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Using a rate theory model for a generic one-component material we investigated interactions be-
tween grain size and recombination kinetics of radiation-induced defects. Specifically, by varying
parametrically non-dimensional kinetic barriers for defect diffusion and recombination, we deter-
mined the effect of these parameters on the shape of the dose to amorphization vs. temperature
curves. We found that whether grain refinement to the nanometer regime improves or deteriorates
radiation resistance of a material, depends on the barriers to defect migration and recombination, as
well as on the temperature for the intended use of the material. We show that the effects of recom-
bination barriers and of grain refinement can be coupled to each other to produce a phenomenon of
interstitial starvation. In interstitial starvation a significant number of interstitials annihilate at the
grain boundary leaving behind unrecombined vacancies, which in turn amorphize the material. The
same rate theory model with material specific parameters was used to predict the grain size depen-
dence of the critical amorphization temperature in SiC. Parameters for the SiC model were taken
from ab initio calculations. We find that the fine grained SiC has a lower radiation resistance when
compared to the polycrystalline SiC due to the presence of high energy barrier for recombination of
carbon Frenkel pairs and due to the interstial starvation phenomenon.
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I. INTRODUCTION

One of the important concerns with ceramic materials considered for use as structural components in next generation
nuclear reactors is the tendency of these materials to undergo radiation induced amorphization (RIA)1. The eventual
loss of long range order due to radiation results in a degradation of mechanical properties2 as well as in an undesirable
volume expansion3. One of the mechanisms that is believed to contribute to RIA is accumulation of radiation induced
point defects, which in turn leads to an increase of the material’s free energy to a level that is equal to the free
energy of the amorphous state4. Interactions among the radiation-induced point defects, including interstitial–vacancy
recombination, provide an intrinsic mechanism for annihilation of defects and for healing of the radiation damage.
Even though very little can be done to alter or improve the intrinsic mechanisms, extrinsic engineering can facilitate
annihilation of the defects by introducing sinks of point defects in the material. An efficient way to increase the
density of sinks in the material is by reducing the grain size to the nanometer regime, thereby increasing the fraction
of grain boundaries (GBs) which act as sinks for defects5,6. Enhanced radiation resistance due to grain refinement
has been observed in a number of metals, such as Pd7 and Au8, and non-metals, including Gd2Ti0.65Zr0.35O7

5,
MgGa2O4

6 and TiN9. However, several works have also observed grain refinement resulting in an inferior resistance
to radiation damage. For example, Refs.10,11 show that nanocrystalline (nc) ZrO2 can be amorphized at a low dose
of 0.9 dpa when compared to about 680 dpa required for the bulk material12. Other material systems, such as
Cu nanocrystals embedded in SiO2 matrix13, also exhibited an inferior radiation resistance as compared to their
coarse-grained counterpart.
The conflicting responses of fine grained materials to radiation motivates the need to better understand the inter-

actions of radiation damage with microstructure, and in particular with GBs. Interactions of defects with GBs have
been investigated extensively using classical molecular dynamics (MD) simulations performed on nanocrystalline or
bi-crystal samples14–27. While these studies provided significant insights into several aspects of cascade-GB inter-
action, the time scales simulated here mostly capture the primary damage, which occurs between a few tens of a
picosecond to a nanosecond at the most, following the damage initiation. To extend the time scales accessible to MD
and to understand the behavior of the radiation-induced defects over a time period of more than 300 nanoseconds,
Bai et. al.20,27 employed a temperature accelerated dynamics (TAD). However, the phenomenon of RIA occurs over
much longer time scales (from minutes to several years) 28 and these time scales are generally inaccessible to MD or
TAD.
Experimental means of analyzing the resistance to RIA involves determining the dose to amorphization (DTA) vs

temperature T curve for a given material28. Useful insights into the kinetic processes that operate in the material
are revealed when the DTA is determined for a range of temperatures1,29–31. One particularly important feature of
the DTA vs T curve is the critical temperature to amorphization (Tcr)

1, which is the temperature beyond which no
amorphization is possible at experimentally accessible dpa levels. Lower Tcr is evidence for more efficient intrinsic
or extrinsic healing processes, which in turn correlates with a better radiation resistance of the material. Many
insights into fundamental processes governing the kinetics of amorphization have been revealed using rate theory
approaches, such as those developed for TiNi32 and Zr3Fe

33,34. For example, it was found that in the case Zr3Fe, both
structural disorder (i.e., interstitials and vacancies) and chemical disorder (i.e., antisite defects) contribute significantly
to RIA34. The rate theory models mentioned above have certain simplifying assumptions in them such as treating
the multi-component alloy as a single-component system34 or considering that only defect complexes are responsible
for amorphization and the individual point defects by themselves play no role. Despite the approximations, rate
theory models reproduced a number of experimental features, such as the DTA vs temperature curves. Consequently,
these models provide an excellent tool to investigating long-term radiation effects, and RIA in particular. To ensure
the accuracy of the model, it is essential to correctly capture kinetic and thermodynamic properties of defects. In
our earlier work35, we determined such defect properties using ab initio calculations and we investigated the role
of recombination energy landscapes on the radiation response of SiC. It was found that radiation resistance of SiC
depends strongly not only on the migration barriers of defects, but also on the recombination barriers to various defect
reactions.
The aforementioned rate theory models either neglect the role of GBs33–35 or homogenize the effects of GBs by

introducing a grain size dependent sink term32. The approximations of homogenization of GB effects in the rate theory
model results in requiring the modeling of temporal, but not spatial, evolution of the point defects. Furthermore,
many of these studies were focused on micron sized grains and therefore the effects of grain size on the radiation
resistance were not as pronounced as might be expected if the grain sizes are in the nanometer regime. A rate theory
model for nc materials has been developed by Ovid’ko et al.36. It was shown that nano-sized grains in the material can
either lower or enhance resistance to RIA, depending on the grain size. While small grains provide a higher density
of defect sinks and lead to healing of the damage, they also increase the free energy of the system due to the large
contribution from the interfacial (GB) energy. A competition between these two contributions to the free energy of
materials was proposed to be the reason for the seemingly contradicting experimental conclusions on the role of grain
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size in radiation resistance (see earlier paragraphs). Although the model of Ovid’ko et al.36 explicitly considered the
spatio-temporal evolution of defects, the authors did not take into account the details of energy landscape for defect
recombination and only one defect type was used in their model. Since we have recently shown that energy barriers
to defect reactions can play an important role in radiation resistance35, it is possible that the effects of recombination
landscape and of grain size are coupled to each other. Here, we develop a rate theory model that includes both
effects and allows investigation of their interplay. We first use this model to carry out a parametric study of a generic
monoatomic material (or equivalently, a material where damage and defect evolution is effectively limited to one
sublattice) to determine how various features of the DTA vs. T curve depend on the defect energy landscape and
the grain size. We then apply the model to studies of silicon carbide, which is a promising material for structural
applications in nuclear reactors 37. In the model for SiC, we capitalize on latest findings from state of the art ab initio

calculations on details of defect energy landscapes in this material.

II. RATE THEORY MODEL

The rate theory framework for modeling radiation effects describes a spatio-temporal evolution of concentrations
(cn) of defects (n) produced during irradiation. n represents the type of the defect, namely vacancies, interstitials
and antisites. The material is assumed to consist of spherical grains of radius R and the concentrations are assumed
to be spherically symmetric, which means that they vary only along the radial direction. The differential equations
that govern defect evolution as a function of time t and the corresponding initial and boundary conditions are

∂cn
∂t

= Pn +Qn +
Dn

R2

1

r2
∂

∂r

(

r2
∂cn
∂r

)

, (1)

cn (t = 0) = ceqn ; cn (t, r = 1) = ceqn . (2)

where ceqn is the thermal equilibrium concentration of defect n in the crystalline material, Pn is the rate of defect
production and Qn(

1
sec

) is the rate at which the concentration of defect n changes due to defect reactions. Both Pn

and Qn have units of ( 1
sec

). Variable r corresponds to a non-dimensional radial distance defined as the ratio of the

radial position to the total radius R, while Dn is the diffusion coefficient of species n, measured in the units of m2/sec.
The boundary conditions given in Eq. 2 represents a perfect sink situation.

Furthermore, in this paper we will also consider the case of an “ideal bulk” material with R = ∞. For the ideal bulk
model there is no spatial variation in the concentrations of the defects because there are no external sinks of defects.
Consequently, the differential equation (Eq. 1) becomes an initial-value problem and cn, Pn and Qn are functions of
time only, representing an average value over a spatial domain. Correspondingly, equations Eq. 1 and 2 are reduced
to

∂cn
∂t

= Pn +Qn, (3)

cn (t = 0) = ceqn . (4)

The ideal bulk is a hypothetical case depicting a limiting scenario where no defect is allowed to annihilate at GBs
or free surfaces of the material. Such situation, while strictly speaking is only possible in a single crystal of infinite
size, can give significant insights into the kinetics of radiation-induced amorphization. For this reason throughout
this study we will be comparing the calculated DTA vs. T curves for materials with finite grain sizes to such curves
calculated for an ideal bulk.

A. Defect production (Pn)

Defect production in Eq. 1 is defined as Pn = Γηαn
35. Here, Γ is the dose rate (dpa/s) , η accounts for intracascade

recombination and quantifies what fraction of displaced atoms survives as defects and αn quantifies fraction of defect
of type n. We consider two materials in this work: a one component-generic material X and SiC. In both cases we will
use a high value of η = 0.8, as would be realized when material is irradiated with electrons28. The value of Γ generally
varies between 10−7 to 104 (See ref.28) and depends on the material and other irradiation conditions. In this work,
our goal is to determine the coupling between recombination landscapes and grain size on the radiation response and
therefore the specific choice of Γ is not very important. Here, we chose Γ to be the same for the generic material X
as for the SiC. This value is 2 × 10−3 dpa/s, which has been used in irradiation experiments of SiC29,38. The value
of αn differs between the two materials simply by virtue of the number of components that make up the material.
For the generic material (X), only two simple defects are possible, a vacancy VX and an interstitial X i. Since these
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two defects are produced in equal quantities (as Frenkel pairs), αn is 0.5 (see Table. I). For SiC, we consider six
types of point defects that can be produced during irradiation of SiC on both sublattices of the material. These
defects vacancies (VC and VSi), interstitials (Ci and Sii), and antisites (SiC and CSi). Defect fractions αn have been
determined in MD simulations of displacement cascades induced with a 4 keV Si primary knock-on atom (PKA)21

and they are summarized in Table. II. We note here that the values of αn for SiC were found to be independent of
PKA energy and the grain size, as concluded in Ref.21.

B. Defect kinetics (Qn and Dn)

Defect kinetics is controlled by both Qn and the diffusion coefficient Dn (See Eq. 1). Qn stands for the rate at which
the concentration of defect n changes due to defect reactions and is a function of the concentrations of the species. For
details, please see Ref.[35] and section 2.3 therein. In general, these defect reactions can lead to defect annihilation,
formation of other simple point defects, or to formation of defect complexes. As elaborated in Ref.35, different energy
landscapes (no–barrier, recombination and trapping) are possible for the defect reactions. In the no–barrier landscape,
only the migration of the defects govern the rate of a defect reactions. The recombination landscape involves a barrier
for recombination which governs the rate of the reaction by virtue of that barrier being greater than the migration
barrier of the fastest defect participating in the reaction. In case of the trapping landscape, a deep energy basin exists,
which results in the formation of a complex. Furthermore, the reactions can be classified as being diffusion dependent

reactions or transformation reactions (See Ref.35 for details). In the case of the diffusion dependent type, the rate
of the reaction depends on the ability of the defects to diffuse, and possibly overcome a barrier, before reacting with
each other. Thus no–barrier and recombination reactions are typically diffusion reactions, while reactions involving
overcoming a trap are not. The transformation reactions do not depend on the ability of the defects to diffuse, e.g,
in reactions that overcome a trapped state to separate or recombine two defects.
For diffusion dependent reactions, which are of the type A+B −→ C, the rate of the reaction is given by K[A][B],

where K is the rate constant and can be calculated from the following expression39

KΩ = 4πrc(DA +DB)× s

(

1−
s

s+ 1

)

×(1− erfc((s+ 1)
√
τ)) (5)

where

erfc(x) =
2
√
π
exp (x2)

∫ ∞

x

exp (−t2)dt (6)

and s = exp
(

β̄ (Eq
m − Eb)

)

. Eq
m is the migration barrier of the fastest of the two defects participating in the reaction,

Eb is the barrier for the reaction, β̄ = (kBT )
−1

, kB is the Boltzmann constant, and T is the absolute temperature.

In Eq. 5, Ω is the atomic volume, τ = t (DA +DB)× (rc)
−2

, where t is the time in seconds, rc is the recombination
radius for the reaction, Dn is the diffusion coefficient for defect n and is given by Dn

0 exp
(

−β̄En
m

)

, where En
m is the

migration barrier of defect n and Dn
0 is a prefactor.

For transformation reactions, such as C −→ A+B, the rates of the reaction are given by R = ν0 exp
(

−β̄Eb

)

×([C]).
In the transformation reactions we will encounter in this article, C is a trapped defect complex, which dissociates into
simple defects. The dissociation of the trapped complex into its constituent defects is modeled by replacing Eb with
the trap barrier Et. Note that in all the above expressions, the square brackets [ ] represent the concentration.

1. Defect kinetics for a generic material X

The purpose of considering a generic material is to perform a parametric study of how the DTA vs. temperature
curve varies with grain sizes and with kinetic parameters, such as migration barrier for diffusion or the recombination
barrier for a defect reaction. The only defect reaction we permit in this generic one-component material is Frenkel
pair recombination, i.e., the annihilation of a vacancy and an interstitial (VX+X i −→ XX). This reaction is diffusion
dependent, which means that its rate constant (Eq. 5) is a function of diffusion coefficients of VX and X i, the
recombination barrier, and the recombination radius (rc) (we assume no trapping). In our parametric study we vary
the recombination barriers (Eb) and migration barriers (Em) of defects. We represent the results in terms of non-

dimensional parameters δ and ρ which are defined as δ = E
VX
m

E
Xi
m

and ρ = Eb

E
Xi
m

. They correspond, respectively, to the

migration energy of VX and the recombination barrier Eb, normalized by the migration barrier of an interstial Xi.
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TABLE I. Parameters needed for the rate theory modeling of material X

Quantity (units) Value Notes

E
Xi
m (eV) 0.67 Migration barrier of Xi

43

E
VX
m (eV) δ×E

Xi
m Migration barrier of VX (See section. II B 1)

Eb (eV) ρ×E
Xi
m Barrier for recombination (See section. II B 1)

rc (Å) 2.4 Recombination radius40(See section. II B 1)

Ω(Å3) 10.4 Atomic volume

D
Xi

0 (cm2/s) 1.23× 10−3 35,42

D
VX

0 (cm2/s) 7.26× 10−4 See section. II B 1
αXi

=αVX
0.5 Fractions of defects in material X (See section. II A)

E
VX

f (eV) 4.193 Formation energy of VX
43

E
Xi

f (eV) 6.953 Formation energy of Xi
43

∆Eam(eV/atom) 2.0 Amorphization energy35

γ(Jm−2) 2.5 Grain boundary energy44

Changing δ thus alters DVX
and governs relative ease with which the vacancy can annihilate at the GBs. Changing

the value of ρ controls the rate of the recombination (K) of the Frenkel pairs in the material.
By varying ρ between 0.1 and 7, we change the energy landscape for defect reaction in material X from a no-barrier

type to a recombination type35. This approach allows us to consider landscapes in a wide variety of materials. For
example, in metals no recombination barrier28 is known to exist and therefore the lower limit for ρ is taken to be
close to 0. Multi-component materials with directional bonding, such as SiC, have been recently discovered to have
recombination barriers, which are substantially larger than the migration barriers of the defects participating in the
reaction. Specifically, recent ab initio results suggest that the recombination barrier for the reaction of Ci with VC

could be as high as 1.35eV (ρ > 2.0) (40). Parameter δ is varied between 1 and 7, which means that we always
explicitly consider the migration barrier of the vacancy, to be at the least, equal to that of the interstitial migration
barrier. Larger values of δ render the vacancy immobile when compared to the interstitials. For instance, in SiC
where the VC is less mobile when compared to Ci, δ ≈ 6. Low values of δ (e.g., δ < 1) represent materials such
as Si (41), for which δ ≈ 0.5, where the vacancy is more mobile than the interstitial. Although we do not explicitly
discuss data for δ < 1 such a domain is qualitatively equivalent to the ones we do discuss in this article. For values of
δ < 1 the interstitial and vacancy defects merely switch roles, in the sense that the barrier for interstitial migration
is higher than the barrier for vacancy migration.

The grain radius along with the two non-dimensional parameters (ρ, δ) are used to study several features of the DTA
vs T curve which are described in section IIIA below. These non-dimensional parameters are used to highlight how
trends evolve in a manner as independent as possible of the specific interstitial migration barrier, as the qualitative
trends in sign and relative magnitudes of various features of the DTA vs. T are governed by these relative values.
It is to be noted that parameters ρ and δ together are not sufficient to yield a non-dimensional form of our systems
governing differential equations 2. In other words, the family of simulations that correspond to a given value of ρ and
δ will not all yield the same DTA curves. Specific choices for the interstitial migration barrier, diffusion coefficient,
recombination radius, and defect and amorphization energies, could all change temperatures and doses at which the
different features of the DTA vs T curve occur, even for a given set of ρ and δ. However, the changes in the features
of the DTA vs T curve between a nano crystalline sample and a bulk sample will be qualitatively similar for similar
values of ρ and δ. In the case of a generic material, our choice of many of the parameters is guided by values relevant
for SiC35. Specifically, the value of EXi

m is taken to be the migration barrier of Ci (See Table. III), while rc is taken
to be that belonging to the recombination reaction (Ci +VC −→ CC ). The Dn

0 values for the vacancy (VX) and the
interstitial X i are taken to be that of VC and Ci

35,42, respectively. All the values for material X are tabulated in
Table. I for easy reference.

2. Defect kinetics for SiC

For the case of SiC, we consider six defect reactions which are summarized in Table III. The recombination radius
(rc) and the required barriers for all the reactions are also provided in this table. Reactions R.2, R.3 and R.4 have
the same barriers as in Ref.40. Reactions R.5 and R.6 were not considered in Ref.40. Energetics of these reactions
was recently reported by Zhang et. al.45. It was found that R.5, which involves the Sii kicking out a CSi , has the
no-barrier landscape while R.6 (Ci kicking out a SiC ) has the trapping energy landscape. Reaction R.6 involves two
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TABLE II. Fraction αn, Migration (En
m) and formation (En

f ) energies of defect n considered for SiC.

Defect(n) αn
35 En

f (eV) En
m (eV)

VC 0.330 4.19343 3.66143

Ci 0.380 6.95343 0.67043

VSi 0.084 4.96643 2.40043

Sii 0.035 8.75443 0.82943

CSi 0.063 4.03443 2.40043

SiC 0.110 3.56443 3.66143

Ci -SiC 0 9.31745 ∞

TABLE III. Defect reactions for the SiC rate theory model

Reaction # Defect Reaction Eb (eV) rc (Å)

R. 1 VC +Ci → CC 0.9245 2.140

R. 2 VSi +Sii → SiSi 0.0340 6.340

R. 3 VC +Sii → SiC 1.1140 3.740

R. 4 VSi +Ci → CSi 1.2540 3.340

R. 5 Sii +CSi → SiSi +Ci 0.6645 6.3 (Assumed to be the same as R. 2)
R. 61 Ci +SiC ←→ Ci –SiC 0.6945 2.1 (Assumed to be the same as R. 1)
R. 62 Ci –SiC −→CC +Sii 1.3545 Not applicable

half reactions, R.61 and R.62. R.61 involves formation of the complex Ci -SiC from isolated Ci and SiC . Reaction
R.62 involves a kick out, where the complex dissociates to form Sii and CC . R.6 is comprised of both transformation

reactions (backward reaction of R.61 and forward of R.62) as well as diffusion dependent reactions (forward reaction
of R.61). We note that there has been conflicting reports of the energy landscape for R.1 (recombination of VC with
Ci )

40,46,47 and we use the most recent analysis given in Ref.45).
The diffusion coefficients Dn for each defect n is needed to model the explicit diffusion of the defects as well

as to quantify the reaction rate in diffusion dependent reactions (Eq. 5). For interstitials and vacancies Dn =
Dn

0 exp
(

−β̄En
m

)

where the prefactor Dn
0 is 1.23×10−3 cm2/s and 3.30×10−3 cm2/s for the Ci and Sii , respectively

42.

For vacancy diffusion in an fcc crystal, Dn
0 can be estimated as 0.7815ν0

a2

0

2
, where ν0 = 1012 Hz and a0 = 4.31 Å is

the lattice constant for β–SiC. To determine Dn for carbon (silicon) antisites we treat these defects as impurities on
the silicon (carbon) sublattice. We then use a simplified “two frequency” model as done in Ref.35 to calculate the
diffusion coefficients of the antisites. The final expressions for the two antisites are

DCSi
=

a20
2
ν0 exp(−β̄EVSi

m )f [VSi] (7)

DSiC =
a20
2
ν0 exp(−β̄EVC

m )f [VC] (8)

where

f =
2 + 7F

2 + 7F + 2ǫ
. (9)

f is the correlation factor, ǫ needed for calculating f depends on the defect type and is equal to ǫCSi
= exp(−β̄EVC

m )/ exp(−β̄EVSi

m )
for CSi is and to ǫSiC = exp(−β̄EVSi

m )/ exp(−β̄EVC

m ) for SiC . F is a fairly complicated function of the ratio of the
jump frequencies of the vacancies. The details of the expression for F can be found in48–50. Based on the above
approximations we calculated F to be being equal to 0.73635.

C. Amorphization criterion

In our study, the material is considered amorphized when the cumulative energy of all point defects, defect com-
plexes, and the energy contributed by the GBs becomes equal to the energy difference (∆Eam) between the amorphous
and the crystalline phases. Such a criterion is known to be applicable to many semiconductor materials4 and therefore
seems a reasonable approach to model SiC.
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To predict amorphization in the generic material X or in SiC, we need to know a number of thermodynamic
parameters that include formation energies of each defect, GB energy (γ), and ∆Eam. For simplicity, we assume that
the defects in material X have the same formation energies as the defects on the C sublattice of n-type SiC. The GB
energy for the generic material X is taken to be ∼ 2.5 Jm−2, which is comparable to GB energies in SiC44. ∆Eam

is taken to be 2.0 (eV/atom), which is also comparable to the value of 1.93 eV/atom used for SiC in earlier ab initio

based rate theory models35. All the necessary thermodynamic parameters for material X and for SiC are summarized
in Table. I and Table. II, respectively.
For the ideal bulk, the amorphization criterion takes a simple form

N
∑

i=1

Ei
fci(tam) = ∆Eam (10)

where N is the total number of defects, ci is the concentration of defect i and tam is the time when the above equation
is satisfied. Based on the time to amorphization tam predicted by Eq. 10, one can calculate the dose to amorphization
as the dose rate × tam. By calculating such dose to amorphization at different temperatures, we can determine the
DTA vs temperature curve for the material.
A mathematical criterion for amorphization in materials with finite grain sizes is somewhat more complex. One rea-

son is that even though we considered uniform radiation damage, we found in simulations that the relative differences
in the diffusion kinetics of the different defects can cause the material to amorphize heterogeneously. Specifically,
at low temperatures when no recombination is possible, defects near the GBs can diffuse and annihilate there. This
phenomenon causes amorphization to proceed from the center of the grain towards the GB. In the case of very high
temperatures, recombination is active in the center of the grain and defects annihilate. However, near a GB the most
mobile defects annihilate, leaving behind an excess of the less mobile defects, which in turn leads to a local amorphiza-
tion of the material. This unbalanced annihilation of defects near the GBs results in the amorphization proceeding
from the GB towards the center of the grain. Consequently, when deciding on the criterion for amorphization in
materials with finite grain size, we considered two different methods for obtaining DTA vs. T curves. These methods
are discussed below.

1. Method 1 (Average concentration method)

Following the scheme from Ovidko36, we use a volume-averaged concentration of defects in the entire grain at a
particular temperature and we predict amorphization using the following expression.

N
∑

i=1

Ei
f C̄i(tam) + γ

3Ω

R
= ∆Eam (11)

where N is the number of defects in the material, Ei
f is the formation energy of defect i, C̄i =

1
V

∫

cidv is a volume
averaged concentration ci of defect i, and tam is the time at which Eq. 11 is satisfied. Once tam is known, the DTA
can be calculated as tam× dose rate (dpa/s). The problem with this method as applied to our system is that at higher
temperatures unrealisitc concentrations of immobile defects can be produced, especially near the boundary of the
domains. Such unphysical concentrations can be overcome by using a moving boundary method, where amorphization
is modeled as an heterogenous phenomenon and is described below.

2. Method 2 (Moving boundary method)

In this method, we first divide the domain into many bins, with the bin width being equal to the thickness of a
monoatomic layer (∼1Å). Then the material inside of a bin is considered to have been amorphized at time t̄, if the
following condition is satisfied,

N
∑

i=1

Ei
fci(t̄) + γ

3Ω

R
= ∆Eam. (12)

If the amorphization proceeds from the GB toward the center it can be modeled by simply decreasing the grain
radius by one monoatomic layer as soon as the material in the outermost bin amorphizes. Defect evolution can then
continue until the condition given by Eq. 12 is met again in the bin that neighbors the GB. This process is carried
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on until at time tam a significant fraction (here, we chose 90%) of the grain interior has been amorphized. During
this heterogeneous amorphization, all the GBs are increasing in width until the entire material has amorphized. The
GBs are treated as perfect sinks of defects throughout the entire simulation. are treated as perfect sinks of defects
throughout the entire simulation. We found that the inclusion of this heterogeneity in the rate theory model did not
affect the qualitative aspects of the DTA vs. T curves of the finite grain size material when compared to that of the
ideal bulk (see section.II C 3).
When the process of amorphization proceeds from the center towards the GB, an uncertainty arises regarding the

treatment of the newly formed amorphous material at the center of the grain. If this amorphous region is treated as a
perfect sink (similarly to the GB), then the bin that amorphizes at a subsequent time is located somewhere between the
first bin (located near the center) that amorphized and the GB. This phenomenon occurs because the defects can now
diffuse and annihilate at both the boundaries (inner amorphous region and the GB). Such heterogeneous distribution
of amorphous regions creates a heterogeneous distribution of sinks and cannot be easily tracked in our model. On
the other hand, it seems unrealistic to treat the inner amorphous material as an imperfect sink. It is unclear how
one should handle this inner domain of amorphous material and we therefore made an approximation. Furthermore,
since the heterogeneity involving the amorphization of finite-grain sample from the GB towards the center did not
affect the qualitative results significantly (see previous paragraph and section IIC 3), we ignore potential effects of
the formation of the inner amorphous region. Specifically, we do not treat the inner amorphous region as a sink and
once we find that the material began amorphizing from the center, we irradiate the material until tam, which is a
time corresponding to 90% of the material being amorphized.

3. Comparison of the average concentration method and the moving boundary method

Although the moving boundary method appears more realistic because it captures the correct physics of defect
evolution, this method is computationally expensive because amorphization has to take place one monoatomic layer
at a time. Here we compare the DTA vs. T curves produced by the two methods for material X, to determine if
the moving boundary conditions are necessary. In Fig. 1 we show DTA vs. T curves for selected values of kinetic
parameters (δ = 1, 2 and ρ = 0.1, 1 and 2). Data is shown for grain radius R = 10 nm (dashed lines) and for an ideal
bulk (solid lines). The observed trends in the DTA vs T are qualitatively similar between the two methods. For δ = 1,
the curves for the 10 nm case either coincide with the curve of the ideal bulk (for values of ρ = 0.1 and 1) or are shifted
to the left with respect to the bulk curves (for ρ = 2). These trends are quite similar for both methods of modeling
the amorphization. The temperature at which the DTA value beings to increase for the 10 nm case are also similar
between the two methods for all ρ values. For δ = 2 case, all values of ρ produce a step for the 10 nm material. Even
though the steps occur at slightly different doses and the width of the steps are slightly different for the two methods,
when the features are compared to those of an ideal bulk material it is clear that the two methods produce the same
qualitative behavior. Because of these similarities, in this study we will use the average concentration method, which
choice leads to significant savings in the computational time.

III. RESULTS AND DISCUSSION

A. DTA vs temperature curves

First, we examine the DTA vs T curves for the material X in order to identify and define certain key features of
the curve, which will be studied parametrically later. Figure 2 compares DTA vs. T curves obtained for the 10 nm
grain size (dashed red lines) to those determined for the ideal bulk (thick black lines). The curves are plotted for
δ = 5 and for a number of different values of ρ, where the numbers on the lines correspond to ρ values. There are
a number of observations that can be made based on this plot. For the ideal bulk and low values of ρ (ρ = 0.1, 0.5,
and 1), the curves coincide. A characteristic feature of these curves is a dramatic increase at a certain temperature
(here it is ∼ 200 K), which is referred to as the critical amorphization temperature Tcr. Beyond Tcr it is very
difficult to amorphize the material. Increasing the value of ρ above unity increases Tcr. ρ > 1 means that barrier to
recombination of Frenkel pairs is larger than the migration barriers of interstitials in the material. The reason for the
observed trend of Tcr with ρ is that higher ρ values require higher temperatures to initiate the recombination reaction
and recombination is the only means by which the material can heal radiation-induced damage.

The curves for the 10 nm grains show a richer set of features, and more specifically they exhibit steps of constant
DTA. Such steps in the DTA vs T curves have been seen for Zr3Fe irradiated with Ar ion33 and possibly for electron
irradiated SiC38,51 . To understand the physical phenomena controlling the shape of the DTA vs. T curve, we first
define the different features in the curve using the case of ρ = 2 (Fig. 2) as an example. The curve shows first an
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FIG. 1. Comparison of the DTA vs T plot for the ideal bulk (black thick line) and material with grain size of 10 nm (dashed
line). The plots are made for the generic material X. Red dashed and thin-blue lines correspond to the average concentration
method and moving boundary method, respectively. For values of δ = 1, ρ = 0.1, 1 the DTA vs. Temperature curves for the
nanomaterial (using either of the two methods) and the ideal bulk coincide and are hence indistinguishable.
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FIG. 3. A plot showing the various features (Ton, W , Tcr and H) of the DTA vs. T plot.

increase in DTA at around ∼ 250 K and then reaches a plateau at a dose of ∼ 1 dpa. The plateau extends until
the temperatures of ∼ 1500 K, above which the curve once again begins to increase rapidly, defining the Tcr. The
temperature of initial increase (∼ 250 K for ρ = 2) will be referred to as the onset temperature, Ton. The dose at
which a plateau occurs will be referred to as the step height, H, while the difference between the Tcr and Ton will be
called the step width, W. It is interesting to point out that H is larger for ρ ≤ 1 than it is for ρ > 1. In addition,
while the plateaus are sharp for ρ ≤ 1 and for ρ > 2, the plateaus for curves with intermediate values of ρ are less
pronounced. In the latter case, there is however still a clear distinction between Ton and Tcr. Furthermore, we note
that for ρ ≤ 5, Tcr for the 10 nm grain size is higher than Tcr of an ideal bulk, while for values of ρ > 5 we observe the
opposite trend. This behavior suggests that materials having critical combinations of kinetic parameters and grain
size, the nanomaterial can be more susceptible to radiation damage than the coarse grained material. Finally, we note
that for the ideal bulk material, Ton and Tcr coincide, irrespectively of the value of ρ.

In subsequent sections we investigate the dependence of the different features of DTA vs. T curves (which are
Ton,W , Tcr and H, see Fig. 3) on ρ, δ, and the grain radius R. The features of the curves are identified as follows. We
first calculate the derivative of the dose to amorphization with respect to the temperature and we plot this derivative
against temperature. For a typical DTA vs T curve with a step, this derivative plot will exhibit two maxima. The
onset temperature Ton corresponds to the first maximum while Tcr coincides with the second maximum. To determine
H, we need to calculate the dose that corresponds to the plateau. This dose H is calculated using interpolation. We
interpolate the value of H from the DTA vs T data for a temperature that is the average of Tcr and Ton.

B. Generic material X, Variation of (Ton,W, Tcr and H)

In Figs. 4a-d, we plot the variations in Ton, W , Tcr and H with respect to ρ, for three values of R and three values
of δ. In Figs. 5a-d, variation in the same properties is plotted with respect to R, for two values of ρ (0.1 and 2) and
three values of δ.

1. Onset temperature, Ton

The onset temperature Ton (Fig. 4a) is independent of the value of δ and increases with ρ in the range 0 < ρ < 2.
The increase ranges from about 50K for the 10 nm and 25 nm grains to about 175K for the 1 µm grain. This increase is
quite small when compared to the corresponding changes in Tcr or W , as can be seen in Figs. 4b and c. As ρ increases
above 2, the value of Ton remains constant. Furthermore, increasing grain size (at a constant value of ρ) leads to an
increase in Ton(Fig. 5a). To understand the trends in Ton, one needs to first realize that the onset temperature is
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FIG. 4. (a) Onset temperature (Ton) (b) Width (W ) (c) Critical amorphization temperature Tcr and (d) Step height (H), as
a function of ρ. Bare lines represent R =1 µm, lines with squares - R = 10 nm and lines with circles - R = 25 nm. The red,
green, and blue colors correspond to δ = 2, 4 and 5, respectively. For 1 µm grain size, the dotted lines in the W , Tcr and H

plots show possible trends inferred based on the behavior of these quantities (W,Tcr and H) with increasing grain sizes (See
text in section. III B 2)

controlled by a combination of two factors, defect recombination and defect annihilation at GBs. Since ρ corresponds
to a normalized energy barrier to defect recombination, increasing ρ suppresses recombination of Frenkel pairs and
annihilation of defects at GBs becomes the dominant effect in healing of radiation damage. For T near Ton, the defects
migrating and annihilating at GBs are interstitials. Recombination of Frenkel pairs is almost entirely suppressed for
ρ > 2 and because the process of annihilation of defects at GBs does not depend on ρ in this regime, neither does
Ton. Ton, however, increases with the grain size because the larger the grain, the longer the distance that interstitials
have to travel to annihilate at GBs (Fig. 5a corresponding to ρ = 2).

In contrast, at very low values of ρ, only interstitials residing near GBs can be annihilated there and the majority
of defects are removed by Frenkel pair recombination and hence the value of Ton is independent of R as can be seen
in Fig. 5a corresponding to ρ = 0.1. For intermediate values of ρ (between 0 and 2), some of the interstitials can
recombine with vacancies and some of the interstitials migrate to GBs. As a result, unrecombined defects located
at the grain interior will have to traverse greater lengths to annihilate. The larger the recombination barrier (ρ),
the larger the fraction of defects that will need to travel to GBs to anneal. Consequently, the effective length that
interstitials need to diffuse to be annihilated is also larger, resulting in an increase of Ton with increasing ρ.
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2. Width W and Critical temperature for amorphization Tcr

In Fig. 4b we plot W as a function of ρ, where W is the width of the step in the DTA vs T curve. For the 10 nm
and 25 nm cases, we found the steps in the DTA vs. temperature curves to occur at doses <1000dpa while that for
the 1 µm case the steps occurred at doses > 1000dpa. Therefore, for the nanosized grains, the behavior of W for
the entire range of ρ was captured, while that for the 1 µm the behavior was captured only for ρ >≈ 3. In order to
complete the curves for the 1 µm case for ρ < 3, we first plot the variation of W with grain size for different values
of ρ and then we extrapolate W to the grain size of 1 µm. The variations of W with R for two values of ρ (0.1 and
2) and for three δ values are shown in Fig. 5b. We found that steps in the DTA vs. T occur below 1000 dpa only for
R <≈ 30 nm. However, even in this regime of grain sizes, there is a clear decreasing trend of W with R for ρ = 0.1
while for ρ = 2, W is only weakly dependent on R. By extrapolating the trends in Fig. 5b we find that for ρ = 0.1,
W is equal to zero (there is no step in the DTA vs T curve) beyond a certain value of R. This value of R depends on
δ, and it is ∼ 10, 25 and 50 nm, respectively, for δ = 2, 4, and 5. We are now ready to extrapolate the W vs ρ curve
in Fig. 4b for the grain size of 1 µm. For this grain size, W = 0 at ρ = 0.1 for all the δ values considered. At ρ = 2,
the value of W is independent of the grain size and for ρ > 3 we have data available for W directly from simulations
(solid lines). Using the three values of W at ρ = 0.1, 2, and 3, we interpolated the data for the entire range of ρ as
shown by dotted lines in Fig. 4b.
We note that W is equal to the difference between Tcr and Ton. Consequently, once the variations of W with ρ and

R are known, the corresponding variations in Tcr can be found out by adding Ton and W (see Figs. 4c and 5c). We
saw in Section III B 1 that the increase in Ton over the entire range of ρ is small compared to the increases in Tcr,
therefore changes in W are a reflection of changes in Tcr (since Tcr = Ton +W ) and the variations of both W and Tcr

are governed by the same physics. The critical temperature Tcr for a one component material with nanosized grains
is set by vacancy migration barrier, similarly to how Ton was set by interstitial annihilation (see section III B 1). For
a given δ, change in Tcr with ρ is qualitatively very similar to the change in Ton with ρ. Trends in Tcr with ρ can
be explained by considering vacancy motion and applying similar arguments as we have made earlier to explain Ton

using interstitial motion.
Interesting features in the functions of W and Tcr vs ρ occur at low values of ρ (Figs. 4b,c and 5b,c, respectively).

In particular, for ρ <≈ 2, Tcr decreases with an increasing grain size, which means that materials with a lower grain
size have an inferior resistance to RIA when compared to their coarse grained counterparts. The reasons underlying
this behavior will be discussed in detail in the next section.

3. Variation of Tcr with R for ρ < 2

In order to understand the decrease in Tcr with increase in R for ρ < 2 (see Fig. 4c) we compare the behaviors
of two extreme grain sizes and analyze their defect kinetics in detail. In particular we will study the behaviors of
the ideal bulk and the 10 nm cases for two values of ρ (0.1 and 2), while keeping δ = 5. We begin by discussing
features in the DTA vs. T curve shown in Fig. 2 for the ideal bulk and 10 nm cases. We note that for ρ = 0.1, Ton

for both curves coincide. For ρ = 2 Ton for the 10 nm case is ∼ 250K, while for the ideal bulk case it is ∼ 450K.
To understand which mechanism (recombination or annihilation at GB) is responsible for Ton, in Fig. 6a we plot the
rates of the recombination reactions for the two grain sizes and the two values of ρ. We find that for ρ = 0.1, for both
the bulk and the 10 nm cases, the rate of the reaction becomes greater than zero and increases rapidly at ∼ 250K,
coinciding with Ton. This observation suggests that for ρ = 0.1, Frenkel pair recombination contributes most to the
healing process. For ρ = 2, we find that the reaction rate for the bulk begins to increase at ∼ 450K, coinciding with
Tcr = Ton, which suggests that recombination of Frenkel pairs is the active healing mechanism. However, for ρ = 2
and grain size of 10 nm, the reaction rate does not begin to increase until 700 K, indicating that recombination is
not active below this temperature. On the other hand, Ton for the 10 nm case is significantly lower (∼ 250K). Since
the recombination is not active in this regime, the only means by which an increase in the DTA vs T curve can be
realized is by annihilation of defects (interstitials and/or vacancies) at GBs. Since vacancies are immobile (δ = 5)
one can conclude that it is the diffusion and annihilation of interstitials that is responsible for Ton ≈ 250K. The fact
that the interstitials are lost from the system is further evidenced by plotting the concentrations of interstitial at
amorphization for the bulk and the 10 nm case in Fig. 6b. For bulk and the 10 nm case, at ρ = 0.1 the concentration
of interstitials begin to decrease at ∼ 250K, which is the same as Ton. In the case of ρ = 2, the bulk shows a decrease
in interstitial concentration at ∼ 450K, which is its Tcr, while in the 10 nm case, the interstitial concentration begins
to decrease at ∼ 250K due to annihilation at the GB.
It is also instructive to examine the relative rates of production and annihilation of various defects. While vacancies

and interstitials are being produced at equal rates (α = 0.5), their annihilation rates are different. This imbalance
between the rates of annihilation of vacancies and interstitials depends on both ρ and R. We first discuss the effect
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FIG. 5. Variation with respect to R of (a) Onset temperature Ton, (b) Step Width W , (c) Critical amorphization temperature
Tcr and (d) Step height H. Bare lines represent ρ = 2 while lines with squares ρ = 0.1. The red, green and blue colors indicate
δ = 2, 4 and 5, respectively. Long dashed and dotted lines indicate extrapolated values for the regions where the steps in the
DTA vs T lied above a 1000 dpa for ρ = 0.1 and 2, respectively

of grain size R on the imbalance of defect reactions, assuming a constant value of ρ. The larger the value of R,
the greater the effective distances that interstitials have to travel and the more interstitials in the grains of the
material are annealed by recombination with vacancies. Thus for a very large R (R ∼ µm), the imbalance between
interstitial and vacancy annihilation is small. For small R, interstitials can quickly diffuse and annihilate at the
GB, even if the interstitials are near the grain center. Thus for small values of R (∼ nm), the imbalance between
the annihlation of vacancies and interstitials is larger, with vacancies being annihilated at much lower rates than
interstitials. This imbalance results in unrecombined vacancies being left behind in bulk and accumulation of these
vacancies causes the material to amorphize. To understand the implication of this imbalance, we first recall that if the
rates of recombination and annihilation at GBs occurred at the same rate, then the process of recombination would
be more efficient in healing damage (decreasing defect concentration) than annihilation. It is because two defects are
eliminated simultaneously during recombination of a Frenkel pair, in contrast to only one defect (usually the faster
diffusing species) being eliminated by GB annihilation. Thus in case of very small R, the bulk of the grain is starved
of interstitials due to which a significant number of vacancies is left behind in the bulk, causing amorphization. For
a slightly larger R, recombination is more extensive, leaving behind a lower concentration of vacancies. Thus the
concentration of vacancies left behind increases with decreasing R. Since Tcr is caused by vacancy motion, increasing
R leads to a decrease in Tcr. This process by which the bulk of the grain is depleted of interstitials, leaving behind
an excess of vacancies will be referred to as interstitial starvation (IS). The phenomenon of interstitial starvation is
responsible for the observed decrease in Tcr with increase in R.

We note that IS resulted in the fine-grained material having higher Tcr than the coarse-grained material, only
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FIG. 7. The parameter ∆Tcr, which is the difference in the Tcr between the 10nm case and the ideal bulk case, for various
values of ρ and δ. Positive values of ∆Tcr indicate that the 10 nm has a lower resistance to RIA when compared to the bulk
material.

because, with the decrease in R, recombination occurred to a lesser extent and GB annihilation of interstitials
increased. We can therefore define a regime of coupling between defect recombination kinetics and grain size effects.
Specifically, decreasing the grain size will increase Tcr by the phenomenon of IS when the value of ρ is small enough so
as to allow simultaneous recombination and GB annihilation in a given material. If ρ is large (> 2), recombination is
suppressed irrespectively of the specific grain size. The only mechanism by which any defect can be eliminated from
the system is by GB annihilation. Since GB annihilation is easier for small R, the Tcr will only increase with R for
these large values of ρ as seen in Fig. 4c.
Since IS lowers radiation resistance of fine-grained material only for a certain range of ρ values, it is interesting to

investigate how this range varies with δ. For this purpose we evaluate ∆Tcr, which is the difference in the Tcr between
the 10 nm case and the ideal bulk material, for a range of δ and ρ. The results are shown in Fig. 7. Regions of positive
∆Tcr indicate values of ρ, δ, where the 10 nm material is more susceptible to RIA when compared to the ideal bulk,
while regions of negative ∆Tcr correspond to the 10 nm materials having a better resistance. This kind of a map,
which can be generated using a simple rate theory model for a desired grain size, can serve to make predictions which
material may show an improved resistance to RIA due to grain refinement. Parameters needed to apply this model
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to real materials are the kinetic barriers for defect diffusion and defect recombination.

4. Step height (H)

As shown in Fig. 4d, the step height H is independent of δ, but depends on ρ and R. Specifically, H increases with
decreasing ρ in the range 0 ≤ ρ ≤ 2, while H is constant for ρ > 2. Furthermore, H increases with R for a given ρ
in the range 0 ≤ ρ ≤ 2. To understand the physical origin of the variation of H with ρ we first need to understand
the exact reason for the occurrence of the step in the DTA vs T curves. This step occurs approximately between
T0 (which is slightly greater than Ton) and the critical amorphization temperature Tcr (See Fig. 3). To explain why
we see this region, we must analyze the behavior of solutions to Eq. 1 analytically. We first rewrite Eq. 1 for the
vacancies (v) and interstitials (i) into the following form:

∂cv
∂t

= Pv −Av, (13)

∂ci
∂t

= Pi −Ai. (14)

For each defect n, An = AGB
n + AR

n , where AGB
n and AR

n are the rates at which the defect n is annihilated by
annihilation at GB and recombination, respectively. Both AGB

n and AR
n are positive. By subtracting Eq. 14 from

Eq. 13 we get,

∂cv
∂t

−
∂ci
∂t

= (Pv −AGB
v −AR

v )− (Pi −AGB
i −AR

i ) = Λ. (15)

In the above equation Λ is a measure of the imbalance in the rate of evolution of vacancies and interstitials. A
positive Λ means that the rate of increase in vacancy concentration is greater than the rate of increase in interstitial
concentration. Now, since the vacancies can be considered immobile nearly up to Tcr and since we are analyzing
regions between T0 (or Ton) and Tcr, we can assume that AGB

v ≈ 0 when T0 ≤ T ≤ Tcr. In addition, since Pv = Pi

and AR
v = AR

i = Kcicv, it follows that Λ ≈ AGB
i . AGB

i can be looked upon as a volume averaged behavior of the

term Di

R2

1
r2

∂
∂r

(

r2 ∂cn
∂r

)

(see Eq. 1) and it is given by 3Di

R2

∫ 1

0
∂
∂r

(

r2 ∂cn
∂r

)

dr. For a given set of boundary conditions, it

can be seen that the quantity,
∫ 1

0
∂
∂r

(

r2 ∂cn
∂r

)

dr is non-dimensional and is a constant which we call Θ. Therefore, we

can write, AGB
i = 3Di

R2 Θ. For an ideal bulk material Λ = 0 since R = ∞ and the only path to defect annihilation is a
recombination of Frenkel pairs, which simultaneously eliminates vacancy and interstitial. Now we integrate Eq. 15 to
obtain,

cv − ci ≈ AGB
i t =

3Di

R2
Θt > 0. (16)

To determine if a positive Λ can cause ci to decrease to very small values, which in turn results in vacancy driven
amorphization, we examine the possibilities of ci and cv becoming zero during their evolution. Early on during the
evolution (small t), both ∂cv

∂t
and ∂ci

∂t
are positive because the rate of production of defects (c and v) exceeds the rate

at which they recombine or annihilate at the GB. Close to t ≈ 0 the concentrations (ci and cv) and the gradients
in the concentrations are small causing AR

n and AGB
n ≈ 0. Thus, ∂cv

∂t
and ∂ci

∂t
are both equal to Pv = Pi which is

constant and positive. We note that if at some time t = tv,
∂cv
∂t

= 0, then Eq. 15 and Eq. 16 imply that ci < 0 ,
which is physically not permissible (concentrations are positive quantities). Therefore, the vacancy concentrations
only increases with time. On the other hand, if at some time t = ti ,

∂ci
∂t

= 0, then cv > 0, which case is physically

permissible. Thus, what we observe is that, for positive Λ, ∂ci
∂t

is initially positive and then becomes zero at a time

t = ti. For t > ti,
∂ci
∂t

< 0 and at a time t0 > ti, ci ≈ 0. If the material has not amorphized by t0, then for t > t0
only the vacancies in the material drive amorphization. Thus for t > t0, cv ≈ AGB

i t and using this expression for cv
in the criterion for amorphization (Eq. 11) we obtain ∆Eam ≈ EvA

GB
i tam, where tam is the time at amorphization.

We can rewrite tam ≈ ∆Eam

EvA
GB

i

and substitute it in the expression for the DTA

DTA = tam × dose rate ≈
∆Eam

EvAGB
i

× dose rate (17)

Now, when values of ρ are large enough for a given grain radius, R (e.g., ρ ≈ 2), none of the interstitials that are
produced are able to recombine with vacancies and the imbalance established by AGB

i is large. From Eq. 17, a large
value of AGB

i means that the DTA is low. This trend can be seen in Fig. 2 in curves corresponding to ρ ≈ 2 for the
case when R = 10 nm. For very low values of ρ (≤ 1) nearly all of the interstitials recombine with vacancies and very
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FIG. 8. (a) Variation of DTA with R at different temperatures (δ = 5, ρ = 2), (b) DTA vs T curves for the 10 nm and ideal
bulk material for δ = 5, ρ = 0.1, 2, illustrating the temperature beyond which the ideal bulk has superior resistance to RIA.
The crossover occurs at higher doses for low values of ρ

few interstitials are left near the GB to annihilate there. As a result the imbalance set by AGB
i is small. Now, since

DTA∝ 1
AGB

i

, for small values of ρ the DTA is high. This trend of decreasing DTA with an increasing ρ for a given

R can be seen in Fig. 2 for the 10 nm case and in Fig. 4d in the region 0 ≤ ρ ≤ 2. Increasing ρ beyond 2 does not
change AGB

i significantly, since by ρ = 2 a stage has been reached when no interstitial recombines with the vacancy.
Therefore, the step height H is independent of ρ for ρ > 2 as seen in Fig. 4d.

In the preceding discussion we gave reasons for why H varies with ρ, however further discussion is needed regarding
the relative flatness of the DTA vs T curves for some values of ρ (ρ > 2 and ρ = 0.1, 0.5 and 1) and the relatively less
pronounced steps as seen for ρ = 1.2, 1.5 in Fig. 2. For large values of ρ (such as ρ ≥ 2) Frenkel pair recombination
becomes impossible and all the interstitials have to be annihilated at the GB. Increasing T above T0, for such large
ρ values does not change AGB

i much. A constant AGB
i implies a constant DTA (see Eq. 17), leading to a plateau

between T0 and Tcr, as seen in Fig. 2 for ρ > 2, R = 10 nm case. AGB
i is also not sensitive to T for low values of ρ (e.g.,

0.1, 0.5, and 1), because the dominant mechanism of defect annihilation in this regime is Frenkel pair recombination.
Consequently, the curves shown in Fig. 2 for this regime of ρ exhibit plateaus. In contrast, for intermediate values of
ρ, AGB

i becomes sensitive to T and the plateau between T0 and Tcr is less pronounced (see curves for ρ = 1.2, 1.5 in
Fig. 2 for the 10 nm case).
Finally, from Fig. 4d and Fig. 5d, we see that for ρ = 0.1, H increases with R. The increase of H with R can be

explained in a manner similar to the variation of H with ρ, by considering the variation of AGB
i with R (see Eq. 17).

Specifically, we know that for a given ρ, AGB
i is inversely proportional to R2. Therefore for a given ρ, as R increases,

AGB
i decreases, which means that DTA increases. Since H is a measure of DTA, this argument explains why an

increase in R leads to an increase in H.

C. Is nanomaterial better? (Thermodynamic and kinetic considerations)

We now address the question of whether decreasing the grain size to the nanometer regime will improve resistance
of a given material to RIA. As discussed in Section I, both an increased and a decreased resistance has been reported
in literature, depending on the material itself and on the environment. To explain these trends, most authors used
thermodynamic arguments. A decrease of nanomaterials resistance to RIA has been attributed to an increase in the
free energy of the material due to the higher volume fraction of GBs, which energy drives the materials closer to the
amorphization transition. In cases where nanomaterials have shown a superior resistance to radiation, it has been
argued that a higher volume fraction of GBs provide a higher density of defect sinks and therefore lead to a more
efficient damage recovery. Although these arguments are valid, they provide only a partial view of the processes
that occur in nanomaterials and more specifically they do not take into account kinetic phenomena such as IS. The
possibility of IS has been postulated to occur in nanomaterials by Shen et. al.52, but until the current study it has
not been analyzed in a consistent framework for modeling amorphization.
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To illustrate the contributions from thermodynamic and kinetic effects to RIA of nanomaterials, in Fig. 8a we
analyze the DTA vs. R curve plotted for various temperatures. We choose δ = 5 and ρ = 2 as an example. We
plotted the curves for R values ranging from 0.8 nm to 1µm. The curves for values of R lower than 0.8 nm were
extrapolated from the general trend shown by these curves and is plotted using dashed line in Fig. 8a. For this case we
find that for temperatures as low as 100 K, resistance of materials with small grain sizes (∼ 10 nm) is negligible (very
small DTA). This resistance increases with increasing R up to ∼ 100 nm, beyond which size the DTA is constant with
R. For intermediate temperatures (e.g., 250K, 300 K and 400 K), there is an optimum grain size R = Ro for which
the resistance to radiation is maximized. Ro increases with temperature and the grain-size dependence displays a
crossover at a critical temperature Tco, which falls between 400 K and 500 K. This crossover is better illustrated in the
Fig. 8b, where we plot the DTA vs. T curve for R=10 nm and the ideal bulk, for δ = 5 and ρ = 0.1, 2. We can see that
the 10 nm material has a superior resistance to RIA below Tco and inferior resistance above Tco, as compared to the
bulk material. We note that the dose at crossover is lower for higher values of ρ, as shown in Fig. 8b. In Fig. 8a we see
that beyond Tco, there is no longer a maximum in DTA vs R curve and the resistance to amorphization only increases
with R. The occurrence of an optimum grain size Ro that maximizes resistance to RIA at a particular temperature
below Tco has been reported previously in theoretical works6 and rate theory models36. This phenomenon has been
attributed to thermodynamic effects. Specifically, it has been pointed out that very small grain sizes have an inferior
resistance as compared to polycrystalline samples because in this regime the amorphization is dominated by the effect
of increasing GB energy with grain refinement. However, as we discuss below, the origin of the optimal grain size
Ro is here dominated by kinetic configurations, and it is only for grain sizes in the order of 1nm or lesser where
thermodynamic instability has any significant effect. Furthermore, interesting behavior is observed below Tco in the
regime where the grain sizes are slightly increased but still below Ro. In this regime, contribution to energy from
GBs is large enough to be the dominant factor in controlling the dependence of radiation induced amorphization on
grain size. As R is increased in the regime (R < Ro), the contribution of energy from the GB is not high enough to
cause amorphization and the resistance increases. At grain sizes above Ro, the resistance once again decreases with
increasing R, since the annihilation of interstitials at GB becomes less effective in healing the damage due to increase
in distances that defects need to diffuse before they reach GBs.
The temperature dependence of the optimum grain size (Ro) and of the crossover (shown in Fig. 8b for the 10 nm

case) are the results of an increasing role of IS (discussed in section III B 3) with temperature. At a given R IS becomes
more effective with increasing T , leaving behind more vacancies which then can contribute to the energy increase.
Furthermore, we have seen from section III B 3 that IS is more effective in smaller grains, since the interstitials can
annihilate at the GBs at a higher rate than they can do so in a larger grains where recombination processes in grain
interior still dominates and effectively heals radiation damage. An increased concentration of vacancies left behind in
materials with smaller grains due to IS combined with the increased rate rate of IS with T , results in the Ro increasing
with T . Below Tco the rate of GB annihilation is still slow enough to allow some interstitials in the bulk to recombine
with vacancies. When T > Tco, no interstitial is actually left behind (all of them annihilate at the GB) and vacancies
build up causing amorphization. Alternatively, one may say that for T > Tco, recombination will be present only
in the limit of an infinite R, which is the ideal bulk case, meaning that the Ro → ∞, since the interstitials cannot
annihilate at the GB. The main impact of the kinetic effects, such as IS, is that, the answer to the question of how
grain refinement affects resistance to RIA depends on irradiation temperature. For T < Tco and R > Ro, increasing
R decreases the resistance of materials to RIA. When, R < Ro or T > Tco increasing R decreases the resistance to
RIA.

D. Silicon carbide (Variation of Tcr with R)

Silicon carbide (SiC) is a promising candidate for use as a structural and cladding material in next generation
fusion and fission reactors37,54,55. RIA is an important issue for this material, especially at temperatures below
500 K. Specifically, experiments on single crystal SiC reported Tcr of 340 K for electron irradiation38, 420 K for
irradiation with Si+ ions51, and 500 K for irradiation with Xe ions53. Grain refinement to the nanometer regime is
one option that is being considered for overcoming the sensitivity of the bulk material to RIA. Consequently, radiation
resistance of nanocrystalline SiC has been a subject of a number of experimental56,57 and modeling21,23,58 studies.
For example, Jamison et. al.58 conducted 1MeV Kr+ radiation on SiC with 10 nm and 45-55 nm grain diameter and
reported corresponding DTA vs T curves. The maximum experimental dose used in these experiments was 3 dpa and
it was found that at temperatures below 400 K, 10 nm samples required a lower dose to amorphize when compared
to 45-55 nm samples. Using a simple logarithmic fit to the DTA vs T data, the authors predicted Tcr for the 10 nm
materials to be 610 K while Tcr for the 45-55m case was 485 K. The larger Tcr for smaller grain size samples suggests
that in nanocrystalline SiC may be more susceptible to radiation damage than its polycrystalline counterpart.
Using the rate theory framework described in section II B 2, we investigate RIA in SiC. Formation and migration
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FIG. 9. Variation of Tcr with R for SiC using an ab-initio informed rate theory model. The symbols indicate the experimental
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energies of defects as well as defect reaction energies used in our study are reported in Tables II and III. This set
of ab initio energies constitutes a complete and a highly accurate database for energetics of point defects in SiC and
therefore it is reasonable to expect that our rate theory model captures the correct physics in the regime where point
defects dominate radiation response of SiC. We find that phenomenon analogous to IS observed in a single-component
material X (see Section. III B), takes place also in SiC. Specifically, reaction R.61 (see Table III) was found to leave
unrecombined vacancies in the grains. The low barrier (0.69 eV) of this reaction results in Ci forming a bound
complex with SiC , which decreases the concentration of free interstitials. The energy to dissolve this complex is
1.75 eV45 and therefore C interstitials are trapped and prevented from recombination with C vacancies. This easy
trapping of interstitials by SiC combined with the fact that the bound complex has a formation energy lower by
∼ 1.2 eV when compared to the cumulative formation energy of the constituent defects (Ci and SiC ), results in a
formation of a small step in the DTA vs T for ideal bulk SiC. After this step, we observe a plateau in the DTA vs
T plot and we find that amorphization in the plateau regime is dominated by accumulation of vacancies and not of
the Ci -SiC complex. For finite grain sizes, in addition to the loss of free interstitials through R.61, interstitials are
also lost to the GB due to relatively low barrier for Ci migration (0.67 eV cf. Table. II), which in turn leads to the IS
effect. This loss of interstitials to the GB is enhanced even further by the high recombination barrier for R.1, which
is 0.92 eV. Due to this high barrier for R.1, the interstitials choose to either form the complex with SiC or diffuse to
the GB. Since the loss of free interstitials by diffusion to the GB (IS) is higher in smaller grains than in larger ones,
we found that Tcr was higher for smaller grains.

While our model demonstrates that IS is likely to be present in materials such as SiC, we do not expect the
predictions of DTA values made by our model for SiC to be quantitative. This limitation is due to the importance
of clustering, which can dramatically change defect thermodynamics and kinetics, and therefore DTA. It has been
hypothesized that at higher defect concentrations, defects in SiC can cluster46,59 and clustering is not included in
our model. The radiation response property that is expected to be captured quantitatively by our model, even if
defect clustering takes place during irradiation, is the critical amorphization temperature Tcr. The ability of the
model to capture Tcr is derived from the fact that Tcr is controlled by kinetic barriers of defect reactions at low
defect concentrations, which are correctly reproduced in our model, and not by formation energies of defects35 at high
concentrations (which control DTA in our model). Here, we assume that any defect reactions that involve clusters
(e.g., cooperative rearrangement of many atoms) do not cause any significant recovery of radiation damage in SiC. In
materials where such cooperative rearrangement of atoms heal significant damage a point defect model of the kind
presented in this paper would overestimate Tcr. In addition to trapping effects, the presence of clusters could change
defect evolution properties in multiple ways, including total and relative vacancy and interstitial concentrations,
enhanced recombination through strain effects and altered recombination pathways, altered transport properties
through cluster mobility, and altered production rates through cascades overlapping with existing damage clusters.



19

The potential impact of clusters through these and related effects are beyond the scope of the present study and will
require further work.
In light of this discussion, our investigation of grain size effects on RIA resistance in SiC are focused on Tcr and its

variation with R (see Fig. 9). Furthermore, since the maximum doses used in irradiation experiments of SiC is about
20− 30 dpa29, we do not analyze doses up to as high as 1000 dpa (as we did for the generic material). We take Tcr to
be the temperature corresponding to 30 dpa so that we can perform comparison between our data and experiments.
Based on the curves in Fig. 9 we conclude that fine-grained SiC has an inferior resistance to RIA when compared
to the coarse-grained SiC, consistently with what was has been reported in recent experiments58. In our model, the
10 nm sample has Tcr approximately equal to 1050 K, while the bulk (single crystal) SiC has a Tcr of about 450 K. As
shown in Fig. 9, Tcr predicted by our model for a single crystal SiC falls into the range for experimental measurements.
Our prediction of Tcr for 10 nm grain size differs from the value of 700K reported by Jamison et al58. However, one
needs to keep in mind that Tcr in Ref.58 was predicted by fitting experimental data measured at lower temperatures
to a relatively simple one-parameter amorphization model and therefore there might be some uncertainty in the exact
value of Tcr. Based on the discussion in the previous paragraph, we can attribute the deterioration of radiation
resistance with grain refinement to the starvation of Ci . Ci have a lower barrier for diffusion to GBs than they have
to recombine with VC . As a result, a significant fraction of Ci migrates to GBs, leaving behind an excess of VC ,
which defects in turn amorphize the material. It is instructive to ask whether it is possible that the inferior resistance
of fine grains to RIA is due to thermodynamic effects (i.e., an increase in free energy of fine-grained materials due to
the larger volume fraction of GBs), rather than from IS. This GB-related thermodynamic effect can be ruled out as
the only factor driving radiation-induced amorphization by noting that the contribution from GB energy to the total
energy in the material with grains as small as R = 10 nm is only about 2.8% of the Eam value and therefore this
contribution cannot account for a significant contribution to the onset of amorphization.
We note that the predicted Tcr becomes quite extreme at low grain size, reaching over 1000K for a 10nm particle

size. This behavior in the model requires that the grain boundaries can absorb all the interstitials to allow IS to
occur. While this is possible, other processes, such as grain boundary saturation, growth of the grain boundaries from
the absorbed interstitials, C precipitation, or interstitial emission [20] might occur, changing the predicted Tcr. These
effects are not included in our model. Further studies on the exact mechanisms for accommodating large excesses of
Ci at grain boundaries in SiC will be needed to assess if the simple perfect sink approximation breaks down under
some conditions and what consequences this breakdown might have for amorphization.

Finally, it is worth discussing which defect energetics are responsible for the value of Tcr observed in experiments
and predicted by our model. It has been sometimes conjectured that Tcr is correlated with migration energy of a
slower interstitial in SiC. To show the effect of migration barriers on Tcr we perform rate theory simulations of electron
irradiation in SiC in the case where there are no recombination or trapping barriers present (the so-called no-barrier
model as discussed in Ref.35). In this case we found Tcr to be equal to ∼ 220 K and set by Sii mobility (leading to
annihilation of Sii with VSi ), which is higher than Ci mobility (see Table II). This value of Tcr is lower by ∼ 100K
than the lower limit of the experimentally measured values of Tcr, which is between 340K38 to 420K51,53.This analysis
shows that energy barriers to migration of point defects in SiC are too low to account for experimentally measured
critical amorphization temperatures. On the other hand, when all the barriers to defect reactions (as determined in
Ref.45) are included in the simulations, the amorphization temperature predicted by the model is 450 K, which is
within the range of experimentally predicted values and in particular it is close to Tcr ∼ 420 K measured in more
recent experiments51,53 . We find that this Tcr is not controlled by migration barriers of defects, but by the second
step in the kick-out reaction (R6.2 in Table III). In this step Ci kicks out a Si antisite (SiC ), leading to formation of
a Si interstitial (Sii ). The Sii then can readily recombine with the VSi , which leads to healing of the Si defects. The
barrier to the kick-out reaction is 1.35 eV and it is responsible for the predicted amorphization temperature of 450 K.
Based on our model we propose that the physical origin of amorphization temperature in SiC should be reinterpreted.

IV. CONCLUSION

Rate theory was used to predict the dose to amorphization (DTA) vs T curves of a generic one component material
as a function of its grain size. The curves for the ideal bulk (single crystal) material showed a temperature at which
the DTA increases exponentially while the curves for the nanomaterial had several other features. The fine-grained
material showed an onset temperature Ton (where DTA increases by a finite amount), a step with a definite width
(W ) and height (H), and a final increase in the DTA, which defined the critical temperature Tcr. All these features
were studied as a function of the grain radius R, a vacancy migration barrier δ, and a Frenkel pair recombination
barrier ρ (where δ and ρ are given in units of the interstitial migration energy). Among other trends, we found that
Tcr can either increase or decrease with R, depending on the values of R, as well as of ρ and δ. We discovered that
in addition to thermodynamic arguments made previously in literature, an important effect in radiation resistance of
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nanomaterials is the kinetic effect of interstitial starvation. In this phenomenon, a significant number of interstitials
diffuse and are annihilated at GBs, leaving behind unrecombined vacancies in the bulk of the material. Accumulation
of these vacancies drives RIA. Furthermore, we found that IS is more pronounced (i.e., occurs at lower doses) when
the barrier ρ was greater than unity, which means that the barrier for interstitial-vacancy recombination is higher
than that for interstitial diffusion. Such situation results in the interstitial diffusing to the GB and leaving behind
many unrecombined vacancies, which in turn increases the systems energy and causes amorphization.

To identify regimes of R and T where grain refinement leads to enhancement or deterioration of radiation resistance
as compared to the bulk material, we plotted the DTA vs R for several T . We considered two cases one where the
recombination barrier of Frenkel pair is high and one where it is comparable to the interstitial migration barrier.
For high recombination barrier (inspired by the SiC case), we found that there exists a crossover temperature Tco,
where the grain refinement changes from beneficial to detrimental at doses which are low enough to be conceived
in experiments. Furthermore, there is also a temperature dependent optimum grain radius Ro for which radiation
resistance is maximized. Both Tco and Ro depend on the kinetic parameters represented by ρ and δ. In general, it
was found that below Tco and for values of R < Ro, the resistance to RIA always increases with R which means that
smaller grains have lower resistance to RIA. In the same temperature regime, but above Ro, the resistance decreases
with increasing R, indicating that finer grains have better radiation resistance. Above Tco, the fine-grained material
always has a lower resistance to RIA when compared to the coarse grained material. In comparing a low recombination
barrier to a higher one, we found that the crossover temperature might be lower, but the dose at which the crossover
occurs is much higher.
Thus in addition to the effects of grain refinement the effects of temperature were shown to play an important role

in affecting radiation damage of a material. Chimi et. al.8 also studied experimentally the effect of temperature on
radiation resistance. They found that, at low temperature nanocrystalline Au was worse than the bulk material. At
higher temperatures they found that the nano crystalline material was better than the bulk material. The reason for
the high temperature improvement in radiation resistance was concluded to be the diffusion and annihilation of point
defects at the grain boundaries. The low temperature inferiority in radiation resistance was hypothesized to be due
to enhanced defect production at grain boundaries, short collision sequence and trapping of defects. In our current
model, we have not included these effects. Further, atomistic level calculations might shed light on these aspects.

In summary, we have shown that, whether refinement of grain size to the nanometer regime will improve radiation
resistance could depend on the values of the kinetic parameters (migration and recombination barriers) and the
temperature for the intended use of the material. The phenomenon of interstitial starvation could render the nano
crystalline material more susceptible to radiation damage than the coarse grained counterpart. One should keep
in mind that there are other processes which could affect the results of this conclusion. For example, in-cascade
amorphization could take place instead of the the energy based method used in this paper. Defect clusters may form
and affect processes such as the defect production rate, recombinations and diffusion of simple defects. The defect
clusters may themselves diffuse and change the resistance to radiation damage in complicated ways. Including these
effects in the model could explain some of the discrepancies with some experimental work like that of Chimi et. al.8.
Multicomponent oxides like MgGa2O4

6 could have complicated kinetic phenomenon taking place which our simple
model does not capture. Detailed understanding of the operating defects, defect clusters is needed to explain the
exact behavior of such oxides. Nevertheless our results demonstrate that recombination barrier is a critical parameter
to include in a model and in a number of materials (such as SiC) which can lead to interstitial starvation
When applied to the case of SiC, our rate theory model predicts that critical amorphization temperature of nanocrys-

talline SiC is higher than of its polycrystalline counterpart. This trend is consistent with recent experiments on the
same materials57,58. The presence of a high kinetic barrier for the recombination of Ci with VC leads to increase
in interstitial starvation, which in turn leaves excess vacancies in the interior regions of the grain and contributes
to amorphization. Interstitial starvation is more pronounced for materials with smaller grain sizes and that explains
why grain refinement in SiC leads to deterioration of resistance to RIA. We also found that the energy barrier that
controls the critical amorphization temperature (Tcr) corresponds to the kicking out of SiC by Ci , for which the
barrier is 1.35 eV.
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