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REGULARIZATION OF LINEAR ILL-POSED

PROBLEMS INVOLVING MULTIPLICATION

OPERATORS

PETER MATHÉ, M. THAMBAN NAIR, AND BERND HOFMANN

Abstract. We study regularization of ill-posed equations involv-
ing multiplication operators when the multiplier function is posi-
tive almost everywhere and zero is an accumulation point of the
range of this function. Such equations naturally arise from equa-
tions based on non-compact self-adjoint operators in Hilbert space,
after applying unitary transformations arising out of the spectral
theorem. For classical regularization theory, when noisy observa-
tions are given and the noise is deterministic and bounded, then
non-compactness of the ill-posed equations is a minor issue. How-
ever, for statistical ill-posed equations with non-compact operators
less is known if the data are blurred by white noise. We develop a
regularization theory with emphasis on this case. In this context,
we highlight several aspects, in particular we discuss the intrinsic
degree of ill-posedness in terms of rearrangements of the multiplier
function. Moreover, we address the required modifications of clas-
sical regularization schemes in order to be used for non-compact
statistical problems, and we also introduce the concept of the ef-
fective ill-posedness of the operator equation under white noise.
This study is concluded with prototypical examples for such equa-
tions, as these are deconvolution equations and certain final value
problems in evolution equations.

1. Introduction, background

This study is devoted to multiplication operators in the context of
ill-posed linear operator equations

(1) A x = y

with bounded self-adjoint positive operators A: H → H mapping in the
(separable) Hilbert space H and possessing a non-closed range R(A).
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We fix a measure space (S,Σ, µ) on the set S with a σ-finite measure µ
defined on the σ-algebra Σ, and consider instead of (1) the equation

(2) b(s)f(s) = g(s), s ∈ S

in the setting of the Hilbert space L2(S,Σ, µ). In particular, the equa-
tion above is to hold µ-almost everywhere (µ-a.e.). This multiplication
setup is prototypical based on the following version of the Spectral The-
orem.

Fact (see e.g. [7] for a detailed discussion). For every bounded self-
adjoint operator A: H → H there is a σ-finite measure space (S,Σ, µ),
a real-valued essentially bounded function b ∈ L∞(S,Σ, µ) and an isom-
etry U : H → L2(S,Σ, µ) such that U AU−1 = Mb, where Mb is the
multiplication operator, assigning f ∈ L2(S,Σ, µ) 7→ b ·f ∈ L2(S,Σ, µ).

Since within this study the linear operator A is assumed to be
bounded self-adjoint and positive, we have a constant b > 0 such that
the multiplier function b in (2) obeys the inequalities 0 < b(s) ≤ b < ∞
for almost all s ∈ S. However, as a consequence of the ill-posedness of
equation (1), which implies that zero is an accumulation point of the
spectrum of A, the function b must have essential zeros, which means
that essinfs∈S b(s) = 0.
So, the recovery of the element x ∈ H in (1) from noisy data

(3) yδ := Ax+ δη

of the right-hand side y carries over to the reconstruction of the solution
f(s), s ∈ S, of equation (2) from noisy data

(4) gδ := Uyδ = b · (Ux) + δ(Uη)

of the right-hand side g = U(Ax). The variable η turns to the noise ξ :=
Uη, and further properties will be given in Definitions 4 and 5 below.
The analysis will be different for bounded deterministic noise and for
statistical white noise.
Thus, we consider the reconstruction of the function f in the Hilbert

space L2(S,Σ, µ), from the knowledge of the noisy data

(5) gδ(s) := b(s)f(s) + δξ(s), s ∈ S,

where b ∈ L∞(S,Σ, µ) is given, and we assume that δ > 0 denotes the
noise level.
Statistical inverse problems under white noise and the reduction to

multiplication problems as (5) were discussed in [2]. Multiplier equa-
tions as in (2) were studied in [8] from the regularization point of view
for S = (0, 1) and µ being the Lebesgue measure, which we throughout
will denote by λ.
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The outline of the remainder of this paper is as follows: In Section 2
we shall describe the framework for the analysis, and we will also pro-
vide several auxiliary results that might be of interest. Section 3 is
devoted to the error analysis. The main results, presented in Propo-
sitions 3 & 4, yield estimations from above of the regularization error
under bounded deterministic and white noise, respectively. Finally,
Section 4 exhibits that the well-known (and typically non-compact)
deconvolution and final value problems fit the considered framework
after turning from operator equations to the current setup by means of
the Fourier transform.

2. Notation and auxiliary results

In this section we shall first discuss the impact of properties of the
multiplier function b on the intrinsic difficulty of the inverse problem.
Then we turn to introducing the concept of solution smoothness. Fi-
nally, we introduce the concept of regularization schemes.

2.1. Degree of ill-posedness incurred by the multiplier func-

tion b. As was mentioned in Section 1 ill-posedness of the multipli-
cation problem (2) is a consequence of having zero as accumulation
point of the essential range of b. For the character of ill-posedness,
however, the location of the essential zeros of the function b should
not be relevant. Therefore, a normalization of the function b in (2) is
desirable. In this context, the increasing rearrangement of b was con-
sidered in the study [8]. For such setting we let b∗ denote the increasing
rearrangement

b∗(t) := sup {τ : µ({s : b(s) ≤ τ}) ≤ t} , t > 0.

However, this approach is limited to underlying S and µ with finite
measure values µ(S).
Another normalization is the decreasing rearrangement b∗ of the mul-

tiplier function b, which is based on the distribution function db, defined
by db(t) := µ{s ∈ S : b(s) > t} for t > 0. Then we let the decreasing
rearrangement of b be given as

b∗(t) := inf {τ > 0 : db(τ) ≤ t} , 0 < t < µ(S).

Note that b∗ is defined on [0, µ(S)), equipped with the Lebesgue mea-
sure λ. In the context of ill-posed equations this normalization was
first used in [6].
We also notice that for infinite measures, that is, for µ(S) = ∞, the

function b∗ may have infinite value. Therefore we confine to the case
of b satisfying the following assumption.
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Assumption 1. If µ(S) = ∞ then the function b is assumed to vanish
at infinity, in the sense that µ{s ∈ S : b(s) > t} is finite for every
t > 0.

Remark 1. Assumption 1 is important to guarantee the existence of a
decreasing rearrangement b∗ which is equimeasurable with b, meaning
that it has the same distribution function as b, i.e.,

λ({τ : b∗(τ) > t}) = µ({s ∈ S : b(s) > t}), t > 0.

The characterization of cases when the function b∗ is equimeasurable
with b was first given by Day in [4], and for infinite measures µ(S) = ∞
the Assumption 1 is known to be sufficient to guarantee this, see [3,
Chapt. VII] for details. For calculus with decreasing rearrangements
we also refer to [1, Chapt. 2]. Moreover, functions vanishing at infinity
are important in Analysis, see [11, Chapt. 3].

For the subsequent analysis we shall first assume that our focus is
on the Lebesgue measure µ = λ, either on [0,∞) for the decreasing
rearrangement, or on some bounded interval [0, a] for the increasing
rearrangement. In such case, Σ denotes the corresponding Borel σ-
algebra. In fact, one may take a := ‖b‖∞. The corresponding analysis
extends to measures µ ≪ λ with density dµ

dλ
which obey 0 < c ≤ dµ

dλ
≤

C̄ < ∞. If this is the case then it is easily seen that the increasing
rearrangements b∗µ and b∗λ of b corresponding to µ and λ, respectively,
satisfy

b∗µ(ct) ≤ b∗λ(t) ≤ b∗µ(C̄t), t > 0,

Similar argumants apply to the decreasing rearrangement. Thus, the
asymptotic results as these will be established for the Lebesgue mea-
sure λ find their counterparts for other measures µ.
The first observation concerns the decreasing rearrangement. For

M > 0 we assign the truncated function b̃M(t) := b(t)χ(M,∞)(t), and

the shifted (to zero) version bM (t) := b̃M (t+M).

Proposition 1. We have that

(bM )∗ (t) =
(

b̃M

)

∗
(t) ≤ b∗(t), t > 0.

Proof. The equality is a result of the translation invariance of the
Lebesgue measure, and the inequality follows from the fact that the
decreasing rearrangement is order-preserving. �

Thus, the decreasing rearrangement does not take into account any
zeros which are present on bounded domains. Only the behavior at
infinity is reflected.
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For the increasing rearrangement we shall follow a constructive ap-
proach. Here we shall assume that the function b is piece-wise contin-
uous and has finitely many zeros. Specifically, we assume a represen-
tation

(6) b(s) =
∑

j∈A+

bj(s− sj) +
∑

j∈A−

bj(sj − s), 0 ≤ s ≤ a,

where

(i) the reals sj (j = 1, . . . , m) are the (distinct) locations of the
zeros,

(ii) for each j = 1, . . . , m we have that bj(0) = 0, and there is a
neighborhood of zero [0, aj) such that

• bj : [0, aj] → R
+, j = 1, . . . , m is continuous and strictly

increasing.
The function b̄ satisfies essinf b̄ > 0.

(iii) The set A = {1, . . . , m} = A+ ⊔ A− is decomposed into two
disjoint subsets A+ and A−, possible empty, and

(iv) there is one function, say bk such that its inverse b−1
k dominates1

all other functions b−1
j , i.e., b−1

j � b−1
k .

Thus, the function b is a superposition of a function bounded away
from zero, and of increasing and decreasing parts. We also stress that
domination as in item (iv) does not extend from functions f−1, g−1 to
the inverse functions f, g unless additional assumptions are made, we
refer to [10] for a discussion.
Under the above assumptions we state the following result.

Proposition 2. Let the function b be as in the equation (6), and let bk
be the function from item (iv) above. Then there is a constant C ≥ 1
such that

bk(s) = (bk)
∗ (s) ≥ b∗(s) ≥ (bk)

∗
( s

Cm

)

= bk

( s

Cm

)

,

for sufficiently small s > 0.

Proof. Clearly, the function bk is increasing near zero, such that it
coincides with its increasing rearrangement, which explains the outer
equalities.

1We say that a (non-negative) function g dominates f , and write f � g, if there
are a neighborhood [0, ε) and a constant k > 0 such that f(t) ≤ kg(t), 0 ≤ t ≤ ε.
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To establish the inner inequalities we argue as follows. Recall that
we need to control

λ(b ≤ τ) = λ



b̄(s) +
∑

j∈A+

bj(s− sj) +
∑

j∈A−

bj(sj − s) ≤ τ



 .

If τ > 0 is small enough then, by item (ii) the contribution of b̄ is
neglected, and the sub-level sets {bj ≤ τ} (j = 1, . . . , m) are disjoint
intervals, which in turn yields

λ(b ≤ τ) =
∑

j∈A+

λ(bj(s− sj) ≤ τ) +
∑

j∈A−

λ(bj(sj − s) ≤ τ)

=
∑

j∈A+

b−1
j (τ) +

∑

j∈A−

b−1
j (τ)

=
∑

j∈A

b−1
j (τ).

By the domination assumption from item (iv) we find a constant C ≥ 1
such that

(7) b−1
k (τ) ≤

∑

j∈A

b−1
j (τ) ≤ Cmb−1

k (τ).

Now, asking for the sup over all τ > 0 such that λ(b ≤ τ) ≤ s we find
that

bk(s) ≥ b∗(s) ≥ bk

( s

mC

)

,

for sufficiently small s > 0. This completes the proof. �

The above proposition asserts (heuristically) that the part in the
decomposition of b in (6) which has the highest order zero determines
the asymptotics of the increasing rearrangement.

2.2. Solution smoothness. In order to quantify the error bounds,
we need to specify the way in which the solution smoothness will be
expressed. This is given in terms of source conditions based on index
functions. Here, and throughout, by an index function, we mean a
strictly increasing continuous function ϕ : (0,∞) → [0,∞) such that
limt→+0 ϕ(t) = 0.

Definition 1 (source condition). A function f ∈ L2(S,Σ, µ) obeys a
source condition with respect to the index function ϕ and the multiplier
function b if

f(s) = [ϕ(b)](s)v(s) := ϕ(b(s))v(s), s ∈ S, µ− a.e.

with ‖v‖L2(S,Σ,µ) ≤ 1.
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Remark 2. Here, we briefly discuss the meaning of source conditions as
given in Definition 1. Let the operator A and the multiplication opera-
torMb be related as described in the introduction. Then it is clear from
the relation between the noisy data representations (3) and (4), that a
source condition f = Ux = ϕ(b)v, ‖v‖L2(S,Σ,µ) ≤ 1 yields the represen-

tation x = ϕ(A)w with w := U−1v ∈ H and ‖w‖H = ‖v‖L2(S,Σ,µ) ≤ 1.
This is the standard form of general smoothness in terms of source
conditions, given with respect to the forward operator A from (3),
see [13, 14].

It is interesting to relate this to ‘classical’ smoothness in the sense of
Hilbertian Sobolev spaces Hp(S, µ). Precisely, for smoothness parame-
ter p > 0 we letHp(S, µ) be the Hilbert space of all functions f : S → R

such that

‖f‖p :=
(
∫

S

|f(s)|2
(

1 + |s|2
)p

dµ(s)

)1/2

< ∞.

The question is, under which conditions this type of smoothness can
be expressed in terms of source conditions as in Definition 1. We start
with the following technical result.

Lemma 1. Suppose that µ(S) = ∞ and that the function b vanishes at
infinity (cf. Assumption 1). Moreover, let there exist positive constants
M < ∞ and c > 0 such that

b(s) ≥ c, for |s| ≤ M

and

(8) µ ({x, b(x) > b(s)}) ≍ |s| , for |s| > M.

Then the function ϕ∗, given for sufficiently small t > 0 as

(9) ϕ∗(t) :=
1

µ ({x, b(x) > t}) ,

constitutes an index function. Moreover, we have the asymptotics

(10) ϕ∗(b(s)) ≍
1

|s| as |s| → ∞.

Example 1 (power-type decay on [0,∞)). For κ > 0 we consider the
functions f ∈ L2([0,∞), µ) with Lebesgue measure µ defined as

b(s) :=
1

1 + s1/κ
, 0 ≤ s < ∞.



8 PETER MATHÉ, M. THAMBAN NAIR, AND BERND HOFMANN

Then the assumptions of Lemma 1 are fulfilled, and for sufficiently
small t > 0, we have in this case

µ ({x, b(x) > t}) =
(

1− t

t

)κ

and hence ϕ∗(t) ≍ tκ as t → +0.

Corollary 1. Under the assumptions of Lemma 1 consider the func-
tion ϕ∗ as in (9). The function f belongs to Hp(S, µ) if and only if
it obeys a source condition with respect to (a multiple of) the func-
tion ϕp

∗(t), t > 0.

Proof. Under the assumptions of Lemma 1 for the function b there are
constants 0 < c < C < ∞ such that

(11) c ≤ inf
s∈S

(

1 + |s|2
)

ϕ2
∗ (b(s)) ≤ sup

s∈S

(

1 + |s|2
)

ϕ2
∗ (b(s)) ≤ C.

This is easily seen for |s| ≤ M , as given in Lemma 1. For |s| > M we
see that

(

1 + |s|2
)

ϕ2
∗ (b(s)) ≍

(

1 + |s|2
)

|s|−2 .

But for |s| ≥ M we have that 1 ≤
(

1 + |s|2
)

|s|−2 ≤ (1 +M2)M−2,
where the right hand side bound follows from the monotonicity of x 7→
(1+x)/x, x > 0, and this proves (11). Now, suppose that f ∈ Hp(S, µ).

Consider the element w(s) := f(s)
ϕp
∗
(b(s))

, where ϕ∗ is as above. It is enough

to show that w ∈ L2(S, µ), i.e., that it serves as a source element. We
have that
∫

S

|w(s)|2 µ(s) ≤
∫

|f(s)|2
(

1 + |s|2
)p

dµ(s) sup
s∈S

1
(

1 + |s|2
)p |ϕp

∗(b(s))|2

= ‖f‖2p sup
s∈S

1
[(

1 + |s|2
)

|ϕ2
∗(b(s))|

]p ,

and the latter is finite by (11). On the other hand, under a source
condition for f we can bound
∫

S

|f(s)|2
(

1 + |s|2
)p

dµ(s) ≤ ‖w‖L2(S,Σ,µ) sup
s∈S

[(

1 + |s|2
) ∣

∣ϕ2
∗(b(s))

∣

∣

]p
,

where the supremum is again bounded by (11). The proof is complete.
�

2.3. Regularization. For reconstruction of f(s), s ∈ S, we shall use
regularization schemes Φα : [0,∞) → R

+, parametrized by α > 0, see
e.g. [13].
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Definition 2 (regularization scheme). A family (Φα) of real valued
Borel-measurable functions Φα(t), t ≥ 0, α > 0, is called a regulariza-
tion if there are constants C−1 > 0 and C0 ≥ 1 such that

(I) for each t > 0 we have tΦα(t) → 1 as α → 0,

(II) |Φα(t)| ≤ C−1

α
for α > 0, and

(III) the function Rα(t) := 1 − tΦα(t), which is called a residual
function, satisfies |Rα(t)| ≤ C0 for all t ≥ 0 and α > 0.

For the case of statistical noise, additional assumptions have to be
made. These will be introduced and discussed later.
We apply a regularization (Φα) to a function b in the way

[Φα(b)](s) := [Φα ◦ b](s) = Φα(b(s)), s ∈ S.

Having chosen a regularization Φα, and given data gδ we consider
the function

(12) f δ
α(s) := [Φα(b)](s)g

δ(s), s ∈ S,

or in short f δ
α := Φα(b)g

δ, as a candidate for the approximate solution.
For the subsequent error analysis the following property of a regu-

larization proves important, again we refer to [13, 16].

Definition 3 (qualification). Let ϕ be any index function. A regular-
ization (Φα) is said to have qualification ϕ if there is a constant Cϕ > 0
such that

sup
t≥0

|Rα(t)|ϕ(t) ≤ Cϕϕ(α), α > 0.

Example 2 (spectral cut-off). Let the regularization be given as

Φc-o
α (t) :=

{

1
t
, t > α

0, else.

This obeys the requirements of regularization with C−1 = 1. It has
arbitrary qualification. That is, for any index function, the requirement
in Definition 3 will be satisfied. The corresponding residual function
is Rα = χ{t: t≤α}, so that for a function b on S, Rα(b) = χ{s: b(s)≤α}.

Example 3 (Lavrent’ev regularization). This method corresponds to
the function

Φα(t) :=
1

t+ α
, t ≥ 0, α > 0.

Lavrent’ev regularization is known to have at most ‘linear’ qualification.
More generally, index functions ϕ(t) := tν , t > 0, are qualifications
whenever the exponent ν satisfies 0 < ν ≤ 1.
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For infinite measures µ, and under white noise, it will be seen that it
is important that the regularization (Φα) will vanish for small 0 ≤ t ≤ α
This is formalized in

Assumption 2. For each α > 0 the function Φα vanishes on the
set {t ≥ 0 : t ≤ α}.
This assumption holds true for spectral cut-off, but it is not fulfilled

for most other regularizations. However, we can modify any regular-
ization to obey Assumption 2.

Lemma 2. Let (Φα) be any regularization with constants C−1 and C0.
Assign

Φ̃α(t) := χ(α,∞)(t)Φα(t), t > 0.

Then
(

Φ̃α

)

is a regularization scheme with same constants C−1 and C0.

Moreover, an index function ϕ is a qualification of (Φα) if and only if

it is a qualification of
(

Φ̃α

)

with constant C̃ϕ = max {Cϕ, C0}.

Proof. We verify the properties. For t > α the regularizations Φ̃α

and Φα coincide, thus item (I) holds true. Also,
∣

∣

∣
Φ̃α(t)

∣

∣

∣
≤ |Φα(t)|,

such that we can let C̃0 := C0. Next, it is easy to check that R̃α(t) =
χ(a,∞)(t)Rα(t)+χ(0,a](t), which allows us to prove the second assertion,
after recalling that C0 ≥ 1.

Finally, we bound
∣

∣

∣
R̃α(t)

∣

∣

∣
ϕ(t). Plainly, if t ≤ α then

∣

∣

∣
R̃α(t)

∣

∣

∣
ϕ(t) ≤ C0ϕ(α).

Otherwise, for t > α both functions R̃α and Rα coincide, This com-
pletes the proof. �

Therefore, we may tacitly assume that the regularization of choice
is accordingly modified to meet Assumption 2.

3. Error analysis

As stated in the introduction, we shall discuss error bounds, both
for the classical setup of bounded deterministic noise, as well as for
statistical white noise, to be defined now.

Definition 4 (deterministic noise). The noise term ξ = ξ(s) is norm-
bounded by one, i.e., ‖ξ‖L2(S,Σ,µ) ≤ 1.

We shall occasionally adopt the notation ξs := ξ(s).
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Definition 5 (white noise). There is some probability space (Ω,F , P )
such that the family {ξs}s∈S constitutes a centered stochastic process2

with Eξs = 0 for all s ∈ S, and E |ξs|2 = 1, s ∈ S.

We return to the noisy equation (5). Writing (the unknown) fα(s) :=
[Φα(b)](s)g(s), s ∈ S, by (5) and (12), we obtain

f − f δ
α = [f − Φα(b)(g)]− [Φα(b)(g

δ)− Φα(b)(g)]

= [f − Φα(b)(bf)]− [Φα(b)(g
δ)− Φα(b)(g)]

= [I − Φα(b)b]f − δΦα(b)ξ.

Thus, we have the decomposition of the error of the reconstruction f δ
α

in a natural way, by using the residual function Rα, as

(13) f − f δ
α = Rα(b)f − δΦα(b)ξ,

The term Rα(b)f is completely deterministic, the noise properties are
inherent in Φα(b)ξ, only.

3.1. Bounding the bias. The (noise-free) term Rα(b)f in the decom-
position (13) gives rise to the bias, defined as

bf (α) := ‖Rα(b)f‖L2(S,Σ,µ) ,

and it is called the profile function in [9]. We shall assume that the
solution admits a source condition as in Definition 1, and that the
chosen regularization has this as a qualification so that

(14) ‖Rα(b)f‖L2(S,Σ,µ) ≤ ‖Rα(b)ϕ(b(s))v(s)‖L2(S,Σ,µ)

≤ ‖Rα(b)ϕ(b(s))‖∞ ‖v‖L2(S,Σ,µ) ≤ Cϕϕ(α).

We briefly highlight the case when µ is a finite measure. It is to be
observed that if f ∈ L∞(S, µ), then

(15) ‖Rα(b)f‖L2(S,Σ,µ) ≤ ‖Rα(b)‖L2(S,Σ,µ) ‖f‖L∞(S,µ) .

Example 4. For Lavrent’ev regularization, spectral cut-off, and with
function b(s) := sκ, s > 0, with κ > 0, we see that

‖Rα(b)‖2L2(S,Σ,µ) =

{

α2
∫

(α + sκ)−2dµ(s), for Lavrent’ev regularization

µ ({s : sκ ≤ α}) , for spectral cut-off.

From this, we conclude that for Lavrent’ev regularization the bound
in (15) is finite only if κ > 1/2, whereas for spectral cut-off this holds

2For each s ∈ S we have a random variable ξs : Ω → R.
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for all κ > 0. If µ is the Lebesgue measure λ on (0, 1), then we find
that

‖Rα(b)‖L2((0,1),Σ,λ) ≤ Cα1/(2κ)

in either case.
A similar bound, relying on Tikhonov regularization was first given

in [8, Theorem 4.5].

3.2. Error under deterministic noise. Although the focus of this
study is on statistical ill-posed problems, we briefly sketch the corre-
sponding result for bounded deterministic noise as introduced in Defi-
nition 4. In this case we bound the error, starting from the decompo-
sition (13), by using the triangle inequality, for α > 0 as

(16)
∥

∥f − f δ
α

∥

∥

L2(S,Σ,µ)
≤ ‖Rα(b)f‖L2(S,Σ,µ) + δ ‖Φα(b)ξ‖L2(S,Σ,µ) .

Now, using the item (2) in Definition 2, we obtain a bound for the noise
term as

δ ‖Φα(b)ξ‖L2(S,Σ,µ) ≤ δ sup
s≥0

|Φα(b(s))| ≤ C−1
δ

α
, α > 0.

This together with the estimate (14) for the noise free term gives the
following

Proposition 3. Suppose that the solution f satisfies the source condi-
tion as in Definition 1, and that a regularization (Φα) is chosen with
qualification ϕ. Then

∥

∥f − f δ
α

∥

∥

L2(S,Σ,µ)
≤ Cϕϕ(α) + C−1

δ

α
, α > 0.

The a priori parameter choice α∗ = α∗(ϕ, δ) from solving the equation

(17) αϕ(α) = δ

yields the error bound

(18)
∥

∥f − f δ
α

∥

∥

L2(S,Σ,µ)
≤ 2max {Cϕ, C−1}ϕ(α∗),

uniformly for functions f which obey a source condition with respect to
the index function ϕ.

3.3. Error under white noise. Here we assume that the underlying
noise is as in Definition 5. Thus, since ξ is a random variable, it is a
function of ω ∈ Ω so that f δ

α also a function of ω ∈ Ω. Hence, for each
fixed ω ∈ Ω, from (13) we obtain
∥

∥f − f δ
α(ω)

∥

∥

2

L2(S,Σ,µ)
= ‖Rα(b)f‖2L2(S,Σ,µ) + 2δ〈Rα(b)f,Φα(b)ξ〉(19)

+δ2
∫

S

|Φα(b(s))|2 |ξs(ω)|2 dµ(s).
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The error of the regularization Φα under white noise is measured in
RMS sense, that is, it is defined as

(20) e(f,Φα, δ)
2 := E

∥

∥f − f δ
α

∥

∥

2

L2(S,Σ,µ)
,

where the expectation is with respect to the probability P governing
the noise process. From the properties of the noise we deduce from (19)
the bias–variance decomposition
(21)

E
∥

∥f − f δ
α

∥

∥

2

L2(S,Σ,µ)
= ‖Rα(b)f‖2L2(S,Σ,µ)+δ2E

∫

S

|Φα(b(s))| |ξs(ω)|2 dµ(s).

The first summand above, the squared bias, is treated as in § 3.1. It
remains to bound the variance, that is, the second summand in (21).
By interchanging expectation and integration we deduce that

E

∫

S

|Φα(b(s))| |ξs(ω)|2 dµ(s) =

∫

S

|Φα(b(s))|2 E |ξs(ω)|2 dµ(s)(22)

=

∫

S

|Φα(b(s))|2 dµ(s)

For the above identity it is important to have the right hand side finite;
that is, Φα ◦ b ∈ L2(S,Σ, µ).
In the subsequent analysis we shall distinguish the cases of finite

measure µ, i.e., when µ(S) < ∞ and the infinite case µ(S) = ∞.
Plainly, if the measure µ is finite then we have from Definition 2 the

uniform bound
∫

S

|Φα(b(s))|2 dµ(s) ≤ C2
−1

α2
µ(S), α > 0.

Otherwise, this needs not be the case as highlights the following

Example 5. Consider the multiplication operator

g := b · f, f ∈ L2(R, λ),

where

b(s) =











0, s < 0,

s, 0 ≤ s ≤ 1,

1, s > 1,

with λ denoting the Lebesgue measure on R.
Let (Φα) be an arbitrary regularization. From Definition 2 we know

that Φα(1) → 1 as α → 0, and hence there is α0 > 0 such that Φα(1) ≥
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1/2 for 0 < α ≤ α0. Therefore, for each s ≥ 1 and 0 < α ≤ α0 we have
that Φα(b(s)) = Φα(1) ≥ 1/2, and

∫

R

|Φα(b(s))|2 dλ(s) ≥
∫ β

1

|Φα(b(s))|2 dλ(s) ≥ 1

4
(β − 1)

for every β > 1 so that the integral
∫

R
|Φα(b(s))|2 dλ(s) is not finite.

Consequently, the multiplication equation with the above b(·) cannot
be solved with arbitrary accuracy (as δ → 0) under white noise by
using any regularization.

Example 6 (Lavrent’ev regularization, continued). Suppose that µ(S) =
∞, and that b vanishes at infinity. For Lavrent’ev regularization we
then see that

∫

S

|Φα(b(s))|2 dµ(s) ≥
∫

{s, b(s)≤α}

1

(α + b(s))2
dµ(s)

≥ 1

4α2
µ ({s, b(s) ≤ α}) = ∞.

However, under Assumption 2 we have that
∫

S

|Φα(b(s))|2 dµ(s) =

∫

{b>α}

|Φα(b(s))|2 dµ(s),

and this will be finite for functions b vanishing at infinity.
We recall the decreasing rearrangement b∗ of the multiplier func-

tion b. Since both b and b∗ share the same distribution function we can
use the transformation of measure formula to see for any (measurable)
function H : [0, ‖b‖∞) → R that

∫

[0,µ(S))

|H(b∗(t))|2 dλ(t) =

∫

S

|H(b(s))|2 dµ(s)

In particular this holds for spectral cut-off as in Example 2, used
as H(s) := Φc-o

α (b(s)χ{b(s)>α}, yielding

(23)

∫

{b∗>α}

1

|b∗(t)|2
dλ(t) =

∫

{b>α}

1

|(b(s))|2
dµ(s).

We now observe that from the definition of regularization functions, see
Definition 2 we have for arbitrary regularization Φα that Φα(t) ≤ C0+1

t
,

and hence that
∫

{b>α}

|Φα(b(s))|2 dµ(s) ≤ (C0 + 1)2
∫

{b>α}

1

|(b(s))|2
dµ(s)

= (C0 + 1)2
∫

{b∗>α}

1

|b∗(t)|2
dλ(t).
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This gives rise to the following

Definition 6 (statistical effective ill-posedness). Suppose that we are
given the function b > 0 on the measure space (S,F , µ). For a func-
tion b that vanishes at infinity we call the function

(24) D(α) :=

(
∫

{b∗>α}

1

|b∗(t)|2
dλ(t)

)1/2

, α > 0,

the statistical effective ill-posedness of the operator.

Example 7 (Spectral cut-off, counting measure). Suppose that S = N

and µ is the counting measure assigning µ({j}) = 1, j ∈ N, and that
the function j 7→ b(j) is non-increasing with limj→∞ b(j) = 0. Then it
vanishes at infinity, and for each α > 0 there will be a maximal finite
number Nα with b(Nα) ≥ α > b(Nα + 1).
In this case the statistical effective ill-posedness evaluates as

D(α) =

(

Nα
∑

j=1

1

b2j

)1/2

, α > 0.

This corresponds to the ’degree of ill-posedness for statistical inverse
problems’ as given in [12]. The bias-variance decomposition from (19)
is known to be order optimal, cf. [5].

The following bound simplifies the statistical effective ill-posedness,
and can often be used.

Lemma 3. Let Φα be any regularization. Under Assumptions 1 and 2
we have that

D(α) ≤ 1

α

√

µ({s : b(s) > α}), α > 0,

and
∫

S

|Φα(b(s))|2 dµ(s) ≤ C2
−1

α2
µ ({b > α})

Proof. The result follows from Definition 2. �

We summarize the preceding discussion as follows. Suppose that the
measure µ(S) = ∞, and that assumptions 1 and 2 hold true. The error
decomposition (19) then yields
(25)

E
∥

∥f − f δ
α

∥

∥

2

L2(S,Σ,µ)
≤ ‖Rα(b)f‖2L2(S,Σ,µ) + δ2(C0 + 1)2D2(α), α > 0.

Using this we obtain the following analog of Proposition 3.
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Proposition 4. Suppose that the solution f satisfies the source con-
dition as in Definition 1, and that a regularization Φα is chosen with
qualification ϕ. Suppose, in addition, that Assumptions 1 and 2 hold.
Then, for the case of white noise ξ,

E
∥

∥f − f δ
α

∥

∥

2

L2(S,Σ,µ)
≤ C2

ϕϕ(α)
2 + δ2(C0 + 1)2D2(α), α > 0.

The a priori parameter choice α∗ = α∗(ϕ,D, δ) from solving the equa-
tion

(26) ϕ(α) = δD(α)

yields the error bound

(27)
(

E
∥

∥f − f δ
α

∥

∥

2

L2(S,Σ,µ)

)1/2

≤
√
2max {Cϕ, (C0 + 1)}ϕ(α∗).

Proof. Follows from Definitions 3 and 6, (21), and (22). �

4. Operator equations in Hilbert space

As outlined in the introduction the setup of multiplication operators
as analyzed here is prototypical for general bounded self-adjoint posi-
tive operators A: H → H mapping in the (separable) Hilbert space H
due to the associated Spectral Theorem (cf. [7]), stated as Fact. It
is an advantage of our focus on multiplication operators that we can
include compact linear operators and non-compact ones as well.

Example 8 (Compact operator). It was emphasized in [2] that the
case of a compact positive self-adjoint operator A yields a multiplier
version with S = N, Σ = P(N), and µ being the counting measure, i.e.,
L2(S,Σ, µ) = ℓ2, and multiplier b := (bj)j∈N, where bj denotes the jth

eigenvalue taking into account (finite) multiplicities. White noise in ℓ2

is given by a sequence of i.i.d. random variables ξ1, ξ2, . . . with mean
zero and variance one.

In the subsequent discussion we shall highlight the impact of the
previous results, presented for equations with multiplication operator
for specific operator equations with non-compact operator A.

4.1. Deconvolution. Suppose that data yδ are a real-valued function
on R and given as

(28) yδ(t) = (r ∗ x) (t) + δη(t), t ∈ R.

In the above, (r ∗ x) (t) :=
∫

R
r(u − t)x(u) du for t ∈ R. The noise η

is assumed to be symmetric around zero and (normalized) weighted
white noise η(t) := w(t)dWt, t ∈ R, with a square integrable weight
normalized to ‖w‖L2(R) = 1. The goal is to find approximately the
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function x(t), t ∈ R, based on noisy data yδ. This problem is usually
called deconvolution.

4.1.1. Turning to multiplication in frequency space. In order to transfer
the deconvolution task into the multiplication form (2) with noisy data
(4) we use the Fourier transform to get

(29) gδ(s) := ŷδ(s) = r̂(s)x̂(s) + δη̂(s), s ∈ R.

We make the following assumptions. First, we assume that the ker-
nel function r ∈ L1(R) is non-negative, symmetric around zero, and
that u 7→ r(u), u > 0 is non-increasing. In this case its Fourier trans-
form b(s) := r̂(s) is non-negative and real valued. Also, b ∈ C0(R), and
zero is an accumulation point of the essential range of b. Thereby the
corresponding multiplication operator does not have closed range. We
denote f(s) = x̂(s), s ∈ R. Then it is easily checked that the Fourier
transform ξ(s) := η̂(s) is centered Gaussian, and Eξ(s)ξ̄(s′) = 0 when-
ever s 6= s′. By the properties of the noise, as described before, the
variance is given as

E |ξ(s)|2 =
∫

R

|w(u)|2 du = 1.

Thus we arrive at the multiplication equation (29) as in Section 1.

4.1.2. Relation to reconstruction of stationary time series. Historically,
the deconvolution problem was first studied by Wiener in [17]. In that
context the solution f in (5) is a stationary time series fs(ω) with

(constant) average signal strength Sf := E |f(s)|2. Then we may look
for a (real valued) multiplier h(s), s ∈ S such that f δ(s) := h(s)gδ(s)
is a MISE estimator, i.e., it minimizes (point-wise) the functional

(30) EfEξ

∣

∣f δ(s)− f(s)
∣

∣

2
, s ∈ S.

Assuming that the noise ξ(s) is independent from the signal f(s) the
above minimization problem can be rewritten as

EfEξ

∣

∣f δ(s)− f(s)
∣

∣

2
= |1− h(s)b(s)|2 Sf + |h(s)|2 E |ξ(s)|2 , s ∈ S.

The minimizing function h(s) (in the general complex valued case, and
with b̄ denoting the complex conjugate to b) has the form

(31) h(s) :=
b̄(s)Sf

|b(s)|2 Sf + δ2
=

b̄(s)

|b(s)|2 + δ2

sf

.

This approach results in the classical Wiener Filter, see [17]. Notice
that the quotient

√

Sf/δ is the signal-to-noise ratio, a constant which
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is unknown, thus replacing δ2/Sf by α we arrive at the reconstruction
formula

f δ(s) :=
b̄(s)

α + |b(s)|2
gδ(s), s ∈ R,

being the analog to Tikhonov regularization.
However, since here we assume b to be real and positive, one may

propose the Lavrent’ev approach resulting in

(32) f δ(s) :=
1

α + b(s)
gδ(s), s ∈ R,

and hence to the regularization scheme Φα(t) := 1/(α+t), α > 0, t > 0
as introduced in § 2. Other regularization schemes also apply.

4.2. Final value problem. In the final value problem (FVP), also
known as backward heat conduction problem associated with the heat
equation

(33)
∂

∂t
u(x, t) = c2∆u(x, t), x ∈ Ω, 0 < t < τ,

one would like to determine the initial temperature f0 := u(·, 0), from
the knowledge of the final temperature fτ := u(·, τ) . Here, the do-
main Ω is in R

d. This problem is known to be ill-posed.
It can be considered as an operator equation with multiplication

operator. A similar FVP was considered in the recent study [15].

4.2.1. Ω = R
d. In this case, on taking Fourier transform of the func-

tions on both sides of equation (33) , we obtain

∂

∂t
û(s, t) = −c2|s|2û(s, t), s ∈ R

d, 0 < t < τ.

For each fixed s ∈ Ω, the above equation is an ordinary differential
equation, and hence the solution û(s, t) is given by

û(s, t) = e−c2t|s|2 f̂0(s), s ∈ R
d,

where f0(x) := u(x, 0), x ∈ R
d. In particular, with t = τ , we have

û(s, τ) = e−c2τ |s|2f̂0(s), s ∈ R
d.

Taking

f(s) := f̂0(s), g(s) := f̂τ (s), b(s) := e−c2t|s|2,

the above equation takes the form

(34) b(s)f(s) = g(s), s ∈ R
d.
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Here, one may assume that the actual data g(·) belongs to ∈ L2(Rd).
The problem is to determine the function f(·) ∈ L2(Rd) satisfying
multiplication operator equation (34).

We may recall that the map h 7→ ĥ is a bijective linear isometry from
L2(Rd) into itself. Therefore, if f δ

τ is a noisy data, then

‖fτ − f δ
τ ‖L2(Rd) = ‖g − gδ‖L2(Rd),

where gδ := f̂ δ
τ . Hence, if f

δ is an approximate solution corresponding
to the noisy data gδ, and if f δ

0 is the inverse Fourier transform of f δ,
then we have

‖f0 − f δ
0‖L2(Rd) = ‖f − f δ‖L2(Rd).

Thus, in order to obtain the error estimates for the regularized solutions
corresponding to noisy measurements f δ

τ , it is enough to consider the
noisy equation as in (5), that is,

gδ(s) = b(s)f(s) + δξ(s), s ∈ R
d.

4.2.2. Ω is a bounded domain in R
d. For the purpose of illustration,

let us assume that the the temperature is kept at 0 at the boundary of
Ω, that is,

u(x, t) = 0 for x ∈ ∂Ω.

Then the solution of the equation (33) along with the the initial con-
dition

u(x, 0) = f0(x), x ∈ Ω,

is given by (see [14, § 4.1.2])

u(x, t) =

∞
∑

n=1

e−c2λ2
nt〈f0, vn〉vn(x).

Here (λn) is a non-decreasing sequence of non-negative real numbers
such that λn → ∞ as n → ∞ and (vn) is an orthonormal sequence
of functions in L2(Ω). In fact, each λn is an eigenvalue of the op-
erator (−∆) with corresponding eigenvector vn. For t = τ , taking
fτ := u(·, τ), we have

fτ (x) =

∞
∑

n=1

e−c2λ2
nτ 〈f0, vn〉vn(x).

Equivalently,

(35) 〈fτ , vn〉 = e−c2λ2
nτ 〈f0, vn〉, n ∈ N.

Writing

g := (〈fτ , vn〉), f := (〈f0, vn〉), b := (e−c2λ2
nτ ),
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the system of equations in (35) takes the form a multiplication operator
equation

(36) b(n)f(n) = g(n), n ∈ N,

where g and f are in ℓ2(N) and b is in c0(N), the space all null sequences.
As in § 4.2.1, we have

‖fτ − f δ
τ ‖L2(Ω) = ‖g − gδ‖ℓ2(N) and ‖f0 − f δ

0‖L2(Ω) = ‖f − f δ‖ℓ2(N),
where gδ ∈ ℓ2(N) and f δ

0 ∈ L2(Ω) are constructed from the bijective
linear isometry h 7→ (〈h, vn〉) from L2(Ω) onto ℓ2(N), that is,

gδ(n) := 〈f δ
τ , vn〉 and f δ

0 :=
∞
∑

n=1

〈f δ, vn〉vn.
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