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Abstract

Let G be a strongly connected and balanced directed graph. The Laplacian
matrix of G is then the matrix (not necessarily symmetric) L := D−A, where
A is the adjacency matrix of G and D is the diagonal matrix such that the
row sums and the column sums of L are equal to zero. Let L† = [l†ij ] be the
Moore-Penrose inverse of L. We define the resistance between any two vertices
i and j of G by rij := l

†
ii + l

†
jj − 2l†ij . In this paper, we derive some interesting

properties of the resistance and the corresponding resistance matrix [rij ].

Keywords.Balanced directed graph, Laplacian matrix, Moore-Penrose inverse,
cofactor sums
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1 Introduction

Let G = (V,E) be a simple connected graph with finite set of vertices V = {1, . . . , n}
and edge set E, the set of undirected edges. To each edge (i, j) ∈ E assign a weight
wij which is a positive number. If i, j ∈ V , define A := [aij ] where

aij :=

{
wij (i, j) ∈ E

0 otherwise.

Define D := Diag(A1), where 1 is the column vector of all ones in R
n. The Laplacian

matrix of G is then the symmetric matrix S := D − A. If x ∈ R
n, then it can be

verified that
xTSx =

∑

(i,j)∈E
aij(xi − xj)

2,

and hence S is positive semidefinite with null-space span{1}. The algebraic con-
nectivity of G is the second smallest eigenvalue of the Laplacian matrix S and the
associated eigenvector is called the Fiedler vector which is used to bisect the graph
into two connected partitions based on the sign of its components, see Fiedler [1]. We
shall denote the Moore-Penrose inverse of S by S† and its entries by s

†
ij. To define the

distance between any two vertices i and j in G, it is natural to consider the length of
the shortest path connecting them. This is the classical distance and we shall denote
it by dij. The function f : V × V → R defined by f(i, j) := dij is a metric on the
vertex set V . There are several reasons why the shortest distance dij is important. In
chemistry, the classical distance dij is used to represent the structure of a molecule as
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a metric space: see [2] and references therein. Here is another application in a data
communication problem [3]. If v is a vertex of G, and N is a natural number, define

A(v) := (a1, . . . , aN),where ai ∈ {0, 1, ∗}.

Let
ρ(A(v), A(v′)) := |{ν : {aν , a

′

ν} = {0, 1}| ∀v, v′ ∈ V.

It is known that for some large N , there exists a function ρ such that

ρ(A(v), A(v′)) = dvv′ ∀v, v′ ∈ V. (1)

Now the question is to determine the minimum N for which equation (1) holds. A
known result states that

N ≥ max{n+, n−},

where n+ and n− are the number of positive and negative eigenvalues of the symmetric
matrix [dij ]: see [4]. Suppose there are multiple paths connecting i and j in G. In a
network, this may indicate that the nodes i and j are better communicated. Thus,
it makes more sense to define a distance between i and j which is shorter than the
classical distance dij. There are several other possible metrics that can be defined
on the vertex set V of G. In a seminal paper, Klein and Rándic [5] introduced the
resistance distance Rij between any two vertices i and j of G. This is defined via S†,
the Moore-Penrose inverse of the Laplacian matrix S of G:

Rij := s
†
ii + s

†
jj − 2s†ij. (2)

In resistive electrical networks, Rij is interpreted as the effective electrical resistance
between the nodes i and j of a network N corresponding to G, with resistor of
magnitude wij taken over the edge (i, j) of N . It can be proved that the resistance
distance is at most the classical distance and if G is acyclic, then Rij = dij for all i
and j. Resistance distance have several interesting properties. These are discussed
in chapter 9 of [6]. In this paper, we generalize the concept of resistance distance to
directed graphs.

Let G = (V,E) be a simple directed graph with vertex set V = {1, . . . , n} and
edge set E containing directed edges. We write (i, j) ∈ E if there is a directed edge
from vertex i to vertex j. If i and j are any two vertices, we define

aij =

{
1 (i, j) ∈ E

0 otherwise.

The matrix A := [aij ] will be called the adjacency matrix of G. The indegree and
the outdegree of a vertex k is the sum of all the entries in the kth column and the
kth row of the adjacency matrix A. A vertex j in V is said to be balanced if its
indegree and the outdegree are equal. Now the graph is said to be balanced if all
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the vertices are balanced. Recall that a directed graph is strongly connected, if each
pair of vertices is connected by a directed path. In the sequel, we assume that G is a
strongly connected and balanced directed graph. The Laplacian of G is now defined
by L := Diag(A1)−A. The algebraic connectivity concept is generalized to directed
graphs via this definition of the Laplacian matrix and have many other applications
like in networks of chaotic systems: see [7]. We now propose a semi-distance in
directed graphs using the Moore-Penrose inverse of the Laplacian matrix L.

Definition 1. The resistance between any two vertices i and j in V is defined by

rij := l
†
ii + l

†
jj − 2l†ij , (3)

where l
†
ij is the (i, j)th entry in the Moore-Penrose inverse of L.

The matrix R := [rij ] will be called the resistance matrix of G. The reversal of
G is the directed graph obtained by reversing the orientation of all the edges. The
adjacency matrix of the reversal is then the transpose of the matrix A, and thus the
resistance matrix of the reversal of G is the transpose of R. Because rij and rji are
not equal in general, rij is not necessarily a metric on V and therefore, the resistance
matrices we consider here are not symmetric in general. The symmetric part of the
Laplacian matrix of G defined by S := 1

2
(L+ L′) has a combinatorial interpretation.

Define a simple undirected graph H from G as follows. Let the vertex set of H be V .
If i, j ∈ V , then we shall say that i and j are adjacent in H , if (i, j) ∈ E or (j, i) ∈ E.
Because G is strongly connected, H is connected. Let F be the set of all edges of H .
Now to each edge (i, j) ∈ F , define wij as follows:

wij =

{
1 (i, j) ∈ E and (j, i) ∈ E
1
2

otherwise.

Now, S is the Laplacian of the weighted graph H . Hence for any x ∈ R
n,

xTLx = xTSx =
∑

(i,j)∈F
wij(xi − xj)

2.

Thus, the null-space of L and null-space of L′ are equal to span{1} and L + L′ is
positive semidefinite. To illustrate, we give an example.

Example 1. Consider the directed graph G with six vertices given in Figure 1(a). G
is strongly connected and balanced. The adjacency and the Laplacian matrices of G
are:

A =




0 1 0 0 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 1
1 0 0 0 0 0




and L =




1 −1 0 0 0 0
0 3 −1 −1 −1 0
0 −1 1 0 0 0
0 0 0 1 −1 0
0 −1 0 0 2 −1

−1 0 0 0 0 1



.
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Figure 1: (a) Graph G and (b) Graph H

The Moore-Penrose inverse of L is

L† =




5
9

1
18 −1

9 −1
9 −1

9 − 5
18

− 5
18

2
9

1
18

1
18

1
18 −1

9
−4

9
1
18

8
9 −1

9 −1
9 − 5

18
− 7

36 − 7
36 −13

36
23
36

5
36 − 1

36
− 1

36 − 1
36 − 7

36 − 7
36

11
36

5
36

7
18 −1

9 − 5
18 − 5

18 − 5
18

5
9



.

The resistance matrix R = [rij] = [l†ii + l
†
jj − 2l†ij] is given by

R =




0 2
3

5
3

17
12

13
12

5
3

4
3 0 1 3

4
5
12 1

7
3 1 0 7

4
17
12 2

19
12

5
4

9
4 0 2

3
5
4

11
12

7
12

19
12

4
3 0 7

12
1
3 1 2 7

4
17
12 0



.

The undirected graph H obtained from G is given in Figure 1(b). The Laplacian
matrix S of H is given by

S =




1 −1
2 0 0 0 −1

2
−1

2 3 −1 −1
2 −1 0

0 −1 1 0 0 0
0 −1

2 0 1 −1
2 0

0 −1 0 −1
2 2 −1

2
−1

2 0 0 0 −1
2 1



.

It can be verified that S = 1
2
(L+ L′).

Suppose G′ = (V, F ) is a simple undirected and connected graph. Let [Rij ] be
the resistance matrix of G′, where Rij is defined in (2). Now [Rij ] is the resistance
matrix of a strongly connected and balanced directed graph. To see this, we proceed
as follows. Let L be the Laplacian matrix of G′. From the edge set F , we shall
define a set of directed edges. For each edge (i, j) ∈ F , define two directed edges,
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viz, (i, j) and (j, i) and let E ′ be the set of all such directed edges. Then the directed
graph G′ := (V,E ′) is strongly connected and balanced. It can be easily seen that
the adjacency matrices of G and G′ are equal and hence their Laplacian matrices are
equal. This means that between any two vertices i and j, the resistance distance in G

and the resistance in G′ defined by (2) and (3), respectively are same. To illustrate,
we give an example.

Example 2. Let G be the graph with five vertices given in Figure 2(a). The di-

1

2

34

5

(a)

1

2

34

5

(b)

Figure 2: (a) Graph G and (b) Graph G′

rected graph G′ constructed from G is shown in Figure 2(b). The adjacency and the
Laplacian matrices of G and G′ are given by

A =




0 1 1 1 1
1 0 1 0 0
1 1 0 1 0
1 0 1 0 1
1 0 0 1 0




and L =




4 −1 −1 −1 −1
−1 2 −1 0 0
−1 −1 3 −1 0
−1 0 −1 3 −1
−1 0 0 −1 2



.

1.1 Results obtained in the paper

• In our first result, we show that the resistance rij defined in (3) has the following
properties.

(i) If i and j are any two distinct vertices of G, then rij > 0.

(ii) If i, j, k are any three vertices, then

rik ≤ rij + rjk ∀i, j, k.

• In our next result, we compute an identity for the inverse of the resistance
matrix [rij]. The motivation for obtaining this identity starts from a classical
result of Graham and Lovász [4]. This states the following.

Theorem 1. Let T be a tree with V (T ) = {1, . . . , n}. Let dij be the length of
the shortest path between vertices i and j, and L be the Laplacian of T . Set
D := [dij]. Then,

D−1 = −
1

2
L+

1

2(n− 1)
ττ ′,
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where τ = (2− δ1, . . . , 2− δn)
′ and δi is the degree of the vertex i.

Theorem 1 is extended to connected graphs in [8] for resistance matrices.

Theorem 2. Let G be a simple connected graph with vertex set V = {1, . . . , n}
and edge set E. Let S be the Laplacian of G and Rij be the resistance distance

defined in (2). Define R̃ := [Rij ]. Then,

R̃−1 = −
1

2
S +

1

τ ′R̃τ
ττ ′,

where τi = 2−
∑

(i,j)∈E Rij.

Motivated by the above two results, we find the following inverse formula for
the resistance matrix [rij].

Theorem 3. Let G = (V,E) be a strongly connected and balanced directed
graph. Let rij be the resistance between the vertices i and j defined in (3) and
R := [rij ]. Then,

R−1 = −
1

2
L+

1

τ ′Rτ
(τ(τ ′ + 1′ diag(L†)M)),

where M = L− L′, and τi := 2−
∑

(i,j)∈E rji.

Since the resistance matrix of a connected graph can be written as a resistance
matrix of a strongly connected and balanced directed graph, Theorem 1 and
2 are special cases of Theorem 3. Using Theorem 3, we find a formula for
computing det(R).

• In our final result, we investigate the sum of all the cofactors in an s × s

submatrix of R = [rij]. The motivation for this consideration comes from
an alternate method to compute the resistance distance defined in (2). This
method gives an elegant formula to compute Rij :

Rij =
1

δ
det(S({i, j}, {i, j})), (4)

where S({i, j}, {i, j}) is the principal submatrix of S obtained by deleting rows
and columns indexed by {i, j} and δ is the number of spanning trees in G. A
far reaching generalization of (4) is obtained in [9]. This is stated below.

Theorem 4. Let G be a connected graph with vertex set {1, 2, . . . , n}. Let S be

the Laplacian matrix of G and R̃ := [Rij ] its resistance matrix. Let Ω1,Ω2 ⊂
{1, 2, . . . , n} be non-empty, and let |Ω1| = |Ω2|. Put η := |Ω1|. Suppose α(Ω1)
and α(Ω2) are the sum of all the elements in Ω1 and Ω2, respectively. Let
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S[Ω1,Ω2] denote the η× η submatrix of S with rows and columns indexed by Ω1

and Ω2, respectively, and R̃[Ωc
2,Ω

c
1] be the (n− η)× (n− η) submatrix of R with

rows and columns indexed by Ωc
2 and Ωc

1, respectively. Then,

cofsum(R̃[Ω1,Ω2]) = (−1)α(Ω1)+α(Ω2)+η−1 2
η−1

δ
det(S[Ωc

2,Ω
c
1]), (5)

where δ is the number of spanning trees in G.

Equation (4) is a special case of (5). This follows by setting Ω1 = Ω2 = {i, j}

and observing that (−1)α(Ω1)+α(Ω2) = 1, cofsum(R̃[Ω1,Ω2]) = −2Rij , η = 2
and S[Ωc

2,Ω
c
1] = S({i, j}, {i, j}). In this paper, we generalize Theorem 4 to

resistance matrices of directed graphs.

1.2 Outline of the paper

In section 2, we mention the preliminaries that are needed for further discussion. In
section 3, we discuss the properties of the resistance. In section 4, we present the
inverse formula stated in Theorem 3 and illustrate it by an example. In the final
section, we deduce a formula for finding the cofactor sums of the resistance matrix.

2 Preliminaries

We now list a few notation used in this paper and gather some tools to prove our
results.

(P1) Let Ω1 and Ω2 be non-empty subsets of {1, . . . , n}. If W is an n × n matrix,
then W [Ω1,Ω2] will be the submatrix of W with rows and columns indexed by
Ω1 and Ω2, respectively. If Ω ⊆ {1, . . . , n} is non-empty, then α(Ω) will denote
the sum of all elements in Ω.

(P2) The complement of a set Ω is written Ωc. The transpose and the Moore-Penrose
inverse of a matrix A are denoted by A′ and A†, respectively. All vectors are
regarded as column vectors.

(P3) If A = [aij ] is a square matrix, then diag(A) is the diagonal matrix with diagonal
entries equal to aii. If s := (s1, s2, . . . , sn)

′ ∈ R
n, then Diag(s) will be the

diagonal matrix with diagonal entries equal to si.

(P4) The sum of all the cofactors of an m×m matrix A is represented by cofsum(A).
The determinant and the classical adjoint of A are written det(A) and adj(A),
respectively.
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(P5) The notation 1 will stand for the vector (1, 1, . . . , 1)′ in R
n and J := 11′. The

orthogonal projection onto the hyperplane {1}⊥ is denoted by P . It is easy to
observe that P = I − 1

n
J , where I is the n× n identity matrix. If 1 ≤ m < n,

then the vector of all ones in R
m and the m×m identity matrix will be denoted

by 1m and Im, respectively.

(P6) The Jacobi’s identity on non-singular matrices is the following:

Theorem 5. Let A be an n× n non-singular matrix. Let Ω1, Ω2 ⊂ {1, . . . , n}
be non-empty such that |Ω1| = |Ω2|. Then,

det(A−1[Ωc
2,Ω

c
1]) = (−1)α(Ω2)+α(Ω1)

1

det(A)
det(A[Ω1,Ω2]).

See Brualdi and Schneider [10].

(P7) An n × n matrix B is called a Z-matrix, if every off-diagonal entry of B is
non-positive. If L is the Laplacian matrix of a strongly connected and balanced
directed graph, then L is a Z-matrix. As already noted, L + L′ is positive
semidefinite, L1 = L′1 = 0 and rank(L) = n− 1.

(P8) Suppose S is an n × n matrix such that S1 = S ′1 = 0 and rank(S) = n − 1.
Then S†1 = S†′1 = 0, SS† = S†S = P = I − 1

n
J and all the cofactors of S are

equal. If L is a Z-matrix such that L1 = L′1 = 0 and rank(L) = n − 1, then
we shall write L ∈ Z(L). If L ∈ Z(L), then it can be verified that L† + L†′ is
positive semidefinite and trace(L†) > 0.

(P9) Let A be an n × n matrix. If u and v belong to R
n, then det(A + uv′) =

det(A) + v′ adj(A)u. For a proof, see Lemma 1.1 in [11].

(P10) Let B = [bij ] be an n× n matrix. Then,

(a) B is row diagonally dominant if for each i = 1, . . . , n

|bii| ≥
∑

{j:i 6=j}
|bij| ∀j = 1, . . . n.

(b) B is diagonally dominant of its row entries if

|bii| ≥ |bij|

for each i = 1, . . . , n and j 6= i.

(c) B is diagonally dominant of its column entries if B′ is diagonally dominant
of its row entries.

8



By Theorem 2.5.12 in [12], if B is non-singular and row diagonally dominant,
then B−1 is diagonally dominant of its column entries.

(P11) Let G = (V,E) be a directed graph with vertex set V = {1, 2, ..., n}. An
oriented spanning tree of G rooted at vertex i is a spanning subgraph T such
that

(i) Every vertex j of T such that j 6= i has outdegree 1.

(ii) The vertex i has outdegree 0.

(iii) T has no oriented cycles.

The matrix-tree theorem for directed graphs (Theorem 1 in [13]) is the following.

Theorem 6. Let G = (V,E) be a directed graph with vertex set V = {1, 2, ..., n}.
Let κ(G, i) denote the number of oriented spanning trees of G rooted at i. If L
is the Laplacian matrix of G, then

κ(G, i) = det(L[{i}c, {i}c]).

Suppose G is also strongly connected and balanced. Then all the cofactors of L
are equal and therefore κ(G, i) is independent of i. We denote κ(G, i) by κ(G)
in the rest of the paper.

3 Properties of the resistance

To establish the desired properties of the resistance defined in (3), we need the fol-
lowing identity. The proof is omitted as it is a direct verification.

Lemma 1. Let L ∈ Z(L). Then L can be partitioned as

L =

[
B −Be

−e′B e′Be

]
,

where B is a square matrix of order n− 1 and e = 1n−1 and

L† =




B−1 − 1
nee

′B−1 − 1
nB

−1ee′ − 1
nB

−1e

− 1
ne

′B−1 0


+

e′B−1e

n2 11′.

The following theorem is an application of Lemma 1.

Theorem 7. Let L ∈ Z(L), L := [lij] and L† := [l†ij]. Define rij := l
†
ii + l

†
jj − 2l†ij.

Then,

(i) rij > 0 ∀i 6= j.

9



(ii) rik ≤ rij + rjk ∀i, j, k.

Proof. Define Ω := {1, . . . , n− 1}, B := L[Ω,Ω] and C := B−1 = [cij ]. To prove (i),
we shall assume without loss of generality that j = n and show that rin > 0 for any
i ∈ Ω. Put e := 1n−1. By Lemma 1,

L† =




B−1 − 1
nee

′B−1 − 1
nB

−1ee′ − 1
nB

−1e

− 1
ne

′B−1 0


+

e′B−1e

n2 11′. (6)

By a well-known result on Z-matrices, B−1 is a non-negative matrix. Therefore, B−1e

is a positive vector. Let x := B−1e and y′ := e′B−1. For any i ∈ Ω, by (6) we have

rin = l
†
ii + l†nn − 2l†in

= cii −
1

n
yi −

1

n
xi +

2

n
xi

= cii −
1

n
yi +

1

n
xi.

(7)

It can be seen that B is row diagonally dominant. In view of (P10), C is diagonally
dominant of its column entries and therefore,

cii ≥ cji ∀j = 1, . . . , n− 1.

Thus,

ncii ≥ (n− 1)cii ≥
n−1∑

j=1

cji = yi.

Hence,

cii ≥
yi

n
.

Since xi > 0, it follows from (7) that rin > 0. This completes the proof of (i).
We now prove (ii). We shall show that if j, k ∈ Ω, then

rnk ≤ rnj + rjk,

and the proof can be completed by using a similar argument applied to any other rik.
Since

rnk − rnj − rjk = l†nn + l
†
kk − 2l†nk − l†nn − l

†
jj + 2l†nj − l

†
jj − l

†
kk + 2l†jk

= −2(l†nk + l
†
jj − l

†
nj − l

†
jk),

it suffices to show that l†nk + l
†
jj − l

†
nj − l

†
jk ≥ 0. In view of (6), it follows that

l
†
nk + l

†
jj − l

†
nj − l

†
jk = −

1

n
yk + cjj −

1

n
yj −

1

n
xj +

1

n
yj − cjk +

1

n
yk +

1

n
xj

= cjj − cjk.

(8)

Since B′ is row diagonally dominant, by (P10), C is diagonally dominant of its row
entries, and hence cjj ≥ cjk. The proof is complete.
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The main result of this section is now immediate from the above result.

Theorem 8. Let G be a strongly connected and balanced directed graph and R := [rij]
be the resistance matrix of G. Then, every off-diagonal entry of R is positive and
thus R is a non-negative matrix. Furthermore, the resistance rij satisfies the triangle
inequality.

4 Inverse of the resistance matrix

For a resistance matrix R, we now obtain the inverse formula stated in Theorem 3.
Since rij = l

†
ii + l

†
jj − 2l†ij and R = [rij], we have

R = diag(L†)J + J diag(L†)− 2L†. (9)

Define X := (L + 1
n
J)−1 and X̃ := diag(X). By an easy computation, we find that

L† = X − 1
n
J and hence

R = X̃J + JX̃ − 2X.

For i = 1, 2, .., n, let

τi := 2−
∑

{j:(i,j)∈E}
rji and τ := (τ1, . . . , τn)

′.

Set M := L− L′. The inverse formula will be proved by using the following lemma.

Lemma 2. The following are true.

(i) τ = LX̃1+ 2
n
1.

(ii) τ ′ + 1′X̃M = 1′X̃L+ 2
n
1′.

(iii) LR + 2I = τ1′.

(iv) RL+ 2I = 1τ ′ + JX̃M.

(v) 1′τ = 2.

(vi) τ ′Rτ = 2x̃′Lx̃+ 8
n
trace(L†).

(vii) τ ′Rτ > 0.

Proof. Fix i ∈ {1, . . . , n}. Define δi := (A1)i. From
(
L+ 1

n
J)X = I, we have

δixii −
∑

{j:(i,j)∈E}
xji +

1

n

n∑

j=1

xji = 1. (10)
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As X1 = X ′1 = 1,
n∑

j=1

xji = (X ′1)i = 1.

Hence from (10),

δixii −
∑

{j:(i,j)∈E}
xji = 1−

1

n
.

and so, ∑

{j:(i,j)∈E}
xji = δixii − 1 +

1

n
. (11)

Also, we see that

τi = 2−
∑

{j:(i,j)∈E}
rji

= 2−
∑

{j:(i,j)∈E}
(xii + xjj − 2xji)

= 2−
∑

{j:(i,j)∈E}
xii −

∑

{j:(i,j)∈E}
xjj + 2

∑

{j:(i,j)∈E}
xji.

(12)

Since
∑

{j:(i,j)∈E}
xii = xii

n∑

j=1

aij , (13)

and
n∑

j=1

aij = (A1)i = δi, (14)

from (12), (13) and (14), we now have

τi = 2− δixii −
∑

{j:(i,j)∈E}
xjj + 2

∑

{j:(i,j)∈E}
xji.

In view of (11),

τi = 2− δixii −
∑

{j:(i,j)∈E}
xjj + 2δixii − 2 +

2

n

= δixii −
∑

{j:(i,j)∈E}
xjj +

2

n
.

(15)

Since
∑

{j:(i,j)∈E}
xjj =

n∑

j=1

aijxjj

= (AX̃1)i

(16)

12



and
(Diag(A1)X̃1)i = δixii, (17)

equations (15), (16) and (17) imply

τi = ((Diag(A1)− A)X̃1)i +
2

n

= (LX̃1+
2

n
1)i.

Thus,

τ = LX̃1 +
2

n
1.

The proof of (i) is complete.
We have

1′X̃M + τ ′ = 1′X̃L− 1′X̃L′ + 1′X̃L′ +
2

n
1′

= 1′X̃L+
2

n
1′.

The proof of (ii) is complete.
To prove (iii), recall that

R = X̃J + JX̃ − 2X.

As X = L† + 1
n
J , we have

R = X̃J + JX̃ − 2L† −
2

n
J (18)

In view of (P8), LL† = I − 1
n
J . Since LJ = 0, by (18),

LR = LX̃J − 2I +
2

n
J

= LX̃11′ − 2I +
2

n
11′

= (LX̃1 +
2

n
1)1′ − 2I.

(19)

By (i),

τ = LX̃1 +
2

n
1.

Hence by (19), LR = τ1′ − 2I. This completes the proof of (iii).
To prove (iv), first we observe that

RL+ 2I = (X̃J + JX̃ − 2X)L+ 2I

= JX̃L− 2XL+ 2I.
(20)

13



Using X(L+ 1
n
J) = I and XJ = J , we have XL = I − 1

n
J . Hence by (20),

RL+ 2I = JX̃L− 2(I −
1

n
J) + 2I

= JX̃L+
2

n
J.

(21)

By (i),

1τ ′ = 1(1′X̃L′ +
2

n
1′)

= JX̃L′ +
2

n
J.

(22)

From (21) and (22), we get

RL+ 2I − JX̃L = 1τ ′ − JX̃L′,

and hence
RL+ 2I = 1τ ′ + JX̃M.

The proof of (iv) is done. Using part (i),

1′τ = 1′LX̃1+
2

n
1′1 = 2.

This proves (v).
By using (i), (ii) and M = L− L′, we have

τ ′Rτ =
(
1′X̃L+

2

n
1′ − 1′X̃M

)
R
(
LX̃1+

2

n
1
)

= 1′X̃L′RLX̃1+
2

n
1′X̃L′R1+

2

n
1′RLX̃1+

4

n2
1′R1.

(23)

As L1 = 0, L′1 = 0 and R = X̃J + JX̃ − 2X ,

1′X̃L′RLX̃1 = 1′X̃L′(X̃J + JX̃ − 2X)LX̃1

= −21′X̃L′XLX̃1.
(24)

As XL = I − 1
n
J , by (24),

1′X̃L′RLX̃1 = −21′X̃L′
(
I −

1

n
J
)
X̃1 = −21′X̃L′X̃1

= −2x̃′Lx̃.
(25)

By (21),

1′RLX̃1 = 1′
(
JX̃L+

2

n
J − 2I

)
X̃1 = (n1′X̃L)X̃1

= nx̃′Lx̃.
(26)

14



Since L′1 = 0 and X1 = 1,

1′X̃L′R1 = 1′X̃L′(X̃J + JX̃ − 2X)1

= n1′X̃L′X̃1+ 21′X̃L′1

= nx̃′Lx̃.

(27)

From R = X̃J + JX̃ − 2X and X1 = 1, we have

1′R1 = 2n trace(X)− 2n = 2n trace(L†). (28)

Substituting (25), (26), (27) and (28) in (23), we get

τ ′Rτ = 2x̃′Lx̃+
8

n
trace(L†).

Since L+L′ is positive semidefinite, x̃′Lx̃ ≥ 0. As trace of L† is also positive, we get
(vii). The proof is complete.

Theorem 9.

R−1 = −
1

2
L+

1

τ ′Rτ
(τ(τ ′ + 1′ diag(L†)M)),

where M = L− LT .

Proof. By item (iii) of Lemma 2,

LR + 2I = τ1′.

In view of item (v) of the previous Lemma, 1′τ = 2. So,

LRτ + 2τ = (1′τ)τ = 2τ.

This implies LRτ = 0 and since L ∈ Z(L), there exists 0 6= α ∈ R such that Rτ = α1.
As τ ′1 = 2, we get α = 1

2
τ ′Rτ . Therefore,

Rτ =
τ ′Rτ

2
1. (29)

Since M1 = 0, from item (iv) of Lemma 2, we deduce that

(τ ′ + 1′X̃M)(RL+ 2I) = (τ ′ + 1′X̃M)(1τ ′ + JX̃M)

= 2(τ ′ + 1′X̃M).

After simplification the above equation leads to

(τ ′ + 1′X̃M)RL = 0.

15



We now claim that (τ ′ + 1′X̃M)R 6= 0. If not, then τ ′Rτ + 1′X̃MRτ = 0. By (29),
Rτ is a multiple of 1. So, MRτ = 0 and hence τ ′Rτ = 0. This contradicts the
previous Lemma. Hence, (τ ′ + 1′X̃M)R 6= 0. As L ∈ Z(L), it follows that

(τ ′ + 1′X̃M)R = β1′,

for some β 6= 0. Since 1′τ = 2, β = 1
2
τ ′Rτ . Thus,

(τ ′ + 1′X̃M)R =
τ ′Rτ

2
1′. (30)

Now, item (iii) of Lemma 2 and (30) imply

(
−

1

2
L+

τ(τ ′ + 1′X̃M)

τ ′Rτ

)
R = −

1

2
LR +

1

τ ′Rτ
τ(τ ′ + 1′X̃M)R

= I −
1

2
τ1′ +

1

τ ′Rτ

(τ ′Rτ

2

)
τ1′

= I.

Since L† = X − 1
n
J , 1′X̃M = 1′(diag(L†) + 1

n
I)M = 1′ diag(L†)M . The proof is

complete.

To illustrate the inverse formula in Theorem 9, we consider the resistance matrix
of Example 1.

Example 3. Consider the resistance matrix in Example 1.

R =




0 2
3

5
3

17
12

13
12

5
3

4
3

0 1 3
4

5
12

1
7
3

1 0 7
4

17
12

2
19
12

5
4

9
4

0 2
3

5
4

11
12

7
12

19
12

4
3

0 7
12

1
3

1 2 7
4

17
12

0



. (31)

Then we have the following:

τ =
[

2
3

−5
6

1 2
3

1
6

1
3

]′
,

τ ′ + 1′ diag (L†)M =
[

1
3

−3
4

1 3
4

1
12

7
12

]
,

and

τ ′Rτ =
67

12
. (32)

We now have

R−1 = −
1

2
L+

1

τ ′Rτ
(τ(τ ′ + 1′ diag(L†)M))

=




−185
402

55
134

8
67

6
67

2
201

14
201

− 10
201 −93

67
47
134

26
67

98
201 − 35

402
4
67

49
134 − 43

134
9
67

1
67

7
67

8
201 − 6

67
8
67 − 55

134
205
402

14
201

2
201

32
67

2
67

3
134 −401

402
104
201

209
402 − 3

67
4
67

3
67

1
201 −187

402



.
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4.1 Determinant of the resistance matrix

By using Theorem 9, we compute an expression for the determinant of the resistance
matrix.

Corollary 1.

det(R) = (−1)n−12n−3 τ
′Rτ

κ(G)
.

Proof. By using Theorem 9 and (P9), we have

det(R−1) =
1

τ ′Rτ
(τ ′ + 1′ diag(L†)M) adj(−

1

2
L)τ

=

(
−

1

2

)n−1
κ(G)

τ ′Rτ
(τ ′ + 1′ diag(L†)M)Jτ

=

(
−

1

2

)n−1
κ(G)

τ ′Rτ
τ ′Jτ.

Since 1′τ = 2, it follows that

det(R) = (−1)n−12n−3 τ
′Rτ

κ(G)
.

Example 4. Consider the directed graph G on six vertices given in Figure 1(a). G

has two oriented spanning trees T1 and T2 (see Figure 3(a) and 3(b), respectively)
rooted at vertex 1. Thus, κ(G) = 2. From Example 3, τ ′Rτ = 67

12
. By Corollary 1,

1 2

3

45

6

(a)

1 2

3

45

6

(b)

Figure 3: (a) spanning tree T1 (b) spanning tree T2

we have

det(R) = (−1)n−12n−3 τ
′Rτ

κ(G)

= −
67

3
.

(33)
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5 Cofactor sums of the resistance matrix

Let Ω1,Ω2 ⊂ {1, 2, . . . , n} be non-empty and |Ω1| = |Ω2|. Define η := |Ω1| = |Ω2|.
We now derive an identity for computing the sum of all the entries in the cofactor
matrix of R[Ω1,Ω2]. We shall use the following elementary lemma repeatedly. The
proof is immediate.

Lemma 3. Let B be an m×m matrix, β ∈ R and

A =

[
B 1

β
1m

1

β
1′
m 0

]
.

Then,
cofsum(B) = −β2det(A).

We now obtain the following identity.

Lemma 4. Let S be a n× n matrix. Suppose rank(S) = n− 1, S1 = 0 and S ′1 = 0.
Then,

cofsum(S[Ω1,Ω2]) = (−1)α(Ω1)+α(Ω2)n2γdet(S†[Ωc
2,Ω

c
1]).

where γ is the common cofactor value of S.

Proof. Let

A :=

[
S 1√

n
1

1√
n
1′ 0

]
.

Then A is non-singular and in fact,

A−1 =

[
S† 1√

n
1

1√
n
1′ 0

]
. (34)

Define S̃ := S[Ω1,Ω2]. By Lemma 3,

cofsum(S̃) = −ndet

([
S̃ 1√

n
1η

1√
n
1′
η 0

])
. (35)

Define
∆1 := Ω1 ∪ {n+ 1} and ∆2 := Ω2 ∪ {n + 1}.

Then,

A[∆1,∆2] =

[
S̃ 1√

n
1η

1√
n
1′
η 0

]
.

By rewriting equation (35), we have

cofsum(S̃) = −ndet(A[∆1,∆2]). (36)
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By Jacobi’s formula (P6)

det(A[∆1,∆2]) = (−1)α(Ω1)+α(Ω2)
det(A−1[∆c

2,∆
c
1])

det(A−1)
. (37)

From (36) and (37), we get

cofsum(S̃) = (−1)α(Ω1)+α(Ω2)+1n
det(A−1[∆c

2,∆
c
1])

det(A−1)
. (38)

Using equation (34),
A−1[∆c

2,∆
c
1] = S†[Ωc

2,Ω
c
1]. (39)

Again applying Lemma 3,

det(A) = −
1

n
cofsum(S) = −nγ.

where γ is the common cofactor value of S. So,

det(A−1) = −
1

nγ
. (40)

By (38),(39) and (40),

cofsum(S̃) = (−1)α(Ω1)+α(Ω2)n2γdet(S†[Ωc
2,Ω

c
1]).

The proof is complete.

Lemma 5. Let A be a n×n matrix and let P = I − 1
n
11′. Define S := PAP . Then,

cofsum(A) = cofsum(S) and cofsum(A[Ω1,Ω2]) = cofsum(S[Ω1,Ω2]).

Proof. We begin by noting that

S = (I −
1

n
11′)A(I −

1

n
11′)

= A−
1

n
A11′ −

1

n
11′A +

1′A1

n2
(11′).

(41)

Let e := 1η. By (41),

S[Ω1,Ω2] = A[Ω1,Ω2] + ue′ + ev′ + βee′, (42)

for some vectors u, v in R
η and for some real scalar β. We now claim that if x ∈ R

η,
and if B is an η × η matrix, then

cofsum(B + x1′
η) = cofsum(B).
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Using (P9), we get

cofsum(B + x1′
η) = 1′ adj(B + x1′

η)1

= det(B + x1′
η + 1η1

′
η)− det(B + x1′

η)

= det(B + (x+ 1η)1
′
η)− det(B + x1′

η)

= det(B) + 1′
η adj(B)(x+ 1η)− det(B)− 1′

η adj(B)x

= 1′
η adj(B)1η = cofsum(B).

(43)

Similarly, we see that
cofsum(B + 1ηx

′) = cofsum(B). (44)

Repeatedly using (43) and (44) in (41) and (42), we obtain

cofsum(A) = cofsum(S) and cofsum(A[Ω1,Ω2]) = cofsum(S[Ω1,Ω2]).

This completes the proof.

By Lemma 4 and 5, we now obtain the following result.

Theorem 10. Let S be an n × n matrix such that rank(S) = n − 1, S1 = 0 and
S ′1 = 0. Define D = [dij] by

D = diag(S)J + J diag(S)− 2S.

Then,

cofsum(D[Ω1,Ω2]) = (−1)α(Ω1)+α(Ω2)+η−12η−1n2γdet(S†[Ωc
2,Ω

c
1]),

where γ is the common cofactor value of S.

Proof. Pre and post multiplying by P in the equation

D = diag(S)J + J diag(S)− 2S,

we have
PDP = −2S.

Thus, by Lemma 5,

cofsum(S[Ω1,Ω2]) = cofsum(−
1

2
D[Ω1,Ω2])

=
(−1

2

)η−1

cofsum(D[Ω1,Ω2]).
(45)

Using Lemma 4 in (45), we get

cofsum(D[Ω1,Ω2]) = (−1)α(Ω1)+α(Ω2)+η−12η−1n2γdet(S†[Ωc
2,Ω

c
1]).

The proof is complete.
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It can be noted that Theorem 4 follows from Theorem 10 immediately. Applying
Theorem 4 to resistance matrices of strongly connected balanced directed graphs, we
get the following.

Theorem 11. Let G be a strongly connected balanced directed graph with vertex set
{1, 2, . . . , n}, Laplacian matrix L and resistance matrix R. Then the following items
hold.

(i) cofsum(R[Ω1,Ω2]) = (−1)α(Ω1)+α(Ω2)+η−1 2η−1

κ(G)
det(L[Ωc

2,Ω
c
1]).

(ii) For every distinct i, j ∈ {1, 2, .., n},

rij + rji =
2

κ(G)
det(L[{i, j}c, {i, j}c]).

Proof. (i) Since
R = diag(L†)J + J diag(L†)− 2L†,

by Theorem 10 it follows that

cofsum(R[Ω1,Ω2]) = (−1)α(Ω1)+α(Ω2)+η−12η−1n2δdet(L[Ωc
2,Ω

c
1]), (46)

where δ is the common cofactor value of L†. Let

A :=

[
L 1√

n
1

1√
n
1′ 0

]
.

Then A is non-singular and,

A−1 =

[
L† 1√

n
1

1√
n
1′ 0

]
.

By Lemma 3, we have cofsum(L†) = −ndet(A−1) and cofsum(L) = −ndet(A).
Thus,

cofsum(L) =
n2

cofsum(L†)
=

1

δ
.

and hence

κ(G) =
cofsum(L)

n2
=

1

n2δ
. (47)

By (46) and (47), we have

cofsum(R[Ω1,Ω2]) = (−1)α(Ω1)+α(Ω2)+η−1 2
η−1

κ(G)
det(L[Ωc

2,Ω
c
1]).

The proof of (i) is complete.
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(ii) Let i, j ∈ {1, 2, .., n} be such that i 6= j. Substituting Ω1 = Ω2 = {i, j} in (i),
we get

cofsum(R[Ω1,Ω2]) = (−1)2i+2j+1 2

κ(G)
det(L[Ωc

2,Ω
c
1]). (48)

As cofsum(R[Ω1,Ω2]) = −(rij + rji), by (48),

rij + rji =
2

κ(G)
det(L[{i, j}c, {i, j}c]).

This completes the proof of (ii).

To illustrate the above theorem, we present the following example.

Example 5. Consider the directed graph G on four vertices given in Figure 4(a). G

1 2

34

(a)

1 2

34

(b)

1 2

34

(c)

Figure 4: (a) Graph G, (b) spanning tree T1 and (c) spanning tree T2

has two oriented spanning trees T1 and T2 rooted at vertex 4 (see Figure 4(b) and
4(c)). Thus, κ(G) = 2. The Laplacian and resistance matrices of G are

L =




2 −1 −1 0
0 1 −1 0

−1 0 2 −1
−1 0 0 1


 and R =




0 3
4

1
2

5
4

5
4

0 3
4

3
2

1
2

5
4

0 3
4

3
4

3
2

5
4

0


 .

Let Ω1 = {1, 2} and Ω2 = {1, 4}. Now,

R[Ω1,Ω2] =

[
0 5

4
5
4

3
2

]
, cofsum(R[Ω1,Ω2]) = −1,

L[Ωc
2,Ω

c
1] =

[
−1 0
2 −1

]
, det(L[Ωc

2,Ω
c
1]) = 1 and α(Ω1) + α(Ω2) + η − 1 = 9.

Hence,

(−1)α(Ω1)+α(Ω2)+η−1 2
η−1

κ(G)
det(L[Ωc

2,Ω
c
1]) = −1 = cofsum(R[Ω1,Ω2]).
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