
us an easy way to verify the theoretical profiles by comparing the spatial mean profile
from such an idealised distribution with the spatial mean from the experiments. With
such an aim to compare with experiments, we now derive the theoretical spatial mean
concentration profile using the expression for the species boundary layer thickness (3.2)
when the boundary layers become unstable at a constant horizontal distance λb/2, given
by (3.15). Interestingly, we find that the theoretical mean concentration profile becomes
independent of the blowing velocity in the specific regime of convection that we discuss
here.

† Note that we define λb as the edge to edge distance between the adjacent plumes, unlike
in the case of PA08 where λb is defined as the centre to centre distance of plumes. The present
definition is more appropriate since (3.15) is obtained from relations that are valid only for
boundary layers and not for regions within plumes.
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Assuming that the boundary layer of length λb/2 repeats itself spatially, the horizon-
tally averaged, steady state, concentration at any y between the surface and the maximum
species boundary layer thickness could be calculated as,

〈C(y)〉 = 1

λb/2

∫ λb/2

0

C(y) dx, (3.16)

by averaging the local concentration C(y) over a horizontal distance of λb/2, along the
horizontal line at a height of y, as depicted in figure 1(a). Let xd(y) be the horizontal
distance at any y at which the concentration changes from CT to CB (see figure 1(a)).
Then, at any fixed y, splitting the integral over λb/2 in (3.16) into integral from 0 to
xd(y) over which the concentration is CT (white region in figure 1(a)), and from xd(y)
to λb/2 over which the concentration is CB (yellow region in figure 1(a)),

〈C(y)〉 = 1

λb/2

(∫ xd(y)

0

CT dx+

∫ λb/2

xd(y)

CB dx

)
. (3.17)

Equation (3.17) simplifies to

〈C(y)〉 = CB +
2xd

λb
∆C. (3.18)

The dimensionless, horizontally averaged, steady state, theoretical concentration at a
height y can now be written from (3.18) as

〈C∗(y)〉 = 〈C(y)〉 − CB

∆C
=

2xd

λb
. (3.19)

Since the height y at a horizontal distance of xd at which CT changes to CB is the same
as δd(xd), substituting δd = y and x = xd in (3.2), we obtain,

xd =
( y

1.6

)2√gβ∆C

νVi
. (3.20)

Using (3.20) and the expression for λb given by (3.15) in (3.19), we obtain

〈C∗(y)〉 = 0.39

K2/3Sc2/3

(
y

Zw

)2

=
0.39

K2/3
Gr2/3y , (3.21)

where Zw is given by (3.4) and Gry = gβ∆Cy3/ν2 is the Grashoff number based on y.
Surprisingly, (3.21) implies that the dimensionless, horizontally averaged, steady state
concentration profile within the boundary layer is independent of the strength of blowing.
The profile is also independent of the species diffusion within the boundary layer, a
consequence of blowing which creates a uniform concentration profile within the boundary
layer. The boundary layer thicknesses and the velocity profile at any spatial location are
functions of the blowing velocity (see (3.2) and (3.7)), but the horizontal average of the
concentration profile becomes independent of Vi. This surprising independence of the
horizontally averaged concentration profile on the strength of blowing, is a consequence
of the similar 1/

√
Vi dependence of xd and λb as shown by (3.20) and (3.15). We now

see whether this predicted theoretical mean concentration profile can be obtained in
experiments, if so, thereby indirectly verifying the relation (3.2).
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Figure 7. (a), Schematic of the experimental setup used in the present study; (b), magnified
view of the porous membrane used in the experiments with pore size, Ps = 45.6µm and open
area factor, Γ = 0.31, and (c), the magnified view of the arrangement used to prevent a shadow
over the membrane in the region enclosed by the dashed-circle in (a).

4. Experiments

For verifying the theoretical expression of the mean concentration profile (3.21), two
types of experimental setups that provide density difference across a horizontal membrane
were used. While in the first setup a gravitational head drives the flow through the
membrane, it is the unstable density difference across the membrane that drives the
flow in the second setup. In both the experiments, the PLIF technique was employed to
extract the mean concentration distribution in a vertical plane near the membrane so
that the experiments could be compared with the theory.

4.1. Setup

In both the setups, the arrangement consisted of a heavier layer of brine above a
horizontal porous membrane, with a lighter layer of water, that had 0.48 parts per million
(or p.p.m.) of Rhodamine-6G dye in it, below the membrane. In the first setup, whose
schematic is shown in figure 7(a), the bottom fluid was forced upwards through the
membrane by the constant gravitational head arrangement shown in the figure. The
porous membrane with a pore size Ps = 45.6µm and an open area factor Γ = 0.31
(figure 7(b)), was fixed as shown in figure 7(c). Such a fixture prevented the shadow cast
by the glue from falling on the membrane surface when a vertical collimated laser sheet
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(Litron R© Nd:Yag laser, 532 nm, 100 mJ pulse−1 and 50 Hz) was passed grazing the
upper surface of the membrane. Due to this arrangement, the inner cross section of the
top tank was 15.6 cm× 15.6 cm while that of the bottom tank was 15 cm× 15 cm; the
heights of the fluid layers in the top and the bottom tanks were equal to 25.85 cm and
23.9 cm, respectively. A CCD camera (ImagerProx4M, LaVision GmbH, not shown in
figure 7) was mounted perpendicular to the vertical plane of the near membrane region
such that the image resolutions of the first and the second experimental configurations
are 31 pixels/mm and 26 pixels/mm, respectively.

The bottom tank was filled with dyed-water up to the membrane and the membrane
was covered with a cling film before filling the top tank with brine. The experiment was
initiated by removing the cling film which prevented mixing while the top tank was being
filled. The bottom lighter fluid was then forced upwards through the membrane by the
constant gravitational head arrangement shown in figure 7(a); we call these experiments
as the forcing experiments. The flow through the membrane was controlled by adjusting
the gravitational head to conduct experiments with the desired uniform velocity Vi
through the membrane which was maintained constant with respect to time t; the range
of Vi was chosen to be within the range of Vi given in table 1. The volume of brine that
leaves the top tank was measured for a specific time to calculate the uniform velocity
of water flow through the membrane pores. The experiments were unsteady since the
concentration of salt in the top tank decreased continuously with time, while the bottom
tank had a constant, zero, salt concentration. However, quasi-steady approximation could
be used to estimate the horizontally averaged concentration near the membrane, as shown
in Appendix E. In the present study, experiments were conducted with the concentration
of NaCl in the top tank before the start of the experiment (C0) ≃ 11 gl−1 for five
velocities as shown in Table 3.

The second experimental set-up was the same as the first one except that it did not
have the arrangement beyond the stop-valve at the inlet to the bottom tank shown in
figure 7(a). The heights of the fluid layers in both the tanks were equal to 23.9 cm. These
experiments were conducted with the stop-valve closed after the bottom tank was filled,
and hence we call these experiments as the no-forcing experiments. In these experiments,
the concentration of NaCl in the top tank decreases with time from its initial value at
the start of the experiment of C0 ≃ 15 gl−1, while that in the bottom tank increases with
time till eventual density equalisation occurs after 2.5 days approximately. Vi decreases
with time in these experiments and occurs due to the impingement of the large scale flow
on the membrane. Quasi-steady approximation in calculating the mean concentration
profile could also be used in these experiments, as shown in detail in Ramareddy &
Puthenveettil (2011). Detailed descriptions of the no-forcing experiments are given in
(Puthenveettil & Arakeri 2005, 2008; Ramareddy & Puthenveettil 2011; Puthenveettil
2004). The parameters corresponding to this experiment (yellow circle) are shown in
Table 3.

4.2. Diagnostics

The spatial concentration maps of NaCl (Ce(x, y)) at any time instant near the top of
the membrane, in both the setups, were calculated from the images of the fluorescence of
the dyed, lighter bottom fluid crossing the vertical laser sheet grazing the membrane,
as discussed in Appendix F. Hereinafter, the subscript e denotes the experimental
values obtained from PLIF. Since (∆ρ/ρ)dye ≪ (∆ρ/ρ)salt, and since Scdye ≫ Scsalt
(2000 ≫ 600), the dye behaves as a passive scalar; the concentration of the dye will
be equal to the concentration of the lighter fluid carrying the dye in the present mixing
experiments. A four pole conductivity probe (Radiometer Analytical, SAS), immersed at
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Symbol C0 Vi Pe = Vilm/D t Ra× 10−11 J × 108 Re = Vi(λb/2)/ν

(g l−1) (cm s−1) (min) (Expts.)

15.37 0.0016 0.8 48.97 8.81 7 0.029

10.92 0.0016 0.8 9.93 8.56 7 0.030

12.08 8.48 7 0.030

32.77 7.88 8 0.031

11 0.0028 1.4 1.14 8.43 38 0.040

2.96 8.41 38 0.040

7.66 8.10 40 0.041

11.29 0.0057 2.8 2.38 8.63 313 0.057

5.37 8.57 315 0.057

8.38 8.20 330 0.058

13.1 7.86 344 0.058

11.25 0.0072 3.5 2.61 8.89 613 0.064

5.69 8.74 624 0.064

6.77 8.71 626 0.064

12.61 7.88 692 0.065

11.24 0.0095 4.6 1.17 7.98 1568 0.075

14.17 6.08 2057 0.078

14.32 6.03 2075 0.078

Table 3. List of parameters corresponding to the experiments conducted in the present study.
, no-forcing experiment; all other symbols show forcing experiments.

around 30 mm below the brine level in the top tank, was used to measure the electrical
conductivity of the top tank solution with time. The bulk concentration in the top tank
was calculated from these conductivity measurements using standard relations (Lide
2003); the Rayleigh number (Ra = gβ∆CeH

3/νD) could then be calculated once ∆Ce is
obtained, as discussed in Appendix G. The CCD camera and the conductivity meter
were synchronised so that the Rayleigh number corresponding to the PLIF images
would be known. The effect of Rhodamine-6G on the measured conductivity of the salt
solution is negligible due to the low concentration of the dye used (Ramareddy 2009).
Both experiments were started by removing the cling film. Initial mixing caused the
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concentration of NaCl in the top tank measured by the conductivity probe to fall from
C0 to values Cp(ts), slightly lesser than C0, within a time ts of a few seconds, after
which Cp(t) starts to decrease monotonically. Hereinafter the subscript p denotes the
experimental data obtained from the conductivity probe, different from that obtained
from the PLIF data.

5. Comparison of the theoretical relations (3.2) and (3.21) with
experiments

5.1. The dimensionless parameter in experiments

As seen in (2.19) the boundary layer thicknesses and the velocity profile, for a given
fluid, depends only on B. The analysis in § 3 was for a length L of a steady boundary
layer satisfying 0.012 6 B 6 0.12 at large Sc. However, in reality, these boundary layers
become plumes after a mean distance of L = λ̄b/2, where λ̄b is given by (3.15), beyond
which the analysis of §3 is not valid. Replacing L in (2.21) with λ̄b/2 from (3.15), we
obtain the blowing parameter in experiments (Be), based on λb, the actual length over
which the boundary layer exists as

Be = (KJ)
4/15

, (5.1)

where

J =
B5

Re2L
=

V i3

gβ∆Cν
=
Re3L
GrL

, (5.2)

is an equivalent, length independent, dimensionless blowing parameter which decides
the nature of these boundary layers. J is a dimensionless number showing the relative
importance of blowing, buoyancy and viscous effects in the boundary layer, devoid of any
length scale. The range of J (2 × 10−8 6 J 6 1.62 × 10−5) corresponding to the range
of B is shown in Table 1. Expressions for the species boundary layer thickness (3.2), the
horizontal velocity profile (3.7) and the drag coefficient (3.13) can now be rewritten in
terms of J by using (5.1) to obtain

δd
x

=
1.6√
2

(√
J

Rex

)1/2

(5.3)

u

Vi
=

√
2f(η)

1
(
Rex

√
J
)1/2 and (5.4)

τ|y=0

ρV 2
i /2

=
2.32√
J
. (5.5)

Hence, unlike in (3.2), (3.9) and (3.7) where δd, δv and u are functions of L, due to the
instability constraint (3.15), these variables are in actual only functions of J and Rex.
Hence, the range of J in experiments and in theory have to be the same to ensure that
the uniform concentration approximation is valid in both cases. Tables 1 and 3 show
that the range of J are the same in theory and experiments. Further, as we saw in § 3.4,
the horizontal averaging of the concentration profile over their instability distance (3.15)
makes the theoretical mean profile (3.21) independent of Vi also. A comparison of the
theoretical species boundary layer thickness (3.2) and the theoretical mean concentration
profile 〈C(y)〉 with the corresponding experimental values, δde and 〈Ce(y)〉 respectively,
at an instant needs to be then done by matching only the driving concentration difference
(∆Ce(t)) and the fluid properties; we achieve this as we describe below.
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5.2. Spatial concentration maps

Figure 8 shows the spatial maps of concentration of NaCl (Ce(x, y)) in the near-
membrane region for J = 7 × 10−8, 3.8 × 10−7 and 6.24 × 10−6 at various specific
instants of time. The parameters corresponding to these concentration maps ( ; and

, respectively) are given in table 3. The horizontal red color regions, approximately 0.3
mm thick, near the bottom of each image are the boundary layers on the membrane. The
location of the membrane in the PLIF images (y = 0 in the images in figure 8) were fixed
by first imaging the region without the laser sheet. The near-vertical red streaks show the
sheet plumes, in the yellow color background of the bulk fluid with the horizontal blue
lines at the bottom indicating λe, the horizontal distance between the adjacent plumes.
The zoomed view of the region above the first red line in figure 8(b), shown in

figure 8(c), shows the increasing concentration of NaCl, Ce(x, y) at t = 2.96 min from a
lower value near the membrane to a higher value in the bulk. The experimental spatial
mean concentration values of NaCl, 〈Ce(y)〉 at the instant of these images, is obtained
by averaging from such regions between the plumes in each image. However, in spite of
the laser sheet being collimated and carefully aligned parallel to the membrane, due to
the reflection of laser light from the membrane, our mean concentration measurements
are not reliable within a distance of approximately hl = 0.12mm from the membrane
surface. At distances less than hl from the membrane, the mean profiles deviated from
the expected decreasing trend towards the membrane; we exclude these anomalous data
in our mean concentration curves; the red dashed lines with vertical arrows on both sides
of the images in figure 8 point to the location of the first valid data point.

5.3. Matching of ∆C in theory and experiments

Since the estimation of concentration very close to the membrane region in experiments
is erroneous, the value of concentration at the bottom of the boundary layer CBe(t)
calculated from PLIF and hence the estimated driving concentration difference from
PLIF would be erroneous; CBe(t) cannot also be taken to be zero due to the initial
mixing. Hence, the values of CBe(t) for both the experiments are estimated using
the concentrations calculated from the conductivity probe measurements as follows.
For the no-forcing experiments CBe(t) is calculated using both the conductivity probe
measurements and the PLIF images as explained in Appendix G.1. This CBe(t) is used
as the bottom concentration in both the theoretical and the experimental profiles. For
the forcing experiments, as explained in Appendix G.2, we calculate CBe(t) using (G 6)
obtained from the mass balance in the bottom tank, and use these as the bottom
concentration in the theoretical and the experimental concentration profiles.

The horizontally averaged concentration at an instant, 〈Ce(y)〉, above a height of 0.8
mm from the membrane surface, calculated from the PLIF images was found to be
spatially constant; we hence choose this uniform concentration as the concentration above
the boundary layer for both the forcing and the no-forcing experiments in theoretical
and experimental profiles. Therefore, for each experimental setup, the theoretical and
the experimental mean concentration profiles are compared by using the corresponding
driving concentration difference ∆Ce(t) = 〈Ce(y = 0.8mm)〉 − CBe(t), with CBe(t)
estimated from conductivity measurements at the same instant as the PLIF image, as
described above.

5.4. Comparison of species boundary layer thicknesses

Using the spatial concentration maps similar to those shown in figure 8, we measure
the local, instantaneous, experimental species boundary layer thicknesses δde as follows.
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Figure 8. The spatial concentration distribution of NaCl in the near-membrane region for
some of the experiments shown in Table 3: a) , J = 7 × 10−8 (time, t = 9.93 min); b) ,
J = 3.8 × 10−7 (t = 2.96 min); c) magnified view of the region surrounded by the rectangle
shown in figure 8(b); d) , J = 6.24 × 10−6 (t = 5.69 min), where J is given by (5.2). The
time t shown corresponds to the time at which the image was recorded after the start of the
experiment. The blue lines at the bottom show the distances used for averaging, and the red
arrow points to the location of the first valid data point, whereas y = 0 refers to the top surface
of the membrane.
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Figure 9. Measured species boundary layer thicknesses in the experiments (δde) as a function

of the streamwise distance (x). , J = 13 × 10−8 (Vi = 0.0016 cm s−1); , J = 507 × 10−8

(Vi = 0.0057 cm s−1); , J = 2577 × 10−8 (Vi = 0.0095 cm s−1). The solid curves are the
corresponding expressions (3.2), calculated using the local∆Ce of the boundary layer considered.

As could be seen from figure 6(a) the boundary layers are all not perpendicular to the
laser sheet. Further, as seen from figure 8 their lengths of intersection with the laser sheet
also vary, possibly due the random nature of perturbations which affect their instability.
In addition, some of the boundary layers appear spatially perturbed, possibly due to the
accumulation of fluid due to the lateral motion of plumes. To avoid these complications
affecting the measurements, from each image at each Vi, we judiciously choose pairs
of adjacent plumes that are approximately separated by 1cm and bounding boundary
layer regions that are free of waviness. Since we expect the boundary layer pair between
the plumes to grow equally in the opposite horizontal directions from the center of the
region between the plumes, we choose the leading edge of each boundary layer to be at the
mid point of the distance between the plume pair. Since concentration is approximately
constant above a height of ∼ 0.3mm above the membrane (see figure 10), we average
the concentration at this height within the length of the boundary layer to obtain an
estimate of CTe, the bulk concentration in the top tank. At each x location within the
length of the boundary layer, the maximum height of the pixels whose concentration is
less than CTe is then taken to be δde(x).
Figure 9 shows the variation of δde at three J in experiments. As expected from the

theory, larger blowing velocities result in larger δde and its longitudinal gradient at any
x. The figure also shows the variation of the theoretical species boundary layer δd, (3.2),
calculated using the local ∆Ce = CTe − CBe, with CBe estimated using (G 6). As we
can see, the measurements match fairly well with (3.2) at all the three J considered;
similar match of δde and δd were obtained at the J listed in table 3. Considering the non
idealities mentioned above in these measurements, it is remarkable that a good match
between δde and δd (3.2) is obtained. This match of δde and δd (3.2) validates the scaling
theory presented in § 3.

5.5. Comparison of mean concentration profiles

The experimental mean concentration profile was calculated by averaging the concen-
tration in the boundary layer region over distances between the edges of the plumes, for
similar values of J as in the theory, for the same values of ∆C. The averaging is done over
several plume-pairs in each image with the number of plume-pairs ranging from three
to nineteen for different J , based on the availability of clear boundary layer regions. As
shown in § 3.4, the theoretical mean concentration profile (3.21) was obtained by assuming
no concentration drop in the species boundary layer. Such a regime of convection has
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Figure 10. Mean concentration profile in experiments and theory for three of the experiments
shown in table 3. No-forcing experiment: , J = 7×10−8; Forcing experiments: , J = 7×10−8;
, 2.1× 10−5. –, – – & – · – represent the corresponding dimensional, theoretical concentration

〈C(y)〉 profiles obtained by using (3.21) in (3.19). The inset shows the dimensionless mean
concentration data obtained from the experiments (symbols) for all the values of J listed in
table 3. The red curve is the dimensionless, theoretical mean concentration profile obtained
using (3.21).

been studied earlier by PA08, which they termed as the advection regime, which occurs
when the Peclet number Pe = Vilm/D & 0.8, where lm is the thickness of the membrane.
As shown in table 3, comparisons of (3.21) with the experimental profiles are done only
for experiments in which Pe > 0.8.
Figure 10 shows the mean experimental concentration profiles of NaCl, 〈Ce(y)〉, ob-

tained by horizontally averaging the spatial concentration distribution Ce(x, y) in the
concentration maps, similar to that shown in figure 8, for J = 7 × 10−8, 7 × 10−8 and
2.1 × 10−5 at the instant shown in Table 3. The errors in 〈Ce(y)〉, estimated as the
standard deviation normalised by the square root of the sample number, are shown as
the error bars. The curves for the no-forcing ( ) and the forcing ( ) experiments show
that at the same blowing velocity, if the concentration difference is larger, larger the Ra
and lower is the height of the concentration profile. These two data are at the same J ,
but differ in Ra; the profiles being quite different shows the strong dependence on Ra,
though J is the same. By comparing the data in figure 10 at J = 7 × 10−8 ( ) with
that at J = 2.1 × 10−5 ( ) it would appear that an increase in blowing increases the
boundary layer thickness. However the data at J = 2.1 × 10−5 is also at a much lower
Ra, which could be the predominant reason for the increase in the height of the profile,
and not the increase in the blowing velocity.
These trends become clearer by comparing these mean experimental profiles with

the mean theoretical concentration profiles 〈C(y)〉 calculated from (3.21) shown as
lines in figure 10. The theoretical profiles are linear away from the membrane showing
increasing importance of diffusion away from the membrane while non linearity near
the membrane shows the predominance of advection over diffusion; the height of the
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vertically varying part of the mean concentration profile indicates the mean species
boundary layer thickness. A good match between the theoretical and the experimental
mean concentration profiles is seen in figure 10, except near the edge of the mean species
boundary layer; similar match was obtained for all the values of J shown in table 3.
The deviation of the upper part of 〈Ce(y)〉 from 〈C(y)〉 is expected to be due to the bulk
concentration in experiments just above the boundary layers being slightly less than CTe,
contrary to the assumption in obtaining the theoretical profile, due to the local mixing
from the rising and dispersing plumes near the boundary layers. It is also possible that
the variation of boundary layer thickness with x varies from that described by (3.2) close
to the formation of plumes due to the boundary layers becoming unstable. The match
of the experimental concentration profiles with the concentration profile obtained from
(3.21), implies that since (3.21) is independent of the blowing velocities Vi, the mean
experimental profiles must also be so.
This independence of the mean concentration profile on Vi and D could be clearly

seen in the inset of figure 10, where the mean experimental concentration profiles
are plotted for all the values of J (shown in table 3) in their dimensionless form
〈C∗

e 〉 = (〈Ce〉 − CBe)/∆Ce, against the dimensionless vertical coordinate y/Zw. The
errorbars show the estimated errors in 〈C∗

e 〉, which are obtained by using the error in 〈Ce〉
and that in the conductivity measurements (2% of the reading). All the dimensionless
mean concentration profiles at 0.0016 cm s−1 6 Vi 6 0.0095 cm s−1 collapse on to the
theoretical curve (3.21), which is independent of Vi and D. This remarkable collapse of
the concentration profiles at various blowing strengths is also an indirect verification of
(3.2), given that (3.15) has been shown to match with experimental measurements by
PA08.

6. Discussion & Conclusions

The primary contributions of the present work include the relations for high Schmidt
number (Sc) natural convection boundary layers on horizontal surfaces subjected to a
spatially constant weak blowing, which typically occur in concentration-driven convection
in liquids bounded by porous surfaces. New relations were obtained for the boundary layer
thicknesses (3.2, 3.9), the horizontal velocity profile (3.7) and the drag coefficient (3.13),
which along with the stability length of such boundary layers, surprisingly imply that the
mean concentration profile (3.21) becomes independent of the blowing. These scalings
were obtained from the analysis of the solutions of the integral natural convection
boundary layer equations with a constant blowing velocity as one of its boundary
conditions for the case of high Schmidt numbers Sc, where, due to the very thin species
boundary layers, a weak blowing creates a uniform concentration, the same as the
concentration of the fluid blown into the boundary layers.
The species boundary layer thickness δd ∼ x(Rex/Grx)

1/4 (3.2), implying a de-
pendence of the boundary layer thickness on buoyancy, viscous and the blowing forces,
in contrast to the case of natural convection boundary layers with no blowing where

δd ∼ x/Gr
1/5
x (Pera & Gebhart 1973). With stronger blowing, represented by a larger

local blowing Reynolds number Rex based on the blowing velocity Vi and the longitudinal
distance x, larger was the δd at any x. The scaling also implies that increasing the
natural convection effects, by increasing the local Grashoff number Grx based on x would

reduce δd at any x. If a local Blowing parameter is defined as Bx = Rex/Gr
1/5
x , which

shows the relative local strength of blowing over natural convection and viscous effects,

the above scaling (3.2) implies that δd/ZVi
∼ B

5/4
x , where ZVi

= ν/Vi is the viscous-
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advective length scale (Puthenveettil & Arakeri 2008). In terms of the length scales near
the membrane, the above scaling means that δd ∼ (x2Z3

wSc/ZV i)
1/4, while in the case

of pure natural convection over horizontal surface δd ∼ (x2Z3
wSc)

1/5, where Zw is the
near-wall length scale in turbulent convection (Puthenveettil, Gunasegarane, Agrawal,
Schmeling, Bosbach & Arakeri 2011).

In reality, such boundary layers are unstable and would turn upwards to form plumes
at a mean distance of λb (Puthenveettil & Arakeri 2008). We find that this insta-
bility condition, along with the presence of an approximately uniform concentration
region of thickness δd on the porous surface implies that the horizontally averaged
concentration profile, normalised by the driving concentration difference ∆C, should
scale as (y/Zw)

2 (3.21) with y being the vertical co-ordinate. This scaling implies that
the mean concentration profile across such boundary layers should become quadratic
in y, independent of the strength of blowing, and be a function of only the driving
concentration difference for a range of weak blowing velocities so that the Blowing

parameter 0.012 < B = ReL/Gr
1/5
L < 0.12. Such an inference is then verified

experimentally by measurements of the spatial mean concentration profile on top of a
horizontal membrane that separates brine above it from pure water below it, while a weak
flow is forced through the membrane by gravity. The matching of the dimensionless mean
concentration profile in experiments at different ∆C and Vi with (3.21), in addition to
proving such a unique concentration profile, also indirectly verifies the proposed boundary
layer scalings.

The velocity boundary layer thickness δv ∼ δdSc
1/5 (3.9), proportional to δd, while

the horizontal velocity profile u ∼ Vif(η)(Grx/Rex)
1/4 (3.7), where η = y/δv. The

scaling of the horizontal velocity implies that u/uν ∼ (GrxRe
3
x)

1/4, where uν =
ν/x is the viscous velocity scale, showing a stronger effect of blowing than natural
convection in changing the horizontal velocities. In contrast, in the absence of blowing,

u/uν ∼ Gr
2/5
x (Pera & Gebhart 1973). With increase in blowing, since more lighter

fluid accumulates close to the surface, thereby increasing the driving horizontal pressure
gradient at the surface, the vertical gradient of the horizontal velocities at the surface
increased with blowing. In consequence, the drag due to the boundary layer increased
with stronger blowing, unlike that in the case of shear flows with transpiration. Such an
increase of the drag with blowing was seen in the scaling of the drag coefficient based on
uν , CDν ∼

√
GrxRex (3.14); both natural convection and blowing has similar effects in

increasing the drag of the boundary layers.

Even though the proposed new scalings for the boundary layer parameters for high
Sc natural convection boundary layers on horizontal surfaces with a weak blowing are
in general agreement with the solutions of integral equations and indirectly with the
experiments, they also raise some interesting questions. Lack of similarity solutions
for these boundary layer equations, except for a x−2/5 variation of Vi has been well
known (Clarke & Riley 1975; Merkin 1975; Chen, Buchanan & Armaly 1993). The present
study shows that similarity of the relevant boundary layer parameters might be possible
for these boundary layers for a specific range of blowing velocities and concentration
differences when Sc becomes large, albeit with a different set of similarity variables and
characteristic scales from those proposed by the earlier researchers. This aspect of the
similar nature of these boundary layers needs to be further investigated. The present
analysis is for boundary layers with a weak blowing so that inertial effects are negligible
in the boundary layers, which is met by ensuring that the analysis is conducted only for
the cases where Reynolds numbers based on δv, Reδv ≪ 1. Non-negligible inertial effects
would imply that the characteristic scales (B 5), (B 6) would no longer be valid; new
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scales will then have to be obtained and the subsequent analysis will have to be redone.
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Appendix A. Justification for the uniform concentration
approximation

Figure 11(a) shows the concentration profile assumed in the integral analysis (dashed
line) along with the expected actual concentration profile (solid line) in the species
boundary layer. If δdg and δdb are the thicknesses of the regions within the species
boundary layer that would, in reality, have a concentration gradient and a uniform
concentration respectively, then the uniform concentration approximation can be justified
if δdg ≪ δd. As we show below, δdg ≪ δd for the present range of study.
From the steady mass balance in a control volume of height δdb and width x in the

uniform concentration region of the species boundary layer,

Vi x ∼ δdb uc, (A 1)

where uc is the horizontal characteristic velocity inside the control volume, defined later
in (B 6). A balance of convection and diffusion in a control volume, of height δdg and
width x, located in the gradient region of the species boundary layer implies,

D
∆C

δdg
x ∼ uc δdg∆C. (A 2)

Rewriting δdb in (A 1) as δd − δdg, (A 1) becomes,

δdg
δd

∼ 1

(Vi x/uc δdg) + 1
. (A 3)

Replacing δdg on the right hand side of (A 3) with
√
Dx/uc, obtained from (A2), imply

that at x = L,

δdg
δd

∼ 1

1 + Vi
√
L/ucD

. (A 4)

Using the characteristic scales for horizontal velocity, (B 6), in (A 4) implies that

δdg
δd

∼ 1

1 +
√
B5/4Sc

, (A 5)

where B is the dimensionless blowing parameter defined in (2.21). For δdg/δd ≪ 1, (A 5)
implies that B5/4Sc≫ 1. Figure 11(b) shows the variation of δdg/δd with B as per (2.21)
for the range of blowing velocity used in the present study, as listed in table 1. The ratio
δdg/δd ≪ 1 for B > 0.012, thereby validating the uniform concentration approximation.
We hence restrict the lower limit of our analysis to B = 0.012, the corresponding blowing
velocity is Vi ≃ 0.001 cm s−1.

Appendix B. Characteristic scales

The characteristic vertical velocity is Vi, while the relevant characteristic horizontal
length is L. An order of magnitude estimate of the integral momentum equation (2.17)
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Figure 11. a) The actual and the approximated concentration profile in the species boundary
layer. b) Dependence of δdg/δd (A 5) on the blowing parameter.

gives,

δvc u
2
c

L
− 1

2
gβ∆C

δ2dc
L

+ ν
uc
δdc

∼ 0, (B 1)

where and hereinafter the terms with subscript c indicate the characteristic scale of the
corresponding quantity (Puthenveettil & Arakeri (2008), hereafter referred to as PA08).
Similarly, the integral species equation (2.18) implies,

uc δdc
L

∼ Vi. (B 2)

Dividing (B 1) by its second term, and replacing uc in the resulting equation with that
from (B 2), we get,

V 2
i L

2δvc
gβ∆Cδ4dc

+
νVi L

2

gβ∆Cδ4dc
∼ 1. (B 3)

In (B 3), the first term represents the ratio of the inertial forces to the motion pressure-
gradient, whereas the second term represents the ratio of the viscous forces to the motion-
pressure gradient. The ratio of the first and the second term in (B 3) is

Reδv = Viδvc/ν. (B 4)

When Reδv ≪ 1, which is the regime of the present study, the first term in (B 3) is
negligible, implying that,

δdc ∼
(
νViL

2

gβ∆C

)1/4

= L

(
ReL
GrL

)1/4

. (B 5)

Substituting (B 5) in (B 2), the characteristic scale for the horizontal velocity becomes,

uc ∼
(
V 3
i L

2gβ∆C

ν

)1/4

=
ν

L

(
GrLRe

3
L

)1/4
; (B 6)

equations (B 5) and (B 6) were first obtained by PA08. Analysis of the numerical solution
of the dimensionless integral equations by Ramareddy (2009) revealed that the ratio δd/δv
was approximately equal to ≃ 0.27 for the range of Vi used in the present study. Since
Sc1/5 = 0.27 in the present study, based on our expectation that the velocity boundary
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layer thickness should scale similar to the species boundary layer thickness, we choose

δvc ∼ Sc1/5δdc; (B 7)

a more rigorous order of magnitude analysis of equations (2.9) to (2.18) than done by
Puthenveettil (2004) might give rise to this scaling.

Appendix C. Coefficients in (2.25), (2.28) and (2.29)

The values of K1, K2, K3 and K4 in (2.25) are,

K1 = 0, (C 1)

K2 =
Sc2/5 δ̂2v δ̂

′
d

4 +B5/4Sc1/5δ̂v
(C 2)

K3 =
−2Sc2/5 δ̂2v δ̂

′
d

4 +B5/4Sc1/5δ̂v
(C 3)

K4 =
Sc2/5 δ̂2v δ̂

′
d

4 +B5/4Sc1/5δ̂v
. (C 4)

The coefficients in (2.28) and (2.29) are,

E1 =
B5/4 Sc6/5 δ̂5v (20 + 3B5/4 Sc1/5δ̂v)

105(4 +B5/4 Sc1/5 δ̂v)3
, (C 5)

E2 = Sc1/5 δ̂v

(
−δ̂d +

Sc1/5 δ̂v

4 +B5/4 Sc1/5 δ̂v

)
, (C 6)

E3 =
2B5/4 Sc6/5 δ̂6v

105(4 +B5/4 Sc1/5 δ̂v)2
, (C 7)

E4 =
δ̂d (δ̂d − Sc1/5 δ̂v)

2

Sc1/5 δ̂v(4 +B5/4Sc1/5 δ̂v)
, (C 8)

E5 =
δ̂2d (−6 δ̂2d − 3B5/4 Sc1/5 δ̂2d δ̂v + 4Sc2/5(3 +B5/4δ̂d) δ̂

2
v)

6Sc1/5 δ̂2v (4 +B5/4Sc1/5 δ̂v)2
, (C 9)

E6 =
3 δ̂4d − 8Sc1/5 δ̂3d δ̂v + 6Sc2/5 δ̂2d δ̂

2
v

48Sc1/5 δ̂v + 12B5/4 Sc2/5 δ̂2v
, (C 10)

Appendix D. Estimation of Prandtl-Blasius velocity profile

In the transpiration case, corresponding to B = 0.12, the Reynolds number based on
the boundary layer length (L = 1 cm) is ReL = 1.12 (see table 2). Using (2.21) and
since GrL = RaLSc, the Rayleigh number based on the boundary layer length in the
transpiration case is

RaL =

(
ReL
B

)5

Sc = 4.25× 107. (D 1)
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The near wall Rayleigh number based on the width of the fluid layer, W = 7.8 cm, is
then

Raw = RaL

(
W

L

)3

= 2× 1010. (D 2)

Here, W is chosen to be the half the width of the tank in the present experiments (see
§ 4.1). The large scale flow Reynolds number corresponding to this Raw is calculated
using

ReLS = 0.55Ra4/9w Pr−2/3 ≃ 294, (D 3)

given by Gunasegarane & Puthenveettil (2014). The corresponding large scale flow
velocity is ULS = 0.34 cm s−1. Using ULS as the free stream velocity of a steady, uniform
flow over a horizontal plate, the Blasius profile is calculated by numerically solving the
ordinary differential equation for the dimensionless stream function given by Schlichting
& Gersten (2017) as,

f ′′′ + f f ′′ = 0. (D 4)

The boundary conditions used are,

ηB = 0 : f = 0, f ′ = 0, (D 5)

ηB → ∞ : f ′ = 1. (D 6)

Here, f(ηB) = ψ/
√
2ν xULS , ηB = y

√
ULS/(2ν x) is the similarity variable, ψ is the

dimensional stream function and ′ denote differentiation with respect to ηB . The blue
curve in figure 3 represents the dimensional Blasius profile, u(x, y) = f ′(ηB)ULS , plotted
against y at a streamwise distance x =W/2 from the leading edge.

Appendix E. Quasi-steady approximation

The theoretical analyses in § 2-3 are conducted for a steady NBL with transpiration
while in experiments the bulk concentration, CTe keeps decreasing with time. However,
the boundary layers in the experiments are quasi-steady since the boundary layers see
an almost constant bulk concentration during their life time. This is so because the time
scale of change of bulk concentration tc = CT /(dCT /dt) is much larger than the time
scale of boundary layers tb = δ∗dc/u

∗
c . For the present range of experimental parameters

shown in table 3, 0.22× 10−4 6 tb/tc 6 0.85× 10−4, implying that the boundary layers
essentially experience a constant bulk concentration CT . This facilitates the comparison
of the steady theoretical mean concentration profile with the similar concentration profile
in the unsteady experiments.

Appendix F. Calculation of the spatial concentration map from PLIF

The first step in calculating the spatial concentration is to account for the intensity
reduction along the laser path due to absorption by the fluorescent dye. The fluorescence
intensity along the direction of propagation x of an excitation light of intensity I in a
fluid medium having a concentration of dye Cd(x, t) is

F (x, t) = I(x, t)Cd(x, t)ϕ ǫ
λi
λf
, (F 1)

where ϕ is the quantum efficiency, ǫ is the absorption coefficient, and λi and λf are the
wavelengths of the excitation and the fluorescence light respectively (Seuntiens et al.
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2001). By Beer-Lambert’s law, the intensity of light decreases along the direction of laser
propagation as

I|x=i = Ioe
−ǫ

∫
l

0
Cd|x=idx. (F 2)

Here, I|x=i is the intensity of the laser light at the ith pixel location, Io the intensity of
the laser before entering the fluid medium, l is the distance from the point of entry of the
laser light in the fluid medium to the ith pixel location, and Cd|x=i is the concentration
of the dye at ith pixel location. Dividing (F 1) with the equation obtained by substituting
I = Io and F = Fo in (F 1), and then using (F 2) for a uniform dye concentration of C0

d

we get,

F = Foe
−x/La , (F 3)

where La = (ǫC0
d)

−1 is the absorption length.
In order to obtain the absorption length, the divergence of the laser sheet, the direction

of laser lines and the first pixels of laser path in the fluid are first calculated from the
PLIF image of a dye-solution of known concentration by marking on the edges of the
shadow created by an opaque aperture in the path of the laser sheet by mouse clicks;
in this step, the area of imaging and laser power was kept the same as that for the
actual experiments. A fluorescence intensity image with a uniform concentration of dye
equal to C0

d is then recorded, and corrected for the background intensity variation and
camera dark current by subtracting a dark image. Vignetting effects are then removed
from the background-subtracted image by subtracting a white sheet image, obtained
when the laser sheet grazes a vertical white sheet in its plane inside the test section.
Since the direction of laser lines, F , Fo and x are known, (F 3) is fitted then through the
fluorescence intensity data along each laser line to obtain its La.
A laser sheet of fixed power is then passed through various dye solutions of uniform,

known concentrations, the obtained PLIF images are background and sheet corrected
and then corrected for the absorption of light by the dye using the above calculated La

to obtain uniform intensity images. The average light intensity from such images is then
correlated with the uniform dye concentrations to obtain

Cd = (1.23F − 7.14)× 10−4, (F 4)

below dye concentration of 0.48 p.p.m., where F is the fluorescence intensity expressed in
intensity counts and Cd is the concentration of the dye in p.p.m. The experimental PLIF
images are background corrected, sheet corrected and absorption corrected and then the
intensity distribution is converted to the dye concentration distribution using (F 4). We
now need a relation to convert the dye concentration to the salt concentration, which is
experiment-specific; we obtain such a relation as follows.

The concentration of dye at any time instant Cd(x, y) in the experiments is converted
into the concentration of salt Ce(x, y) at the same time instant using

Ce(x, y) = A1Cd(x, y) +A2, (F 5)

where, A1 and A2 are evaluated using the conditions in the top tank.
At the start of both the forcing and the no-forcing experiments, under the well-mixed

assumption, the concentrations of NaCl and the dye in the top tank satisfy

at t = 0 : Ce(x, y) = C0 and Cd(x, y) = 0. (F 6)

For the forcing experiments, at large times t∞ after the start of the experiment, the
concentration of NaCl and dye in the top tank are,

at t = t∞ : Ce(x, y) = 0 and Cd(x, y) = C0
d . (F 7)



Scaling in concentration driven convection boundary layers 31

Substituting (F 6) and (F 7) in (F 5), we get

A1 = −C
0

C0
d

and A2 = C0. (F 8)

Substituting these in (F 5), we obtain (F 5) at any time instant t as,

Ce(x, y)

C0
= 1− Cd(x, y)

C0
d

. (F 9)

For the no-forcing experiments, at t = t∗ when complete density equalisation of NaCl in
the two tanks occurs,

at t = t∗ :Ce(x, y) = C0 VT
VT + VB

and

Cd(x, y) = C0
d

VB
VT + VB

,

(F 10)

Substituting (F 6) and (F 10) in (F 5), results again in (F 8). The dye concentration
map obtained in experiments is converted into concentration maps of NaCl for both the
forcing and the no-forcing experiments by using (F 9), where C0

d = 0.48 p.p.m is the
concentration of the dye in the bottom tank before the start of the experiment.

Appendix G. Calculation of CBe(t)

G.1. Estimation for no-forcing experiments

For the no-forcing experiments, we used both the conductivity probe as well as
PLIF measurements to calculate CBe(t), explained as follows. Note that the quantities
measured by using the conductivity probe are given the subscript ‘p’. The concentration of
NaCl in the top tank measured by the conductivity profile (Cp(t)) is calculated using the
standard relation between conductivity and concentration of NaCl solution given in Lide
(2003) under the well-mixed assumption (see Ramareddy & Puthenveettil (2011)). An
exponential decay fit between Cp(t) and t of the form,

Cp(t) = A0 +A1e
−t/d1 +A2e

−t/d2 +A3e
−t/d3 +A4e

−t/d4 , (G 1)

where A0 to A4 and d1 to d4 are the fit coefficients, is used for the calculation of Cp at
any time. The justification for choosing (G 1) with four exponential functions in the fit
is given in Ramareddy & Puthenveettil (2011).
For no-forcing experiments, since the total mass of NaCl at any instant is equal to the

total mass of NaCl after density equalisation,

VTCp(t) + VBCB(t) = (VT + VB)
C0

2
, (G 2)

where CB(t) is the instantaneous concentration of NaCl solution in the bottom tank and
VT and VB are the volumes of liquid layers in the top and bottom tanks respectively.
Substituting for CB(t) from (G2) in the expression for ∆Cp(t) = Cp(t)− CB(t), we get

∆Cp(t) =
VT + VB
VB

(
Cp(t)−

C0

2

)
. (G 3)

In (G 2) and (G3) Cp(t) is chosen to be 〈Ce(y, t)〉 at y = 0.8 mm, obtained from the
PLIF images, and CB(t) calculated from (G2) is used as CBe(t).
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G.2. Estimation for forcing experiments

For the forcing experiments, the values of CBe(t) are calculated entirely from the
conductivity probe measurements, explained as follows. Let t0 be the time of initiation
of the experiment and ts the time from which the concentration changes monotonically
after the initial mixing. To calculate CBe(t), i.e., the salt concentration in the bottom
tank at any time after ts, initially the salt concentration in the bottom tank at t = ts is
first estimated using mass balance of the two tanks over the time interval t = t0 to t = ts
as,

CBe(ts) =
VT
VB

(
C0 − Cp(ts)

)
, (G 4)

where C0 and Cp(ts) are obtained from the conductivity probe measurements. The mass
balance in the bottom tank at any time t is

∂

∂t

∫

CV

CBe(t) d∀ = CBe(t)ViAb, (G 5)

where Ab is the cross-sectional area of the bottom tank. Integration and simplification
of (G 5), using (G 4) gives,

CBe(t) = CBe(ts) e
(ts−t)ViAb/VB . (G 6)

Since the concentration on the membrane cannot be measured from PLIF images, (G 6)
is used to calculate ∆Ce(t) and then compare with (3.21).
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