Resistance in Steep Open Channels due to Randomly
Distributed Macroroughness Elements
at Large Froude Numbers
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Abstract: Energy loss in a steep open channel due to randomly spaced spherically shaped macroroughness elements such as boulders was
investigated using a three-dimensional fluid dynamics solver. First, a relationship for energy loss at large Froude numbers due to a single
boulder was derived as a function of flow rate, flow depth, and boulder diameter. Nondimensional energy loss increases with Froude number
and decreases with the relative submergence. However, the exponents in the power law relationship are different for three different ranges
of submergence ratio: <0.5, 0.5-1.0, and >1.0. The energy loss attributable to a cluster of boulders depends on cluster density, Froude
number, and submergence ratio. For the same number of boulders, energy loss decreases as cluster density increases. However, variation
in the pattern of boulder arrangement has only a marginal effect (<4%) when the submergence ratio is more than 0.5. The simple procedure
proposed for estimating energy loss due to a cluster of randomly distributed boulders of equal size predicts energy loss within 10% accuracy.

Author keywords: Boulders; Boulder spacing; Energy loss; Mountainous channels; Computational fluid dynamics.

Introduction

Understanding of flow behavior in steep open channels is essen-
tial for hydrologic and hydraulic modeling of mountain streams
(Jordanova 2008; Modrick and Georgakakos 2014; Agostino
and Michelini 2015), designing chute spill ways (Pagliara and
Peruginelli 2000; Pagliara and Dazzini 2002) and fish passes
(Cassan et al. 2014; Baki et al. 2014), and while studying the im-
pact of development in mountainous areas in order to protect
water resources, fisheries, biodiversity, recreation, and forestry
(Thorne and Zevenbergen 1985). It is also needed for studying
aggradation and degradation (Alonso et al. 2009), geomorphology
(Chin 2003), and ecology (Yochum et al. 2012) of mountainous
streams. Stream flows are a major determinant of physical habitat
in streams and affect the distribution and abundance of stream
biotic communities and influence the survival strategies of the
aquatic organisms (Maloney et al. 2011). Assessment of energy
loss constitutes one of the basic steps in such studies.

Energy loss in mountainous streams is strongly affected by the
course, grain roughness due to cobbles and gravel on the bed (Hey
1979; Bathurst 1985), step pools (Comiti et al. 2007; Agostino and
Michelini 2015), and macroroughness elements such as boulders
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(Ferguson 2007; Jordanova 2008). Attempts have been made ear-
lier to empirically model flow resistance in mountainous streams in
terms of Darcy-Weisbach friction factor or average flow velocity by
considering several independent nondimensional hydraulic param-
eters such as relative submergence (ratio of flow depth to height
of the roughness element), Froude number, Reynolds number,
and concentration of roughness (Thompson and Campbell 1979;
Bathurst et al. 1979, 1981; Hey 1979). Field data used for deriving
the equations for friction factor in these studies represents com-
pletely submerged flow conditions and subcritical flows (Froude
number 0.3-0.6). Proposed equations by Thompson and Campbell
(1979) and Bathurst et al. (1979, 1981) were tested using field
data collected from Boulder Creek in Colorado. It was found that
velocities were overpredicted by as much as 30% (Thorne and
Zevenbergen 1985).

Bathurst (1985) has modified an earlier model proposed by
Hey (1979) for British lowland rivers, for application to mountain
streams. This equation is valid for a relative submergence of 0.7-
6.0 and Froude number of 0.27-1.17. Note that, in these works,
relative submergence is defined as the ratio of the depth over
the top of roughness elements to the size of the roughness elements.
Similar studies were carried out by Aguirre-Pe and Fuentes (1990)
for flows in open channel with low values of relative submergence.
Soto and Madrid-Aris (1994) analyzed data on mountain streams
and concluded that existing equations for resistance in mountainous
streams were inadequate for characterizing large-scale roughness
and intermediate-scale roughness elements. Romero et al. (2010)
used the data from five steep mountain rivers in Bolivia to assess
the various empirical equations available for estimating Darcy-
Weisbach friction factor. In all the previous studies, flow surface
lies above the top of the roughness elements and thus these studies
are applicable for completely submerged flow conditions.

Manning, Chezy, and Darcy-Weisbach equations, which are
typically used for estimating energy losses in open-channel flows,
do not adequately describe the energy loss generated by the
macroroughness elements in mountain streams (Jordanova 2008;
Ferguson 2010). Vortices that are generated in the wake and
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separated zones around macroroughness elements propagate down-
stream and dissipate after traveling some distance. They are one of
the primary sources of energy loss in mountain streams. Classical
equations for energy loss in open channels may not model this pro-
cess adequately (Meier and Reichert 2005). Recently, Pagliara and
Chiavaccini (2006) conducted an exhaustive experimental study
on the flow resistance in rock chutes with protruding boulders.
Presence of protruding boulders affected the channel geometry
and modified the hydraulic resistance. For the tested range, Froude
number, Reynolds number, and relative submergence did not have
significant effect on the increased resistance. Ranges for experimental
conditions were bed slope = 0.08-0.4; relative submergence = 0.5—
10.5; Froude number = 0.8-2.9, and block density = 0.0-30%. Note
that the number of experiments with relative submergence less
than 1.0 were few in their experiments.

Baki et al. (2014) characterized resistance in open channels with
spherical macroroughness elements on the bed. They considered
uniform size boulders and structural arrangement as in rock-ramp
type, nature-like fish pass. Also, their study was limited to the rel-
ative submergence ranging from 0.7 to 1.2. The flow resistance was
expressed in terms of Chezy-type equation with a flow resistance
coefficient, which depends on drag coefficient, number of boulders,
and projected area. They did not consider the effect of Froude num-
ber on the drag coefficient. Cassan et al. (2014) proposed empirical
equations for flow velocity in terms of ramp slope, block density,
bed roughness, and flow depth in fish passes with cylindrical shape
blocks. They discussed the importance of Froude number, besides
the relative submergence, on the estimation of drag coefficient. In
their experiments, the relative submergence varied from 0.5 to 1,
and cylindrical elements were placed in a structured arrangement.
Cassan and Laurens (2016) conducted experiments for submerged
conditions. In a natural mountain stream, roughness elements are
randomly distributed and are of nonuniform size. Although many
experimental studies have been carried out in the recent past to
understand the resistance in mountain streams induced by macro-
roughness elements, there is a need for more experiments, covering
a wider range of flow and geometric conditions, for gaining further
insight.

In recent past, computational fluid dynamics (CFD) models
have been gaining popularity for studying complex free surface
flow phenomenon such as flow structures in upland rivers during
floods (Ma et al. 2002), flow around piers (Salaheldin et al. 2004),
hydraulic jumps (Castillo et al. 2014; Xiang et al. 2014), flow
around deflectors in fish habitats (Haltigin et al. 2007), and flow
in vertical slot turning pools (Marriner et al. 2014). Shen and Diplas
(2008) used three-dimensional (3D) CFD models for simulating
complex flow conditions around an isolated hemisphere and a clus-
ter of boulders under high and low flow conditions. Simulations
were made for a relative submergence ranging from 0.78 to 4.6.
The primary objective of this study was to demonstrate the effec-
tiveness of 3D CFD models for simulating complex natural channel
flows. No attempt was made to characterize energy loss induced by
boulders in terms of flow and geometric parameters. Very recently,
Baki et al. (2016) used a three-dimensional CFD model for simu-
lating the flow characteristics in an open channel with spherical
macroroughness elements. Numerical experiments were conducted
to study the effect of channel slope, flow velocity, size of roughness
elements, and spacing between elements on flow resistance. Data
from these numerical experiments was used for deriving relation-
ships for estimating water depth and velocity in a rock-ramp fish
pass as a function of discharge and structure geometry. They also
derived empirical equations for the drag coefficient as a function of
submergence ratio. However, their study was limited to a total of 30
numerical experiments where the relative submergence varied from

0.7 to 1.2. Also, they did not consider the effect of randomly placed
roughness elements and the effect of nonuniform size of elements.

This paper systematically characterizes the energy loss in a steep
mountain channel due to macroroughness elements as a function of
flow parameters (discharge and approaching flow depth), size of
roughness elements, and number of roughness elements within a
given area. The major objectives were (1) to test the capability
of an existing 3D CFD model to simulate the spatial variation
in velocity, the deformation of free surface and to estimate the en-
ergy loss in mountainous streams with submerged and emergent
macroroughness elements; (2) to use the validated CFD model
to derive and analyze energy losses in a series of simulation experi-
ments; and (3) derive empirical equations for the energy loss
induced by single, uniform clustered, and nonuniform clustered
macroroughness elements as a function of flow and geometrical
parameters.

Methodology

Three-Dimensional CFD Model

The existing CFD software package ANSYS-CFX was tested for its
capability to simulate flow pattern around macroroughness ele-
ments in steep channels. This is a standard industrial software pack-
age and earlier versions of this package have been used to perform
similar free surface flow studies (Shen and Diplas 2008; Baki et al.
2016). Therefore, only brief details about the software package are
given in this paper and ANSYS-CFX can be referred for complete
details. In ANSYS-CFX, a finite-volume approach (Evans et al.
1957) is used for numerically solving the three-dimensional
Reynolds-averaged Navier-Stokes (RANS) equations, along with
the standard k-¢ model (Jones and Launder 1972) for turbulence
closure. Earlier, Abdulla (2013) employed ANSYS-CFX with the
standard k-¢ turbulent model for simulating supercritical flows
(Froude number 1.2-2.0) around bridge piers. Measured free sur-
face along centerline, and vertical velocity profiles at different po-
sitions near the piers were compared using k-, RNG k-¢, and SST
turbulent models and it was found that average percentage error
between the models was insignificant, but computational time
was the least for k- model. Among the different options available
for tracking the free surface in the software, the option of volume of
fluid (VOF) method (Hirt and Nichols 1981) was used. In this
method, the volume fraction (VF) is defined as the volume of cell
filled with water. A value of VF equal to one indicates that the
cell is well below the water surface and a value of zero indicates
that the cell is well above the free surface. Usually, a VF value of
0.5 is adopted for defining the water surface. In all the test cases, the
mesh characteristic (Y+) was kept lower than 300 in order to satisfy
dimensionless wall height criteria. Flow rate was specified as
the inlet boundary condition and the flow velocity was uniform at
the inlet.

Test Cases for Performance Evaluation of the Model

The performance of the ANSYS-CFX model was assessed using
laboratory experimental data available in the literature (Jordanova
2008; Baki et al. 2014; Cassan et al. 2014). In Test Case 1 exper-
imental data provided by Jordanova (2008) for flow in a 15 m long
and 0.38 m wide rectangular flume, with a hemispherical roughness
element (diameter 0.114 m) placed at the center of the flume at a
distance of 4.5 m form the inlet was used [Fig. 1(a)]. The bed slope
was 0.1136% and the flow rate was 0.005 m3/s. Velocities were
measured using a two-dimensional Nortek Doppler velocimeter

04017052-2



UEWQQ of hemisphere =0.114 m

Length=15m
Width =0.38 m
(@)
&\,/,/ Length = 8.89 m
ks IR Width = 0.92 m
LV
. O/.Wu/ Spherical roughness elements

Cylindrical roughness elements
(Height =0.3 m; D=0.115 m)

Fig. 1. Model domain for assessment of ANSYS-CFX package:
(a) single hemispherical roughness element; (b) group of spherical
roughness elements; (c) group of cylindrical roughness elements

(NDV) for 40 s at a frequency of 25 Hz, at different cross sections,
at middepth (Jordanova 2008).

In Test Case 2, experimental data provided by Baki et al. (2014)
for flow in an 8.89 m long and 0.92 m wide rectangular channel,
with spherical roughness elements on the flume bed, as shown
schematically in Fig. 1(b), were considered. The diameter of the
spherical element was 0.14 m and the center to center distance
between spheres was 0.375 m, arranged in a staggered pattern. In
the first set of numerical experiments, the bed slope was 3% and
the flow rate was varied as 0.04, 0.06, and 0.11 m3/s. In the second
set of numerical experiments, the bed slope was 5% and the flow rate
was varied as 0.06, 0.074, and 0.125 m3 /s. The model domain
considered in the present study was 3.5 m long, 0.92 m wide,
and included 18 boulders. Diameter of each boulder is 14 cm,
out of which 13 c¢m protruded above the bed.

In Test Case 3 experimental data provided by Cassan et al.
(2014) for flow in a rectangular flume of length 7.0 m and width
1.0 m was used. The bed was smooth, and the cylindrical roughness
elements were placed in a staggered pattern as shown schematically
in Fig. 1(c). In their experiments, the bed slope varied between
0.01 and 0.09 and the flow rate varied from 0.01 to 0.09 m?/s.
The center to center distance between the cylindrical elements
was 0.333 m in both longitudinal and transverse directions. These
experiments were conducted to mimic flow in a nature-like fish
pass. Cassan et al. (2014) provided data for difference in water
levels upstream and downstream of the cylindrical roughness ele-
ments for different Froude numbers. Also, based on the experimental
data, they proposed an empirical relationship between the flow
rate and discharge for different bed slopes and macroroughness
characteristics.

Boundary Conditions and Discretization

In the numerical simulations, boundary conditions were specified
as follows. The top of the domain was located much above the ex-
pected free surface, and therefore atmospheric pressure condition
was specified at this boundary. Flow rate was specified at the inflow
or the left boundary. A turbulent intensity of 5% was applied
to specify turbulent kinetic energy and dissipation rate of fluid
(Baki et al. 2016) at the inlet boundary. At the outflow or the right
boundary, pressure, as obtained using the hydrostatic condition
for the specified depth, was specified as the boundary condition.
A no-slip condition was applied at the bottom boundary, side wall
boundaries, and all the solid boundaries of submerged parts of
roughness elements. Surface roughness in ANSYS-CFX can be
given as equivalent sand grain roughness. Manning’s roughness
value was converted to equivalent sand grain roughness height
using the equation proposed by Marriott and Jayaratne (2010).
Manning’s roughness value was 0.012 for wooden cylinders used
by Cassan et al. (2014) and the bottom and the sides were treated as
smooth. In the simulation of experiments carried out by Baki et al.
(2016), the equivalent sand grain roughness height value for both
the floor and the sides was 0.8 mm. In the simulations for experi-
ments by Jordanova (2008), the sides were treated as smooth, and
the roughness heights for floor and the roughness elements were
0.8 mm and 0.97 mm, respectively. Option of high resolution
scheme was chosen for discretizing the advection terms. A residual
of 0.0001 was specified as the convergence criterion. All simulations
were carried out for steady state conditions and the solution con-
verged within 1,000 iterations.

An unstructured tetrahedral mesh was used in the solution
domain. Inflation was adopted for refining the mesh near the
bottom boundary and face sizing was adopted for all roughness
elements using a mesh size of 0.6 mm. The numerical mesh, with
a variable size, was created using the ICEM CFD subroutine
in ANSYS-CFX. Similar meshes were used in other cases. Grid
sensitivity tests were carried out for experiments conducted by
Jordanova (2008) using four mesh sizes of 17.5, 13.5, 10.0,
and 7.5 mm. In these runs, the total number of nodes varied from
577,798 to 2,531,562, while the total number of elements varied
from 2,531,562 to 6,504,731. Results from the previous numeri-
cal runs for streamwise velocity profiles at x =3.5 m and
depth = 0.022 m above the bed are compared in Fig. 2. It is
shown from these grid sensitivity tests that a mesh size of
10.0 mm was satisfactory because this size gave grid convergent
results. Difference in results obtained using this mesh size and a
finer mesh size of 7.5 mm was insignificant as illustrated
in Fig. 2.

Model Testing

Root mean square error (RMSE), bias, and coefficient of efficiency
(E) were used for assessing the agreement between observed and
simulated data
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Fig. 2. Mesh sensitivity analysis; simulated streamwise velocities at
x = 3.50 m and midheight

where O; and S; are observed data and simulated results, respec-
tively. Over bar indicates the average of all the observed values and
n is the number of data points.

Numerical Experiments

Following the validation of ANSYS-CFX against the literature data,
the model was used to conduct extensive numerical experiments to
gain insight into energy loss induced by large roughness elements
in steeply sloped open channels, such as those found in mountain-
ous areas. Numerical experiments were limited to supercritical flow
conditions and spherical shaped roughness elements. Numerical
experiments were carried out for (1) an isolated or single element
in a long channel (51 runs), (2) a cluster of uniformly sized, ran-
domly placed roughness elements (60 runs); and (3) a cluster of
nonuniformly, randomly placed sized roughness elements as in
Fig. 3 (12 runs). Data for these numerical experiments is provided
in Tables S1-S3 in Supplemental Data. In all these numerical ex-
periments, the flow rate was varied between 0.05 and 0.45 m3/s
and the diameter of spherical boulder was varied between 3.6
and 49.8 cm. The bed slope, S,, and sand grain roughness, kg,
were kept constant and were equal to 5% and 8.54 x 10™> m, re-
spectively. In the experiments for cluster of boulders, the maximum

number of boulders was as high as 30 and they were placed
randomly. The area enclosing the cluster (Fig. 3) of boulders varied
from 0.025 to 1.24 m?2.

In each numerical experiment, three-dimensional turbulent flow
conditions were simulated using the ANSYS-CFX for specified
(1) flow rate at the inflow section, (2) flow depth at the outflow
section, (3) bed roughness (equivalent sand grain roughness height,
ky), and (4) locations of roughness elements and corresponding
sizes (diameters, D). Boundary conditions were specified as
described earlier. The numerical simulation gave the complete
three-dimensional flow structure, which was used to determine
the total energy TE, at a section upstream (Section u), and total
energy TE, at a section downstream (Section ) of the roughness
elements, as shown in Fig. 3. The total energy loss between Sec-
tions u and d, ATE was the difference between TE, and TE ;. This
consists of friction loss due to bed and the form loss due to rough-
ness elements. A numerical experiment was carried out in parallel
for exactly the same flow rate, bed slope, and channel roughness,
but without the presence of large roughness elements. These
numerical simulations were used to estimate the energy loss be-
tween the Sections u and d due to bed friction, AE}qq. Energy loss
between Sections u and d due to roughness elements, AE, was
then estimated as the difference between ATE and AEy.y. For
example, in Run 14 ATE and AE,.q were 0.077 and 0.044 m.
Therefore, AE was estimated as 0.033 m.

Empirical Equations for Energy Loss

Energy loss due to a single isolated spherical boulder can be written
as a function of several parameters as shown subsequently

AE=F|V, H, DL, p.g. 4)

where AE = energy loss due to the boulder; L, = distance between
upstream section and boulder location; p = density of water; 1
dynamic viscosity; V,, = average velocity at upstream section; H,, =
average flow depth at upstream section; D = diameter of sphere;
and g = gravitational acceleration. Application of dimensional
analysis yields the following functional relationship between the
nondimensional parameters

AE 4pV,H, H Vv H
Dmm_.mF _ N\| —F PV ully u u u
u

(5)
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Fig. 3. Characteristic dimensions
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where 4pV , H,/u = R, = Reynolds number at the upstream sec-
tion; H, /D = relative submergence; and V,,/+/gH, = F, = Froude
number at the upstream section.

It is proposed to estimate the energy loss due to a cluster of
uniformly sized boulders based on the energy loss due to a single
boulder and the number of boulders as given subsequently

Dmo_cwﬁq = N\ _.2._ _.Dm.&:m_m._ AOV

where AEr = energy loss due to cluster; AEg,q. = energy loss
if only one roughness element is present; N = number of roughness
elements; and /, = interaction factor that accounts for interaction
between different roughness elements. At the outset, it is obvious
that the energy loss should depend on the cluster density (Pagliara
and Chiavaccini 2006; Cassan et al. 2014; Baki et al. 2016). Pre-
liminary numerical experiments indicated that while the 1, depends
on the cluster density, it is not significantly affected by the way
roughness elements are spatially distributed. In this paper, cluster
density is defined as the ratio between area occupied by N number
of boulders and the encompassed cluster area (/.b) as shown in
Fig. 3
NZID?
Cluster Density = A = M_|w (7)

It is also shown that the interaction should depend on the flow
and other geometrical parameters. Therefore, following functional
relationship is proposed for the interaction factor, /;

H, H,

SM,M,V (8)

In nature, all the boulders in a cluster may not be of the same
size, as schematically shown in Fig. 3. An attempt is made in this
study to estimate the energy loss in such cases, based on the con-
cept of effective boulder size, D. It is assumed that the energy
loss would be equal to the energy loss due to a cluster of same
number of boulders, each having a diameter equal to D.;. Effective
diameter is defined as given subsequently

D3} + D3+
N

+UW<

Defr = )

where Di,D,,Ds, ...,Dy = individual diameters of boulders.

Rest of the procedure for estimating the energy loss is the same as

described earlier for a cluster of uniformly sized boulders, as sum-

marized as follows:

e Determine Dy using Eq. (9);

e Determine the energy loss due to a single boulder based on the
previous D, value and the other geometric and flow conditions
(0, H,, and L,) using Eq. (5);

* Determine the interaction factor / based on the density A, the
geometric parameters and the flow parameters (F,, H,/L,, and
H, /D) using Eq. (8); and

e Determine the energy loss due to the cluster using Eq. (6)

Results and Discussions

Evaluation of the ANSYS-CFX Model

The performance of the ANSYS-CFX model was evaluated using
three test cases as mentioned earlier. Simulated velocity profiles
at different cross sections for Test Case 1 are compared with the
measured data (Jordanova 2008) in Fig. 4. Velocity measurements
were taken at middle of the flow depth for different cross sections.

It can be observed that the simulated velocity profiles matched well
with the observed velocity profiles. The RMSE, bias, and E values
for the Test Case 1 are in the range 0.009 to 0.029 m/s, —0.0045 to
—0.0093 m/s, and 0.48 to 0.892, respectively. Appreciable error
occurred only for the cross section at x = 4.4 m. There is a discrep-
ancy of 10% in the prediction of maximum velocity. However the
nature of velocity distribution is simulated well.

The overall agreement between the observed and simulated ver-
tical variation in streamwise velocity along the central vertical
plane in Test Case 2 (Baki et al. 2016) is shown in Fig. 5. Velocity
profiles are shown for two runs. In results shown in Fig. 5(a), the
bed slope was 5% whereas it was 3% in results shown in Fig. 5(b).
In both the cases, flow rate was 0.06 m?/s. The RMSE, bias, and E
values in the wake zone for 5 and 3% bed slopes were 0.049 m/s,
—0.015 m/s, 0.92, and 0.098 m/s, —0.07 m/s, 0.95, respectively.
Intensive turbulence in the wake region caused the occurrence of
maximum difference between the observed and simulated stream-
wise velocities in this region. Similar results were reported by Baki
et al. (2016). Comparison between numerical and observed results
in their study also showed an RMSE value of 0.069 m/s for 5%
slope and 0.0587 m/s for 3%.The vortices and reverse flow are
created in the wake region by the adverse pressure gradient and
the recirculation. This extends to several boulder diameters on the
downstream side.

Based on their experimental data, Baki et al. (2014) proposed
the following empirical equation for estimating depth averaged
velocity at any section within the fully developed region

Uy = C*/SR, (10a)

2g
Cr=,|—2 10b
CpNA, (105)
2
R,=H|l— 1
v 3N (10¢)
H\ —2.16
Cp=1.787( 5 (10d)

where S = slope; C* = flow resistant coefficient; R, = volumetric
hydraulic radius; N = number of boulders; A, = projected cross-
sectional area of each boulder; A = fraction of bed area occupied by
boulders; I* = D/H; D = diameter of boulder; H = average water
depth along center line; and C, = drag coefficient. Values for C*
and R, are calculated using Eqgs. (10b) and (10c); and Cp is
estimated using Eq. (10c¢) (Baki et al. 2016).

In the present study, for any numerical experiment with speci-
fied values for (1) flow rate at the inflow of the domain; (2) N, and
A; (3) diameter of boulders; and (4) bed slope, S, simulated values
of H were first used to determine C* and R,,. Subsequently, Eq. (10)
was used to determine u,,, and then the unit flow rate, geom. This
value of gy, is compared with g, at the inlet for several numeri-
cal runs in Fig. 6. It can be observed from Fig. 6 that the numerical
results satisfactorily match with the experimental data for flow
resistance in Baki et al. (2014). RMSE, bias, and E values for
estimated flow rate are 0.0067 m2/s, 0.0026 m?/s and 0.954,
respectively.

In Test Case 3, numerical results were verified by comparing the
simulated deformation of free surface around a roughness element
with empirical equations [Eqs. (11a) and (11b)] proposed by
Cassan et al. (2014) based on experimental data
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where i = average of water depth on upstream and downstream
sides of block; F = Froude number based on velocity between
blocks; and Ah = difference between flow depths on the upstream
side of the cylinder and downstream of the cylinders. Eq. (11a)
is for subcritical flows and Eq. (11b) is for supercritical flows.
Fig. 7(a) shows the scatter plot between Ah/h and F for both
numerical simulations and the experimentally observed data.
The equation proposed by Cassan et al. (2014) [Eq. (11)] is also
plotted in this figure. It can be observed from Fig. 7(a) that there
is a good agreement between the numerical results and the pro-
posed empirical equation. Numerical results are also verified using
the empirical equation proposed by Cassan et al. (2014) for esti-
mating flow rate, if flow depth, bed slope and information about
roughness elements are provided, using the following equation:

28(1—0C)

C,C(1+N) (12)

where ¢, = nondimensional flow; g = flow rate per unit width;
h, =h/D; D = cylinder diameter; a,,a, = center to center
distance between cylinders in longitudinal and transverse direc-
tions; C = roughness concentration = DN\ASQL“ S = bed slope;
C, = drag coefficient; N =o< ¢/ c,Ch, = ratio between bed fric-
tion force and drag friction force; and o = ratio between block
area and D>,

Eq. (12) is a semiempirical equation and was proposed by
Cassan et al. (2014) based on their experimental data. In the present
numerical runs, ¢ is specified as input, % is obtained as output, and
then Eq. (12) is used to determine gcompuiea- Numerically estimated
values of g, i.€., Gcomputea are compared with the specified values of
q in Fig. 7(b). Once again, it can be observed that the numerically
estimated discharges match well with the specified values. The
RMSE, bias, and E values for computed flow rate using Cassan
et al. (2014) model [Eq. (12)] and flow rate specified at inlet are
0.00487 m?/s, —0.0024 m?/s, and 0.94, respectively, and all
points are lying within 5% error.

It can be concluded from the previous discussion that ANSYS-
CFX can be used for successfully simulating the complex flows in
open channels with macroroughness elements. Although there is
some error in the magnitude of velocity in immediate vicinity of
the roughness element, the ANSYS-CFX is able to simulate the
overall flow structure and the simulations are satisfactory for the
purpose of estimating the energy loss.
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Energy Loss due to a Single Boulder

In this section, the energy loss induced by a single boulder is pre-
sented. Fig. 8 shows the velocity variation along the central vertical
plane for three different relative submergence (H, /D) values of
0.33, 0.84, and 1.49. In this paper, H, is the flow depth at the
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Fig. 6. Validation using flow resistance model proposed by Baki
et al. (2014)

upstream Section u, and D is the diameter of the boulder. In these
three numerical runs, the flow rate was 0.2 m3/s, bed slope was
5%, and H, was 0.116 m. Only the diameter of the boulder was
varied. It is shown in Fig. 8 that the flow pattern varied significantly
as the relative submergence increased. In all the three cases, the
water level increased ahead of the boulder and then decreased in
the wake region. These modeling results are consistent with the
observations made by previous researchers (Baki et al. 2014;
Cassan et al. 2014). The change in the water level is most signifi-
cant when relative submergence is 0.33. The rise in the water level
was not sufficient for water to flow over the boulder. However,
when the relative submergence was 0.84, the rise in water level
in front of the boulder was sufficient to make the water to flow
over the boulder. The water level decreased on the downstream side
and it was below the top of boulder. When the submergence ratio
was 1.49, although there was a change in the water level due to the
boulder, this change was not as high as when the H, /D ratio was
less than 1. Correspondingly, the spatial variation in velocity, on
both upstream and downstream sides of the boulder, was also very
different, as shown in Fig. 8. The effect of boulder on the flow per-
sisted for longer lengths on the downstream side, as the H,/D
value was decreased.

Computations for AE indicated that the energy loss due to
boulder increased as the H,/D decreased. This is consistent with
conclusions from earlier studies (Bathurst et al. 1981; Bathurst
1985; Baki et al. 2016). In the present case, AE was equal to
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63 mm when H, /D was 0.33, and it was only 9 mm when H,/D
was 1.49. In an earlier study, Oertel et al. (2011) defined three dif-
ferent flow regimes based on three ranges for relative submergence:
00<H,/D<1.0; 1.0<H,/D<20, and H,/D > 2.0. In the
present study, the authors delineated the three flow regimes

corresponding to H,/D ratio as: 0.0<H,/D <0.5; 0.5<H,/
D<1.0;and H,/D > 1.0.

Numerical experimentation indicated that the energy loss attrib-
utable to the boulder depends on the location of the boulder from
the upstream section, L,, when all the other flow conditions and the
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size of the boulder remain constant. Numerical experiments were
carried out for a flow rate, Q = 0.45 m? /s; Froude number at
upstream section, F, =2.76; H, = 0.142 m; and D = 0.18 m.
Numerical runs were made for three different L, values of 1.0,
2.0, and 4.9 m and the results for AE are presented in Fig. 9
[Case (i)]. It is shown from Fig. 9 that the energy loss due to
boulder, AE increased as the distance from the upstream section
increased, for the above flow conditions. This dependence of AE
on L, arises because the flow pattern in the wake region depends on
the flow conditions just ahead of the boulder. Given the same flow
conditions at the upstream section (Section u), flow conditions just
ahead of the boulder depend on how far the boulder is located from
the Section u because of channel bed friction losses. Similar results
[Fig. 9, Case (ii)] were obtained for the case of flow rate, Q =
0.10 m?/s, Froude number at upstream section, F, = 1.77, H, =
0.068 m, and D = 0.354 m.

Preliminary experimentation has shown that the energy loss is
not a function of Reynolds number when the flow is highly turbu-
lent. Similar observations were made by Bathurst (1985) and Ferro
(2003) for mountain streams with gravel beds and rock chutes.
Therefore, Froude number, relative submergence, and ratio be-
tween average flow depth at upstream section and the distance
to boulder were considered as independent variables and nondi-
mensional energy loss was considered as dependent variable. A
total of 51 simulations were made with the following ranges
for independent parameters: 1.4 <F,<2.8; 0.2< (H,/D)<24;
and 0.017 < (H,/L,)<0.15. The nondimensional energy loss
due to the boulder, me:ma, is fitted as a function of the previous
three nondimensional parameters using a power function. Among
the many forms of equations tried, power law fitted the experimen-
tal data best. In an earlier study, Bathurst (2002) also concluded that
a power law describes the flow resistance better than semilogarith-
mic law. Baki et al. (2014) also used a power law to estimate the
drag coefficient, which in turn was used to describe the resistance
relationship for a cluster of boulders. In the present study, the equa-
tion for energy loss was fitted independently for the three ranges of
relative submergence as follows:

H .\ 046 /[ 0.845
AE/L,) = 0.054 x F330( —* ==
A \ :v X u b N\E
H
for 0.2 <—¢<0.5 (13a)

ml.dmo.ﬁ
(AE/L,) = 0.0014 x F( = H

H
for 0.5 < < 1.0 (13b)

H —1.61 H 0.88
(AE/L,) = 0.062 x Flj2( = o

H
for 1.0 < " < 2.4 (13¢)

Note that the energy loss due to the single boulder increased as
the Froude number increased and it decreased as the relative sub-
mergence increased. The dependence of energy loss on relative
submergence is similar to the dependence of drag coefficient, Cp
on H, /D, as obtained by Baki et al. (2016) in their study on rock-
ramp fish pass. The prefactor first decreases (for 1 > H,/D > 0.5)
and then increases (for H,/D > 1) as H, /D increases. Also, there
is a significant difference in the exponent of F,, as the relative sub-
mergence increases. This is because of significant difference in
flow pattern (velocity variation, free surface elevation, and flow
separation) downstream of the roughness element as the complete
submergence occurs. The flow pattern affects the drag coefficient
and thus the energy loss. For example, flow pattern and free surface
profiles for Runs 5, 29, and 48 are shown in Fig. 8. The upstream
Froude number and flow depth are the same in all these three runs
and the only difference is the relative submergence owing to the size
of the sphere. As discussed earlier, the effect of submergence ratio on
the flow structure is clearly discernible from this figure.

Note that for the same approach flow conditions i.e. F, and
H, /D, the energy loss increases as the distance to boulder, L, in-
creases in all cases. Strictly speaking, bed slope and bed roughness
should not affect the form loss due to flow around macroroughness
elements. Experimental study of Pagliara and Chiavaccini (2006)
indicated that bed slope does not effect the energy loss due to mac-
roroughness elements for slopes less than 30%. The dependence of
AE on L, in the present study is because of the nonuniform flow
conditions between upstream Section # and the location of the
roughness element. The particular approach for energy loss char-
acterization as the loss between an upstream Section u and a down-
stream Section d was adopted keeping mind the discretization
procedures (e.g., standard step method) usually adopted in open
channel flow computations. This necessitated consideration of
L, as a dependent variable. However, the difference in flow con-
ditions between Section u and a section just upstream of roughness
element depend not only on L, but also on the slope of the channel
and the bed roughness. In all the numerical experiments carried out
in this study, the bed slope and the channel roughness were kept
constant at 5% and 8.54 x 10~ m. This is clearly a limitation of
the model at the present stage of development. Further numerical
experiments need to be carried out and the prefactor in the power
law model should be expressed as a function of the bed slope and
the channel roughness. In such a procedure, the exponents of the
existing nondimensional parameters in the power law model would
not change. Further investigations will be undertaken in future to
address this issue.

Energy loss values obtained using the fitted Eq. (13) (estimated)
are compared with the energy loss values determined based on the
three-dimensional numerical simulations (pseudoexperimental) for
all the 51 simulations in Fig. 10. It is shown in Fig. 10 that most of
the data points are within 10% error margin.

Energy Loss due to a Cluster of Boulders

In this section, the authors present the energy loss induced by a
cluster of boulders in an open channel. In most of the previous stud-
ies (Jordanova 2008; Baki et al. 2014, 2016; Cassan et al. 2014), the
pattern of placement of boulders or roughness elements was regu-
lar. In the present study, the authors consider random placement of
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lated energy losses

anumber of boulders in a given area, and study how the energy loss
due to this cluster of boulders depends on the flow conditions and
the interaction between boulders (Fig. 3).

First, numerical experiments were carried out to study the effect
of random spatial distribution of uniform sized spherical roughness
elements (Fig. 11) on the energy loss. In the first subset of experi-
ments, F, =1.82, H,/D = 0.85, H,/L, = 0.033, and density =
4.4%. Within an enclosed area of 0.916 m?, a total of eight spheres

Case (2)

of 0.08 m diameter each were placed. Simulations were carried out
for four different variations in spatial distribution [Fig. 11(a)] while
keeping all the other conditions the same. Similarly, in the second
subset of experiments, F, = 1.82, H,/D = 0.31, H,/L, = 0.033,
and density = 24.5%. Within an enclosed area of 1.24 m?, a total of
eight spheres of 0.22 m diameter each were placed. Fig. 11(b)
shows the energy loss estimated by analyzing the simulated three-
dimensional velocity field for the previous eight runs. It is observed
from Fig. 11(b) that for a given set of flow and geometric param-
eters (F,, H,/D, H,/L,, and density) the energy loss did not vary
significantly when the spatial distribution of the roughness ele-
ments changed. Difference in the energy loss was 7.2% when
H,/D < 0.5 and it was only 3% when H,/D > 0.5.

Next, numerical experiments were carried out to study how the
energy loss varies with cluster density, when all the other flow and
geometric parameters remain the same. In the first subset of experi-
ments, F, = 1.82, D =8 cm, H,/D = 0.85,and H,/L, = 0.033.
The density was varied from 0.7 to 16.44% by varying the
number of boulders within a fixed enclosed area of 0.916 m?
[Fig. 12(a)]. In the second subset of experiments, F, = 1.82,
D =22cm, H,/D =0.31, and H,/L, = 0.033. The density was
varied from 6 to 24.5% by varying the number of boulders within a
fixed enclosed area of 1.24 m?. Fig. 12(b) shows the variation
in energy loss with density. It is observed from Fig. 12(b) that,
as expected, the energy loss increased as the number of roughness
elements, i.e., density increased. However, the energy loss tended
to attain an asymptotic value as the number of boulders increased
beyond a point because the cluster tended to behave as one single
roughness element. It is shown in Fig. 12(a) that the velocity in the
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Fig. 11. Variation in energy loss for different spatial distributions, all other parameters remaining the same: (a) schematic for different spatial

distributions; (b) energy loss variation
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region between the roughness elements tended to a low value as the
number of boulders increased and the space between the roughness
elements got diminished. A numerical run was made with a single
roughness element whose size and shape was the same as the space
enclosed by 30 roughness elements shown in Fig. 12(a). The
energy loss for this case was 0.11 m, which is slightly higher than
the asymptotic value (0.1 m) shown in Fig. 12(b).

Based on the results of the 60 numerical experiments and
Eq. (6), it was possible to determine /, values. Depending on differ-
ent ranges of relative submergence, these [ values are then used to
derive the following empirical relations:

H O\ =340 [ \ 110 H
_ —0.66F1.46 [ Z1u Hu —u
I =0.06(\)""°F, D L for 0.2 < D <0.5

(14a)

H\-110/H 1.80 H
I, =8.20(\)~0FFL% A|v A|v for 0.5 <=~ < 1.0
D L, D

(14D)

H \ 057 /g \ 1.00 H
I, =2.0(\)"07F)22 M__ h| for EAM__AN%

(14c¢)

Comparing the empirically estimated energy loss [Egs. (6),
(13), and (14)] with the energy loss from the 60 three-dimensional

ANSYS-CFX simulations indicate the potential of the empirical
approach (Fig. 13).

An attempt is made to estimate value of the total Darcy-
Weisbach roughness coefficient based on the proposed model
for energy loss, and compare it with the value obtained using the
empirical equation proposed by Pagliara and Chiavaccini (2006).
The comparison indicated an average of 85% difference in the val-
ues. This difference can be attributed to very different conditions in
the experiments conducted by Pagliara and Chiavaccini (2006).
Pagliara and Chiavaccini (2006) reported that the increase in energy
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Fig. 13. Estimated and simulated energy loss for a cluster of boulders
of uniform size
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loss due to boulders, in the tested range, depends only on dispo-
sition, roughness of boulders and the density, and not on either
Froude number or relative submergence. This aspect requires fur-
ther exploration.

The energy loss in the case of cluster of nonuniform sized
roughness elements was estimated based on the concept of effective
boulder size, D.g. Validity of the proposed simple approach was
tested using 12 numerical experiments (Table S3 in Supplemental
Data). The AE for the cluster of nonuniform sized boulders calcu-
lated using the simple empirical approach is compared with the AE
value obtained from the three-dimensional numerical simulations in
Fig. 14. It is shown in Fig. 14 that the error in the estimation using
the simple approach lies mostly (8 out of 12 data points) within
20% for the experiments carried out i.

The previous procedure is proposed in this study only for its
simplicity, and to test to what extent simple empirical equation

approach can be extended for estimating the energy loss in natural
mountainous streams. In reality, the flow structure in the space
between randomly distributed differently sized boulders is very
complex. The interaction between the boulders depends on the
approach flow conditions, sizes of neighboring boulders, and the
local relative submergence value, rather than the relative submer-
gence value based on approach flow depth. Four numerical runs
(Figs. 15 and 16) were carried out to test the concept of effective
size for a simple case of two boulders of unequal size. In Run 124a,
two boulders of sizes D; = 0.138 m and D, = 0.10 m were kept
at a distance of 0.25 m, and in Run 124b, two boulders of equal
size, D = 0.12 m were kept a distance of 0.25 m. In both these
runs (Fig. 15), the approaching flow conditions, i.e., discharge
(0.45 m3/s), H, (0.142 m), L, (1.15 m), and S, were the same.
It was found that energy loss due to boulders in Run 124a was
0.055 m, while it was 0.052 m in Run 124b. There was only a dif-
ference of 5.5% in the energy loss in this case when H,, /Do > 1.0.
However, results were very different when the submergence ratio
was less than 1.0. In Run 125a, two boulders of sizes D; =
0.138 m, and D, = 0.10 m were kept at a distance of 0.25 m
and in Run 125b, two boulders of equal size, D = 0.12 m were
kept a distance of 0.25 m. In both these runs (Fig. 16), the
approaching flow conditions, i.e., discharge (0.1 m3/s), H,
(0.069 m), L, (1.15 m), and S, were the same. It was found that
energy loss in Run 125a was 0.024 m, whereas it was 0.03 m in Run
125b. There was a significant difference of 20% in this case where
H, /D < 1.0. Further research is needed to improve the accuracy
of empirical approach by introducing a parameter which represents
not only the effect of size distribution of boulders but distribution
of relative submergence.

Conclusion

Macroroughness elements such as boulders induce significant
energy loss in open channels. In this work, a three-dimensional

\Water.Velocity
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Fig. 15. Spatial variation of velocity on the central vertical plane: Run 124
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turbulent flow model was used to study the energy loss in a steeply
sloping open channel induced by a single boulder and a cluster of
randomly placed boulders. The three-dimensional ANSYS-CFX
model was tested using experimental data available in literature
prior to its use for performing extensive numerical experiments.

In the case of a single boulder, the energy loss could be ex-
pressed as a power function of the upstream Froude number and
the relative submergence. The energy loss increases with Froude
number, while it decreases with increasing relative submergence.
However, the exponents in the power law relationship are different
for three different ranges of relative submergence: <0.5, 0.5-1.0,
and >1.0. The exponent for the Froude number ranges from
1.42 to 2.30, whereas the exponent for relative submergence varies
from —0.46 to —1.77.

In the case of a cluster of boulders, for the same number of uni-
formly sized boulders in a cluster, the pattern of placement of
boulders does not have significant effect on energy loss (<4%),
especially when relative submergence is more than 0.5. Also, for
the same number of boulders, the energy loss decreases as the clus-
ter density increases. The energy loss between two sections could
be expressed as a product of energy loss due to a single boulder, the
number of boulders and an interaction factor. The interaction factor
is a power function of (1) the upstream Froude number, (2) relative
submergence, (3) cluster density, and (4) the distance between the
upstream section and the cluster location. The proposed empirical
procedure estimates the energy loss within a 10% error margin
when the boulder size in the cluster is uniform. The error in the esti-
mated energy loss on the basis of the concept of effective boulder
size is within 20% margin if the boulder size is nonuniform.

Further research is needed for improving the predictive capabil-
ity of proposed approach. Also, further investigations are needed
for studying the effect of grain or bed roughness and channel slope
on the energy loss due to macroroughness elements. Results from
the present study are useful for estimating the energy loss in moun-
tainous channels.
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Notation

The following symbols are used in this paper:
4pV ,H, /1 = R, =Reynolds number at the upstream

section;
b = width of cluster;
D = diameter of boulder or roughness element;

D = \/D} + D}+ --- +D% /N = effective diameter;

D,,D,, ...,Dy=boulder diameters of N number of
boulders;
H, = average flow depth at upstream section;

H,/D = relative submergence;

Iy= interaction factor;

k, = equivalent sand grain roughness height;

L, = location of the boulder from the upstream section;
[ = length of cluster;

Ib = cluster area;

N = number of boulders;
Q = flow rate;

S, = bed slope;

TE, = total energy at downstream section;
. = total energy at upstream section;
V, = average velocity at upstream section;

ﬂ
x
I
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V./v/gH, = F, =Froude number at upstream section;
X = length between upstream and downstream sections;
Z = B = distance between sides of channel = width of
channel;
AE, . = energy loss due to bed friction;
AE = ATE — AEq = energy loss due to roughness

elements;

AEj e = [AE/L, | nge = nondimensional energy loss
for single boulder;

AE} ver = [AE/L] yyuser = nondimensional energy loss

for cluster of boulders;
AE user = energy loss due to cluster;
AEne. = energy loss single roughness element;
ATE = total energy loss consist of bed friction and

roughness elements; and
A\ = [N(w/4)D?]/(l.b) = cluster density.

Supplemental Data

Tables S1-S3 are available online in the ASCE Library (www
.ascelibrary.org).
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