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Reprogrammable Kinematic
Branches in Tessellated Origami
Structures
We analyze the folding kinematics of a recently proposed origami-based tessellated struc-
ture called the Morph pattern, using thin, rigid panel assumptions. We discuss the geometry
of the Morph unit cell that can exist in two characteristic modes differing in the mountain/
valley assignment of a degree-four vertex and explain how a single tessellation of the Morph
structure can undergo morphing through rigid origami kinematics resulting in multiple
hybrid states. We describe the kinematics of the tessellated Morph pattern through multiple

branches, each path leading to different sets of hybrid states. We study the kinematics of the
tessellated structure through local and global Poisson’s ratios and derive an analytical con-
dition for which the global ratio switches between negative and positive values. We show

that the interplay between the local and global kinematics results in folding deformations
in which the hybrid states are either locked in their current modes or are transformable

to other modes of the kinematic branches, leading to a reprogrammable morphing behavior
of the system. Finally, using a bar-and-hinge model-based numerical framework, we simu-
late the nonlinear folding behavior of the hybrid systems and verify the deformation char-
acteristics that are predicted analytically. [DOI: 10.1115/1.4049949]
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1 Introduction

Origami patterns have attracted substantial attention in recent
years due to a wide array of potential applications, such as those
involving metamaterials [1–6] and structures [7–11]. Origami pat-
terns such as standard Miura-ori [12,13] and standard Eggbox
[14,15] have been extensively studied in the research community
as they are some of the simplest tessellations with degree-four ver-
tices [16,17] characterized by three mountains and one valley, and
four mountain creases, respectively. A notable feature of these and
many other origami patterns is that, as they fold between their
extreme geometric states, the crease topologies (i.e., the moun-
tain/valley assignments) remain fixed. In this paper, we discuss
characteristics of a degree-fourMorph origami pattern recently pro-
posed by the authors [18], which exhibits topological morphing by
switching one of its creases between mountain and valley.
The standard Miura-ori and standard Eggbox patterns gained

wide attention of scientists and engineers from many fields due to
their ability to display geometrically dependent and tunable nega-
tive and positive Poisson’s ratios, respectively [15]. Interestingly,
it was shown that the Morph pattern can exhibit a Poisson’s ratio
from negative infinity to positive infinity as it undergoes topological
morphing between a Miura mode (which is topologically similar to
a standard Miura-ori) and an Eggbox mode (which is topologically
similar to a standard Eggbox pattern). In addition, the standard
Miura-ori and Eggbox patterns can be derived as particular cases
within the design space of the Morph pattern. The Poisson’s ratio
switching phenomenon has also been recently observed in other
systems [19–21] including some origami metamaterials [22–24].
In this paper, we study various kinematic aspects of the Morph

origami system, for application to reprogrammable metamaterials.
We distinguish between the Morph unit cell and the Morph
pattern. The Morph unit cell has two characteristic modes called

the Miura and the Eggbox modes and has a relatively simple kine-
matic behavior. However, the Morph pattern (tessellation) is an
assemblage of the Morph unit cells which, when coupled with the
possibility of topological morphing, exhibits a rich and complex
kinematic behavior. Therefore, we dedicate most of this paper to
exploring and explaining the resulting interesting features of the
Morph pattern. Specifically, we focus on the kinematics of hybrid
states which are inter-transformable geometric configurations that
can be obtained from the Morph pattern. Throughout this paper,
we assume that the panels are thin and rigid, unless specified
otherwise.
Contrasting the previous work on the Morph concept [18], the

novelty of the current paper is highlighted as follows. (i) We
explain the rigid origami kinematics of the Morph pattern through
intersection of compatibility and configuration curves. Using this
approach, we explain the inter-transformability between various
states of the Morph pattern which renders the system to exhibit
reprogrammable kinematic branches. (ii) Unlike the framework
used in Ref. [18], which presented a basic branching case, we
provide a representation of the configuration path of the Morph
pattern that can distinguish between various sets of hybrid states.
This allows for exploration of the rich features of the Morph pat-
tern’s kinematic branches. (iii) We derive the analytical condition
for the Poisson’s ratio sign switching in the Morph pattern that
can be directly used to program the system to display the desired
switching. (iv) We explain the detailed mechanism for mode-
locking behavior mathematically, based on the interplay of local-
global kinematics, and verify this behavior through numerical simu-
lations using a bar-and-hinge model [25].
This paper is organized as follows. We first review the geometry,

configuration path, and kinematics of the Morph unit cell. Next, we
explain the construction of the Morph pattern in both its uniform
and hybrid states, which contain identical and non-identical unit
cells respectively. Afterwards, we explain the rigid kinematics
and transformations among various states, provide a new approach
to represent configuration paths, and describe the kinematics of the
Morph pattern. We verify the theoretical predictions using numeri-
cal simulations. Finally, we summarize the work and discuss direc-
tions for future research.

1Corresponding author.

Contributed by Mechanisms and Robotics Committee of ASME for publication in

the JOURNAL OF MECHANISMS AND ROBOTICS. Manuscript received September 27, 2020;

final manuscript received January 18, 2021; published online March 12, 2021. Assoc.

Editor: Philip A. Voglewede.

Journal of Mechanisms and Robotics JUNE 2021, Vol. 13 / 031004-1Copyright © 2021 by ASME

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/m

e
c
h
a
n
is

m
s
ro

b
o
tic

s
/a

rtic
le

-p
d
f/1

3
/3

/0
3
1
0
0
4
/6

6
9
3
5
4
9
/jm

r_
1
3
_
3
_
0
3
1
0
0
4
.p

d
f b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 0

9
 J

u
n
e
 2

0
2
1



2 The Morph Unit Cell

A degree-four origami vertex consists of four creases and four
panels intersecting at a vertex [16]. The Morph unit cell is a
special case of the general degree-four vertex with the design
space given by α > 0, β> 0 and α+ β≤ π, where α, β are the
angles of the parallelogram-shaped panels. Clearly, the standard
Miura-ori, given by α+ β= π, and the standard Eggbox, given by
β= α, are special cases of the Morph vertex. In this section, we
describe the geometry of the Morph unit cell and summarize its con-
figuration path and its kinematics. We use the understanding from
this section as a stepping stone to explain the formation of the
Morph pattern and its unique characteristics.

2.1 Geometry of the Morph Unit Cell. The geometry of the
Morph unit cell is shown in Fig. 1. It is a single degree-of-freedom
system2 whose folded state can be expressed by any of the folding
angles ϕ, ψ, or the dihedral angles between the panels γ1, γ2, γ3, and
γ4. The vertices are indexed as Oi where i= 1 to 9. The most defin-
ing feature of the Morph unit cell is its ability to change the crease
topology, which is given by the mountain/valley assignment.
Without loss of generality, when we assume β< α and α+ β< π,
the creases O5O2, O5O4, O5O8 remain as mountains and the
crease O5O6 (highlighted in Fig. 1) can switch to being either a
valley or a mountain depending on whether γ3 is greater than or
less than π. Correspondingly, the Morph unit cell exists in two char-
acteristic modes which we call the Miura and the Eggbox modes, as
the crease topologies of these modes are same as the standard
Miura-ori and the standard Eggbox unit cells, respectively. When
β< α and α+ β< π, the unit cell vertex is non-developable and
therefore is a generalization of the standard Eggbox pattern,
which exhibits two flat-folded states that are topologically similar.
However, the two flat-folded states of the Morph unit cell are dis-
tinct as one of them occurs in the Miura mode with ϕ =ϕmin= α
− β, whereas the other occurs in the Eggbox mode with ϕ=ϕmax

=α+ β. The unit cell dimensions (W, L) can be derived in terms
of the panel dimensions a, b, c, and the folding angles. We constrain
b= a|cosα/cosβ| in order to ensure the orthorhombic nature of the
unit cell.

2.2 Configuration Path of the Morph Unit Cell. The
parameter space that describes the geometric configuration of
the Morph unit cell can be given by the set of all points
{ϕ, ψ} ∈ Q:[ϕmin, ϕmax] × [0, ψmax], where the angles ϕ and ψ

represent the folding angles between opposite creases of the degree-
four Morph vertex and ψmax represents the upper bound of ψ. We
note that the two folding angle parameters are not independent
due to the presence of rigid panels between the creases. The con-
straining relation between them can be derived using concepts of
spherical trigonometry [27] about vertex O5 and is given by

ψ = f (ϕ) = cos−1
[

cos 2α +
2(cos β − cos α cosϕ)2

sin2 ϕ

]

(1)

We define the configuration path [28] of the Morph unit cell as the
continuous curve in the parameter space that describes the folding
mechanism. In other words, the configuration path represents the
set of all geometric configurations of the unit cell while it undergoes
folding and is directly related to the kinematics of the system. Equa-
tion (1) represents the configuration path of the Morph unit cell.
This is plotted for α= 60 deg and β= 40 deg in Fig. 2 as dashed
and solid curves for Miura and Eggbox modes, respectively. The
curve clearly distinguishes the two characteristic modes in the con-
figuration path and indicates that the transition between Miura and
Eggbox modes happens when ψ=ψmax= 2β. This is the point when

the crease O5O6 is co-planar with the two adjacent panels and is
about to switch the mountain/valley assignment. Figure 3 shows
the physical model of a Morph unit cell in various configurations.

2.3 Kinematics of the Morph Unit Cell. The kinematics of
the Morph unit cell can be completely described using Eq. (1).
The local Poisson’s ratio for the unit cell characterizes the

Fig. 1 The two characteristic modes of the Morph unit cell:
Miura mode and Eggbox mode

2This can be easily verified using the modified Grübler–Kutzbach criterion for sphe-

rical linkages [26]. The Morph unit cell has four panels (rigid links) and four creases

(revolute joints) leading to a mobility of 1.
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deformation behavior and is given by

νl = −
dW/W

dL/L
= −

dW/dψ

dL/dϕ

L

W

dψ

dϕ

=
cos2 α + cos2 β − 2| cos α cos β| cosϕ

sin2 (ψ/2)| cos α cos β|

[ ]

(cos β − cos α cosϕ)(cos α − cos β cosϕ)

sin4 ϕ

[ ]

(2)

Clearly, Poisson’s ratio depends only on the geometry of the unit
cell defined in terms of α, β, ϕ, and ψ. The term (cosα− cosβcosϕ)
in the expression for νl dictates its sign and it can be shown that this
term is negative for the Miura mode and positive for the Eggbox
mode as it is directly proportional to cos (γ3/2). In addition, the
sin 2(ψ/2) term in the denominator leads to singularities in the flat-
folded states giving rise to −∞ and +∞ Poisson’s ratios as ψ→ 0 in
the Miura and Eggbox modes, respectively. Poisson’s ratio switches
sign smoothly about νl= 0 when (cosα− cosβcosϕ)= 0 as γ3= π
(transition state).

3 The Morph Pattern

The equivalence between the trianglesΔO1O2O3 (ΔO1O4O7) and
ΔO7O8O9 (ΔO3O6O9) allows for replication along theW (L) direc-
tion by placing identical Morph unit cells adjacent to each other.
The tessellation of identical Morph unit cells in either of its charac-
teristic modes, along the two orthogonal directions shown in Fig. 4
leads to the uniform Morph pattern. The Morph pattern also allows
for the existence of hybrid states that may or may not have such
translation symmetry, which typically does exist in common
origami patterns. These hybrid states are obtained by combining
the two (non-identical) characteristic modes of the Morph unit

cell with compatible geometries (see Fig. 5). This feature allows
for a rich set of hybrid states associated with various combinations
of the two modes that include both periodic and non-periodic
patterns.
In this section, we first describe the geometry of the Morph

pattern. We then explain the transformability of the uniform
Morph pattern into its hybrid states and characterize the configura-
tion paths of the Morph pattern. Finally, we discuss the kinematics
of the Morph pattern.

3.1 Geometry of the Morph Pattern. The geometry of the
Morph pattern (including its hybrid states) is characterized by the
folding angles (ϕ, ψ) of each of the individual unit cells. Note
that ψ is the angle between the opposite mountain creases of the
degree-four Morph vertex, and ϕ is the angle between the other
set of opposite creases, one of which can switch between being a
mountain or a valley (see Fig. 1). For a Morph pattern in an arbitrary
hybrid state, some of the unit cells could be in the Miura mode and
the rest of them could be in the Eggbox mode. We will denote the
folding angles for the unit cells in Miura mode to be ϕm, ψm and
those in Eggbox mode to be ϕe, ψe. Similarly, we will denote the
unit cell dimensions as Lm, Wm and Le, We, respectively, for the
Miura and Eggbox modes. In both modes, we have,

ψm = f (ϕm), ψe = f (ϕe) (3)

where f is the function defined in Eq. (1). Additionally, for both
modes to co-exist in the same pattern by tessellating along the L
direction, we also need the compatibility condition

ψm = ψe = ψ∗ (4)

The above Eqs. (3) and (4), determine the folding angles of each of
the unit cells in any hybrid state of the Morph pattern, as the points

Fig. 2 Configuration path of a Morph unit cell in terms of the
folding angles. The Miura mode cells are represented by point
A and the Eggbox mode cells are represented by point B which
lie on the dashed and solid curves, respectively.

Fig. 3 Physical model of the Morph unit cell Fig. 4 Tessellation of the Morph unit cells in Miura and Eggbox
modes to form uniform Morph patterns
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of intersection (A, B in Fig. 2) between the curve ψ= f (ϕ) and the
straight line ψ=ψ*. It can be shown that

ϕm = cos−1
cos α

cos(ψ∗/2)

( )

− cos−1
cos β

cos(ψ∗/2)

( )

(5)

ϕe = cos−1
cos α

cos(ψ∗/2)

( )

+ cos−1
cos β

cos(ψ∗/2)

( )

(6)

Further description of the geometry of the Morph pattern, espe-
cially for the hybrid states, can be provided by the type of arrange-
ment of the non-identical unit cells. The unit cells that are
tessellated along the W direction are all identical at all folding
angles and therefore form a strip of uniform cells which are either
in the Miura mode or the Eggbox mode which we shall denote as
M and E, respectively. On the other hand, the unit cells tessellated
along the L direction need not be identical except that they all have
the same angle ψ=ψm=ψe=ψ* and can have different ϕ=ϕm or
ϕ =ϕe, where ϕm≠ϕe. Now different hybrid state geometries can
be denoted by how the strips of cells are arranged: MMMMEEEE,
MEMEMEME, MEEMEEM, MMEMMMEE etc., as shown in
Fig. 6. Using this notation, the uniformly tessellated Morph
pattern is denoted as either MMMMM…, EEEEE… or TTTTT…
depending on whether all the unit cells are in Miura mode,
Eggbox mode, or the transition state, respectively.

3.2 Hybrid States Through Rigid Folding Kinematics. One
of the fascinating features of the Morph pattern is that all the hybrid
states of the Morph pattern including the uniformly tessellated states
are inter-transformable through rigid origami kinematics. This can
be theoretically understood as follows. First, we will show that
any hybrid state pattern can be transformed to a uniform transition
state through rigid kinematics. Next, we will describe how starting

from a uniform transition state, any hybrid state with arbitrary strip
arrangement can be obtained through rigid origami folding. By
combining these two steps, we show transformability between all
the states of the Morph pattern via the transition state is possible.
Consider a hybrid state with an arbitrary strip arrangement and

the folded state of the unit cells given by (ϕm, ϕe, ψ*) represented
by the two points A, B in Fig. 2. As we smoothly change the
folded state of the system while staying on the curve ψ= f (ϕ), kine-
matic compatibility holds and, therefore, each individual unit cell
undergoes rigid folding. This rigid folding causes ψ* to either
decrease or increase, i.e., the line ψ=ψ* in Fig. 2 moves down
or up, respectively. If ψ* decreases toward zero, ϕm→ϕmin and
ϕe→ϕmax and the strip arrangement is conserved. However, if ψ*
increases toward ψmax, ϕm→ϕt, and ϕe→ϕt and the system trans-
forms into the uniformMorph pattern with all unit cells reaching the
transition state. At this state, the line ψ=ψ* intersects the curve ψ=
f(ϕ) at only one point (ϕt,ψmax).
Further folding from the transition state with identical unit cells is

possible only through reduction of ψ*. However, this can happen
either by decreasing or by increasing angle ϕ of each of the unit
cells according to which they assume Miura or Eggbox modes,
respectively. By controlling the switching of the strips between
the Miura and Eggbox modes, one can obtain various other
hybrid states. We note that a detailed discussion concerning how
one could control [29] the switching between different types of
strips is beyond the scope of this paper.
Therefore, inter-transformability between all the hybrid states

and the uniform states is feasible by rigid folding them to the transi-
tion state and then switching the strip arrangement to a different
desired configuration. This is demonstrated schematically in
Fig. 6 for some of the states.

3.3 Configuration Paths of the Morph Pattern. Unlike the
configuration path of the Morph unit cell which has only two
branches—one on either side of the transition point (see Fig. 2),
the Morph pattern has multiple additional branches to describe
the folding of hybrid states. We have described the parameter
space of the Morph unit cell in terms of the folding angles ϕ and

Fig. 5 Combining compatible unit cells in Miura and Eggbox
modes to form a hybrid state

Fig. 6 Realizations of the Morph pattern with 8 ×8 cells—the
three uniform states and sample hybrid states. The double
arrows indicate inter-transformability between states. M, E, T

represent the strips in Miuramode, Eggboxmode, and Transition
state, respectively. The parameter nm is the number of strips in
the Miura mode. The strips in the Eggbox mode are shown in
white color.
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ψ. However, representing the parameter space of the Morph
pattern in terms of folding angles alone over simplifies the space
and cannot distinguish between various paths arising due to
the hybrid states [18]. To overcome this issue, we choose the para-
meter space of the Morph pattern as the set of all points

{ψ , L′} ∈ Q′
:[0, ψmax] × [L′min, L

′
max], where ψ(=ψ*) is the folding

angle that is common across all the modes, and L′ is the total
pattern length along the L direction, bounded by Lmin

′ , Lmax
′ . The

expression for L′ is given by

L′ = nmLm(ϕm) + neLe(ϕe) (7)

where Lm, Le are the Morph unit cell lengths in Miura, Eggbox
modes, respectively, and nm, ne are the number of strips in Miura,
Eggbox modes, respectively. For any given choice of nm, ne, the
configuration path of the system in the parameter space can be iden-
tified by using Eqs. (5), (6) in Eq. (7). Therefore, using this
approach we can distinguish between various configuration paths
associated with the hybrid states as shown in Fig. 7.
In Fig. 7, the total number of strips in the Morph pattern, given by

n= nm+ ne, is fixed to be 6 and we vary the number of Miura mode
strips across various paths shown in the figure. The top and bottom
paths with nm= 0 and nm= 6 correspond to the uniform patterns.
Since Lm< Le, the overall length L′ of the hybrid states decreases
with the increase in the number of Miura mode strips, at any
given ψ. As described in Sec. 3.2, the transformation between
various states happens by traversing along these paths via the tran-
sition point denoted by TTTTTT in the figure. In this context, we call
this intersection point, the kinematic bifurcation point [18]. Since all
the paths pass through a common point, we refer to these paths as
kinematic branches [30].
We note that the above-mentioned approach to distinguish con-

figuration paths of various hybrid states cannot separate degenerate
states that may exist along each path. For example, the path repre-
sented by nm= 1 in Fig. 7 is identical for all the hybrid states
MEEEEE, EMEEEE, EEMEEE, EEEMEE, EEEEME, and
EEEEEM. However, as we will see in Sec. 3.4, the geometric
mechanics of the hybrid states are in general only governed by nm
for a given n and not by the degenerate arrangement of the strips.

3.4 Kinematics of the Morph Pattern. We have seen in
Sec. 3.3 that the Morph unit cell can exhibit negative or positive
Poisson’s ratio depending on whether it is in the Miura mode or
the Eggbox mode. By virtue of rigid body kinematics, the
uniform patterns obtained by tessellating either the Miura or the
Eggbox mode cells will behave in a manner similar to that of the
corresponding single unit cell. However, the hybrid states which
are a combination of both Miura and Eggbox mode unit cells
exhibit complex deformation behavior due to the interplay

between the local and global kinematics. As we will see below,
this leads to some very interesting properties.
We define the global stretching Poisson’s ratio of a Morph pattern

as the ratio of infinitesimal strains in both the tessellation directions
which is given by

νg = −
dL′/L′

dW ′/W ′
(8)

where L′ is given by Eq. (7) and W′ is the total width of each of the
strips and is equal to nW for strips with n unit cells. Using
Eqs. (5)–(8), we can derive the following expression for the
global Poisson’s ratio of the Morph pattern for any arbitrary
hybrid state parameterized by nm, ne.

νg = p(ψ)q(ψ) (9)

where

p(ψ) =
ab sin2

ψ

2

L′ cos3
ψ

2

(10)

and

q(ψ) =
cos α

sin((ϕe + ϕm)/2)

ne sinϕe

Le
+
nm sinϕm

Lm

( )[

+
cos β

sin((ϕe − ϕm)/2)

ne sinϕe

Le
−
nm sinϕm

Lm

( )]

(11)

For a fixed number of strips n, the local contributions from the unit
cells of contrasting modes affect the global Poisson’s ratio through
the parameters nm, ne. Clearly, the above expression for the global
Poisson’s ratio does not depend on the arrangement of degenerate
strips. For example, EEMMEE and EEEMEMwill have the same νg.
One interesting feature that develops due to the local-global inter-

play is that unlike the Morph unit cell or the uniform Morph pattern
in which the zero Poisson’s ratio and the change of sign of Poisson’s
ratio occurs at the transition state, the hybrid states can exhibit this
behavior when they are away from a transition state (i.e., ϕe≠ϕm).
To derive this condition, we set3 q(ψ)= 0 in Eq. (11). Assuming
ϕe ≠ϕm, and using the relation4 Lmsinϕe= Lesinϕm, we get

η =
cos β sin((ϕe + ϕm)/2) + cos α sin((ϕe − ϕm)/2)

cos β sin((ϕe + ϕm)/2) − cos α sin((ϕe − ϕm)/2)
(12)

where η is the ratio nm/ne for which Poisson’s ratio sign switching
can happen. The folding angle at which Poisson’s ratio of the
hybrid state changes sign is given by ϕe (or ϕm) that satisfies the
above equation, for a given η. This angle is also related to some
ψ=ψs through Eqs. (5) and (6). For a given choice of panel geom-
etry, the range of η values at various folding angles can be deter-
mined from Eq. (12). Figure 8(a) shows the relation between η

and the folding angle ψs that satisfies Eq. (12) for various choices
of α and β. It can be seen from the figure that the lowest value of
η across different panel geometries is just greater than 1. This can
be understood since α > β, and ϕe >ϕm, then we have from
Eq. (12) that η> 1. Figure 8(a) also indicates that the sign change
of Poisson’s ratio will happen at folding angles closer to the transi-
tion state (ψ= 2β) when η is closer to 1 (i.e., number of Miura mode
cells is similar to the number of Eggbox mode cells). As η value
increases (i.e., number of Miura mode cells dominates), the switch-
ing occurs at folding angles that gradually shift toward the flat-
folded configuration (ψ= 0).
It is important to note that not all hybrid states of a Morph pattern

(given α, β, and n) can display Poisson’s ratio switching behavior

Fig. 7 Kinematic branches of the Morph pattern. EEEEEE,
MMMMMM, TTTTTT are uniform states and the rest are hybrid
states. The parameter nm denotes the number of strips in the
Miura mode. The panel geometry was chosen as α=60deg, β=
40deg, and a=1.

3Note that, although setting p(ψ)= 0 in Eq. (10) also leads to νg= 0, it does not cor-

respond to switching the sign of Poisson’s ratio.
4This can be proved by applying sine rule for the triangle ΔO7O8O9 in the Eggbox

and Miura modes.
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(see Figs. 8(b) and 8(c)). Further, it is also not necessary that there
exists a hybrid state for a given Morph pattern that can exhibit Pois-
son’s ratio switching. For example, consider a Morph pattern with
α = 60 deg and β= 40 deg. If the pattern has n= 2 strips, then it
can never have hybrid states with a ratio nm/ne that is greater than
1, and therefore cannot exhibit Poisson’s ratio switching. Instead,
if the pattern has n= 4 strips, it can have nm/ne= 3/1 > 1, but it
still cannot display the switching behavior as the ratio is not
within the required η range for this choice of panel geometry,
which is 1 < η< 2.88 (see Fig. 8(a)). However, such a pattern with
n= 3 can exhibit switching for nm/ne= 2/1.
Assuming that we are considering the feasible range of η, the

smallest obtainable value of the ratio η corresponds to nm=

(n/2) + 1, if n is even (see Fig. 8(b)), and nm= (n+ 1)/2, if n is
odd (see Fig. 8(c)). On the other hand, the largest obtainable
value of η is determined such that it is less than ηmax, the theoretical
maximum calculated from Eq. (12) that depends on the choice of
panel angles, as shown in Fig. 8(a). Equation (12), along with the
constraint nm+ ne= n for a given n, can be used to design the
hybrid Morph pattern for tunable switching of Poisson’s ratio at dif-
ferent ψ, as shown in Fig. 8.
Another feature of the hybrid states that develops due the local-

global interplay is the presence of locked/transformable states
during extension/contraction of the pattern. In this context, we
refer to the hybrid patterns folding toward the nearest flat-folded
state in the configuration path as locked states as the unit cells
remain in their respective modes without any transformation. This
behavior was referred to as mode-locking in Ref. [18]. On the
other hand, we refer to the hybrid patterns with all the unit cells
unfolding toward the transition state as transformable states as

this allows potential switching between modes. As shown in
Fig. 9, such locking or transformability can occur in both the defor-
mations—extension or contraction, depending on the sign of the
global Poisson’s ratio of the hybrid pattern.
This behavior can be explained based on the unit cell (local) kine-

matics as follows. From Fig. 2, it is clear that when ψ* decreases, all
the unit cells remain in their respective modes and eventually fold
toward their flat-folded configurations. This is also related to the
local Poisson’s ratio νl by which, decreasing ψ* will lock the topol-
ogy of the respective modes. Whereas, when ψ* increases, all the
unit cells unfold toward the transition state and become identical
to each other. If νg> 0, extension along the L′ dimension of the
hybrid pattern causes contraction along W′ dimension which
requires a decrease in ψ* and, therefore, as explained above, the
unit cells are locked in their respective modes. If νg< 0, extension
along L′ dimension of the hybrid pattern causes extension along
W′ dimension as well which requires an increase in ψ* that takes
the unit cells toward the transition state that allows mode transfor-
mation. Using similar arguments, contraction along the L′ dimen-
sion of the hybrid pattern leads to transformable and locked
states, when νg is positive and negative, respectively. To summarize
in mathematical terms, if the pattern in any given configuration
undergoes a folding motion with respect to a pseudo-time variable
t, the modes are locked if (dψ*/dt) < 0 throughout the motion, and
are transformable otherwise. Using Eq. (8), the situations that
lead to locking are given by

νg(t) > 0 and dL′/dt > 0 ⇒ dW ′/dt < 0

⇒ dψ∗/dt < 0
(13)

νg(t) < 0 and dL′/dt < 0 ⇒ dW ′/dt < 0

⇒ dψ∗/dt < 0
(14)

and the situations that lead to transformability are given by

νg(t) > 0 and dL′/dt < 0 ⇒ dW ′/dt > 0

⇒ dψ∗/dt > 0
(15)

νg(t) < 0 and dL′/dt > 0 ⇒ dW ′/dt > 0

⇒ dψ∗/dt > 0
(16)

Therefore, under certain global deformations, a Morph pattern in
any hybrid state can potentially transform into other hybrid states on
the kinematic branches of that system. In other words, the tessel-
lated structure can switch between its kinematic branches of
folding deformation by attaining the transition state. We refer to
this ability of the Morph pattern as the reprogrammable morphing
behavior.

(a) (b) (c)

Fig. 8 (a) Range of η values that exhibit Poisson’s ratio switching and the corresponding folding angles ψs at which the switch
happens, for various panel geometries. (b), (c) Variation of Poisson’s ratio of the hybrid states of the Morph pattern with respect to
the folding angle ψ. The switching of Poisson’s ratio between positive and negative values happens in the range (b) 51≤nm≤

74~(74/26< ηmax≈2.88) in, and in the (c) range 50≤nm≤62~(62/37< ηmax≈1.68).

Fig. 9 Mode-locking and transformability of the hybrid states of
the Morph pattern under deformation
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4 Numerical Simulations Using Non-Linear

Bar-and-Hinge Model

In this section, we perform numerical simulations to demonstrate
the rigid transformability and the mode-locking behavior of the
Morph origami assemblages.

4.1 Origami Mechanics Simulation. Although rigid folding
behavior of origami structures is typically of interest, real structures
are non-rigid and, therefore, it is important to verify the theoretical
behavior of the Morph structure in the limit of panel rigidity by
accurately simulating the mechanics. The mechanics of origami-
based structures is typically simulated and studied using
bar-and-hinge models [31]. Within the context of the numerical
simulations, we assume that the panels are non-rigid, but we shall
choose the model parameters in such a way that they almost
behave as rigid. In this work, we use the simulation framework
called MERLIN [25,32] to study the non-linear mechanics and
the structural behavior of the Morph pattern undergoing finite defor-
mation. This framework is built on the bar-and-hinge concept in
which the entire origami structure is modeled as an enhanced
truss-type structure comprising of bars which model the stretching

deformations of the panels, and hinges or rotational springs which
model the bending of the panels and folding of panels about the
creases. In order to depict the rigid panel behavior, we choose the
bending and stretching stiffness values of the springs and the bars
to be seven and ten orders of magnitude more than the folding
spring stiffness, respectively.

4.2 Numerical Uniaxial Experiments. To verify the rigid
folding and the transformable/mode-locking behaviors of the
Morph pattern we conduct numerical uniaxial experiments on two
sample hybrid systems EEEMME and MMMMME (each with 6 ×
6 cells), which have positive and negative global Poisson’s ratios,
respectively. The panel angles are chosen as α= 60 deg and β=
40 deg, with dimensions a= c= 1. For both the systems, we
impose displacement restraints as shown in Fig. 10 and the lateral
load is applied along the L′ direction at the free end. We consider
a total of four experiments involving deformation: (1) Extension
of EEEMME along the L′ direction. (2) Contraction of EEEMME
along the L′ direction. (3) Extension of MMMMME along the L′

direction. (4) Contraction of MMMMME along the L′ direction.
We seek to demonstrate the locking and transformable behavior
of the systems based on arguments of local-global kinematics pre-
sented in Sec. 3.4.

4.3 Results and Discussion. The initial folded state of the two
systems MMMMME and EEEMME is set to be ψ= 60 deg repre-
sented by points A and B, respectively in Fig. 11(a). Since
MMMMME has a negative global Poisson’s ratio, extension (con-
traction) of the L′ dimension should lead to extension (contraction)
of the W′ dimension as well. Similarly, due to the global positive
Poisson’s ratio of EEEMME, extension (contraction) of the L′

dimension should lead to contraction (extension) of the W′ dimen-
sion. Figure 11(a) shows that the numerically calculated global
dimensions during the uniaxial deformations of the two systems
are in agreement with the theoretically predicted values.
The table of elastic energy distribution shown in Fig. 11(b) dem-

onstrates that the deformations are primarily driven by folding about
the creases with almost no influence of bending and stretching of
panels. This shows that the Morph pattern is able to transform
from an arbitrary folded state (say A or B) to the transition state
(T in Fig. 11(a)) or extreme folded states (C or D in Fig. 11(a)),
through rigid folding alone. Once any hybrid Morph system trans-
forms to a transition state, it can virtually transform into any of the
other feasible hybrid states (see Fig. 6). Since the folding

Fig. 10 Plan view of the hybrid Morph pattern with 6×6 cells
showing the displacement restraints imposed on the nodes (ver-
tices) for the numerical simulations

(a) (b)

Fig. 11 (a) Theoretical and numerical comparison of the configuration path of theMMMMME and
EEEMME hybrid patterns. The initial folded states of MMMMME and EEEMME patterns are repre-
sented by points A and B, respectively, on the configuration path. The points C, D represent
the extreme folded states and T represents the transition state. (b) Various components of the
elastic energy stored in the hybrid origami system corresponding to the point of maximum
energy over the total deformation range.
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(a) (b)

(c) (d )

(e) (f )

Fig. 12 Numerical simulation of the uniaxial deformation of the hybrid Morph patterns. (a), (b) Initial folded state of the EEEMME

and MMMMME patterns. (c), (d) Final deformed state due to extension of the two patterns leading to locked and transformable
configurations for EEEMME and MMMMME, respectively. (e), (f) Final deformed state due to contraction of the two patterns
leading to transformable and locked configurations for EEEMME and MMMMME, respectively. In (c)–(f), the line structures repre-
sent the initial folded states shown in (a) and (b).
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deformations are reversible, it can be shown that the Morph pattern
is inter-transformable among all of its hybrid states through rigid
folding.
Figure 12 shows the initial and final folded states of the

EEEMME andMMMMME hybrid Morph systems during the uniax-
ial deformations. The results verify that it is possible to either lock
the cells of a hybrid Morph pattern within their configuration or to
transform them into the transition state depending on the type of
loading (tension/compression) applied on the system. Moreover,
the behavior of a hybrid system with globally positive Poisson’s
ratio is exactly opposite to that of the system with globally negative
Poisson’s in terms of the cells being transformable or locked in their
original vertex topology.
From the above discussion on Figs. 11 and 12, we can say that the

hybrid Morph system is capable of undergoing rigid kinematic
folding toward a transition state when subjected to extension or con-
traction (in the L′ direction) depending on whether the global Pois-
son’s ratio is negative or positive, respectively. Since the transition
state is a kinematic bifurcation point (see Fig. 7), the system can
access any of the kinematic branches for further folding from that
configuration. Therefore, the tessellated Morph structure is charac-
terized by reprogrammable kinematic branches as it can potentially
be made to switch between its branches in the parameter space.

5 Conclusion

We discussed the Morph pattern, and provided detailed explana-
tions to the intriguing features of the two-dimensional tessellations.
We showed that the Morph unit cells can be combined to form
either uniform or hybrid states of the Morph pattern. Further, we
explained how these states are inter-transformable through rigid
origami kinematics. We also proposed a new way to describe and
distinguish various configuration paths of the Morph pattern.
Finally, we derived the conditions for switching the sign of Pois-
son’s ratio of the Morph pattern and explained the mode-locking/
transformability features. We presented numerical simulations
based on non-linear origami mechanics to verify the theoretically
predicted mechanical behavior of the hybrid Morph pattern.

5.1 Future Directions. We foresee applications of the rigid-
foldable Morph pattern in terms of the ability to control (i) geometry
or spatial appearance of a system and (ii) “material” distribution in a
system. The former is related to the arrangement of the strips in dif-
ferent modes that could be useful in morphing structures for archi-
tectural or camouflage purposes. Since, the geometric arrangement
also modifies the symmetry in a system, we think that it could be
useful in topological metamaterials, which heavily depend on sym-
metry manipulation [33,34]. The latter aspect on material distribu-
tion has a much broader scope. The Eggbox and Miura modes
have contrasting mechanical properties (e.g., oppositely signed
Poisson’s ratios) and the Morph pattern has the kinematic ability
to re-distribute the strips of these modes in an arbitrary manner
and therefore can act as a designer material. Lattice systems with
such a feature could be useful as acoustic metamaterials [6]. Phys-
ical realization of the Morph pattern and its reprogrammable morph-
ing abilities could be pursued through advanced 3D printing
techniques [35] and smart materials. In the current paper, the repro-
gramming is achieved by manual operation. However, in the future,
this can be achieved, for example, using multiple stimuli-responsive
materials [36,37] at the hinges, so that different external stimuli
would trigger folding into different branches.
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