
Computers and Mathematics with Applications 59 (2010) 1532–1540

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Recursive formulation of the matrix Padé approximation in packed
storage

M. Kaliyappan a,∗, S. Ponnusamy b, S. Sundar c

a Maha College of Engineering, Salem-636 106, India
b Sona College of Technology, Salem 636 005, India
c Indian Institute of Technology, Madras-600 036, India

a r t i c l e i n f o

Article history:

Received 27 April 2009

Received in revised form 19 November

2009

Accepted 20 November 2009

Keywords:

Matrix Padé approximants

Recursive packed storage

a b s t r a c t

The Extended Euclidean algorithm for matrix Padé approximants is applied to compute
matrix Padé approximants when the coefficient matrices of the input matrix polynomial
are triangular. The procedure given by Bjarne S. Anderson et al. for packing a triangular
matrix in recursive packed storage is applied to pack a sequence of lower triangular
matrices of a matrix polynomial in recursive packed storage. This recursive packed storage
for a matrix polynomial is applied to compute matrix Padé approximants of the matrix
polynomial using the Matrix Padé Extended Euclidean algorithm in packed form. The CPU
time and memory comparison, in computing the matrix Padé approximants of a matrix
polynomial, between the packed case and the non-packed case are described in detail.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Padé approximants, a class of rational functions, occupy a very prominent place in mathematics as a whole, mainly
because of their interesting properties aswell as their intrinsic connectionswithmany branches ofmathematics like number
theory, the theory of functions, differential equations, asymptotics, orthogonal polynomials etc. [1–3]. Their fast convergence
behaviour makes it possible to use them as a tool for predicting a function when only a limited number of coefficients of its
power series expansions are known. Work on Padé or Padé-type approximants involves the explicit determination of the
polynomials forming the numerator and denominator of the rational functions. There exist in the literature many methods
for constructing the polynomials of the Padé approximants from the coefficients of the given power series [1–5]. Many
physical problems which are concerned with perturbation expansions involving matrix coefficients, the problem of finding
coefficients and methods for computing matrix Padé approximants from a formal power series with matrix coefficients are
well studied [6–8]. Hence it is quite natural for us to apply these techniques for computing matrix Padé approximants in a
case where the matrices are of very large order lower triangular type.

In Section 2 we have given the definition of matrix Padé approximants of the formal power series of matrix coefficients.
Section 3 deals with the procedure for a lower triangularmatrix in recursive packed form and packing of a sequence of lower
triangular matrices in recursive packed form. An algorithm for finding the recursive inverse of a lower triangular matrix in
recursive packed form is given in Section 4. The multiplication of two lower triangular matrices in recursive packed form is
presented in Section 5. Section 6 is concerned with the algorithm for computing matrix Padé approximants in packed form.
Section 7 focuses on CPU time and memory comparison in computing the matrix Padé approximants. The subroutines used
in C language are presented in Section 8. The system configuration is given in the Appendix. The work presented in this
paper is an extension of that presented in [6]. Throughout this paper the following symbols are used:

∗ Corresponding author. Tel.: +91 0427 2263804.

E-mail addresses: kaliprem@yahoo.co.in (M. Kaliyappan), ponsam@yahoo.com (S. Ponnusamy), slnt@iitm.ac.in (S. Sundar).

0898-1221/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.camwa.2009.11.015

http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:kaliprem@yahoo.co.in
mailto:ponsam@yahoo.com
mailto:slnt@iitm.ac.in
http://dx.doi.org/10.1016/j.camwa.2009.11.015

M. Kaliyappan et al. / Computers and Mathematics with Applications 59 (2010) 1532–1540 1533

[f (x)] → f (x) is the polynomial in which the coefficients are square matrices of the same order n;
In → the identity matrix of order n;

∅n → the null matrix of order n;
[RP_S(x)] → S(x) is the polynomial in which the coefficients are triangular matrices of the same order n and each
coefficient matrix is recursively packed and also all the recursively packedmatrices are packed according to their degree.

2. The matrix Padé approximants

The [M/N]matrix Padé approximant of a formal power series

[S(x)] =

∞∑

i=0

(sn)i x
i (1)

where the (sn)i are coefficients of the power series which are square matrices of the same order n is defined as the rational
function [PM(x)]/[QN(x)] such that

[S(x)] = [PM (x)]/[QN (x)] + O
(
xM + N + 1

)
. (2)

The numerator and denominator of this matrix Padé approximant are

[PM(x)] =

M∑

i=0

(pn)i x
i (3)

and

[QN(x)] =

N∑

i=0

(qn)i x
i, [QN(0)] = In (4)

where [PM(x)] and [QN(x)] are polynomials of degree at mostM and N respectively. If the degrees of [PM(x)] and [QN(x)] are
exactly M and N then [PM(x)]/[QN(x)] is called the normal matrix Padé approximant of order (M,N) and it is symbolically
denoted by (M/N)[S](x). We may define two kinds of Padé approximants, since the (sn)i need no longer commute, through
the equations

[S(x)]− [PM(x)] [QN(x)]−1 = O
(
xM+N+1

)
(5)

or

[S(x)]− [QN(x)]−1 [PM(x)] = O
(
xM+N+1

)
(by Eq. (2)). (6)

However we can show that these two Padé approximants are actually identical. For different chosen values of M(≥0) and
N(≥0) we can construct the Padé table in which the distinct approximants of the function [S(x)]would be the elements.

There arise mainly two problems. One is the coefficient problem, in which it is required to find the numerator and
denominator coefficient matrices, (pn)i and (qn)i, of Eqs. (3) and (4) for the input (sn)i of Eq. (1). The other is the value
problem, which is that of determining the value of the desired approximant for an explicit input chosen for x. In this paper
we mainly concentrate on the first problem for a special case where the matrix coefficients involved are lower triangular.

3. The lower triangular matrix in recursive packed storage

A symmetric or triangular matrix may be stored in recursive packed form. The advantage of storing a triangular or
symmetric matrix in recursive packed form was given in [9]. We present here the method for storing the lower triangular
matrix in recursive packed form.

For the recursive packed form, we first store the triangular matrix in packed form and then convert to the recursive
packed form. In order to store a lower triangular matrix in packed form, the columns of the triangular matrix are stored
sequentially in a one-dimensional array starting with the first column. The mapping between positions in full storage and
in packed storage for a lower triangular matrix of size n is given below:

Ai,j i, j UPLO

APi+(j−1)(2n−j)/2 1 ≤ j ≤ n, j ≤ i ≤ n L

For UPLO= L, lower triangular.

The advantage of this storage form is the saving of nearly half the memory as compared to full storage.
For converting from packed storage to recursive packed storage we do a reordering process. In this process the matrix

is divided into two parts, namely a trapezoidal and a triangular part, by columns. The trapezoid is formed by the first p
columns (p = ⌊n/2⌋) and the triangle by the remaining n− p columns (Fig. 1). Keeping the triangle part in packed storage,
the trapezoidal part is reordered. In the trapezoidal part, the triangle portion of it is in packed storage and the rectangle
portion in full storage. The reordering demands a buffer of the size p(p − 1)/2. The reordering has the following steps.

1534 M. Kaliyappan et al. / Computers and Mathematics with Applications 59 (2010) 1532–1540

Fig. 1. A lower triangular matrix of order n (n = 9).

Fig. 2. Converting from packed storage to recursive packed storage.

First, the last p − 1 columns of the triangular part of the trapezoid are copied to the buffer and move the elements of the
rectangular part of the trapezoid to the right from next to the last column; finally the buffer is copied back to the top of the
trapezoid (shown in Fig. 2).

The addresses of the first elements in the leading triangular submatrix, the rectangular submatrix, and the trailing
triangular submatrix are respectively given by

• 1,
• 1+ (p(p+ 1)/2),
• 1+ np− (p(p− 1)/2).

After the reordering, the leading and trailing triangles are both in the same lower packed storage scheme as the original
triangular matrix. The rectangular part of the reordered matrix is now kept in full matrix storage. If desired, this offers an
excellent opportunity to transpose the matrix while it is transformed to the recursive packed format. If the rectangular
submatrix is square the transposition can be done completely in place. If it deviates from a square by a column, a buffer of
the size of the columns is necessary to do the transposition; for this purpose we can reuse the buffer used for the reordering.
The method of reordering is applied recursively to the leading and trailing triangles which are still in packed storage, until
finally the original triangular packed matrix is divided into rectangular submatrices of decreasing size, all in full storage.

3.1. Packing of the coefficient matrices of the matrix polynomial [S(x)]

As in Section 3, a triangular matrix of order n can be represented as a row matrix (1 × n(n + 1)/2) in recursive packed
form. If the coefficient matrices of a matrix polynomial [S(x)] are triangular then each coefficient of a matrix polynomial
[S(x)] is individually packed recursively, in a one by one manner, according to the degree. The recursive packed matrices
thus obtained are sequentially packed according to the degree of [S(x)], resulting in a rectangular matrix, as shown in Fig. 3.
The number of rows of the resulting rectangular matrix is the number of coefficient matrices of [S(x)] and the number of
columns is n(n+ 1)/2.

4. The recursive triangular inverse in recursive packed form

To find the inverse of a lower triangular matrix in blocked form, usually we split the matrix A into three blocks A11, A21

and A22 as shown in Fig. 4. Let B be the inverse of A; then AB = BA = I . From the above identity we get three block equations:

M. Kaliyappan et al. / Computers and Mathematics with Applications 59 (2010) 1532–1540 1535

Fig. 3. Packing of k coefficient matrices of a matrix polynomial [S(x)]; each matrix is in recursive packed form.

Fig. 4. Splitting of the lower triangular matrix A.

Fig. 5. Multiplication of two triangular matrices A and B in blocked form.

A11B11 = I, A21B11 + A22B21 = 0, A22B22 = I . The above three block equations imply that B11 = A−111 , B22 = A−122 , B21 =

−A−122 A21A
−1
11 . Since the storage of the recursive packed form is as a leading triangular submatrix, a rectangular submatrix

and a trailing triangular submatrix, in that order, the following algorithm finds the inverse of a lower triangular matrix re-
cursively in recursive packed form.
Algorithm RP_RITM(A) (Recursive Packed Recursive Inverse of a TriangularMatrix)

INPUT: A is a lower triangular matrix of order n in recursive packed form.
OUTPUT: The inverse of A in recursive packed form.

1 if (n = 1) then
2 A = 1/A % since A is scalar
3 else
4 A11 ← RP_RITM (A11) % invert A11

5 A22 ← RP_RITM (A22) % invert A22

6 A21 ← A21 × A11 % RP Triangular Rectangular Matrix Multiplication
7 A21 ←−A22 × A21 % RP Triangular Rectangular Matrix Multiplication
8 end if

5. Recursive multiplication of two triangular matrices in recursive packed form

In order to multiply the two triangular matrices A and B in blocked form, usually we split A and B as shown in Fig. 5. Let
C = AB, from which we obtain three block equations C11 = A11B11, C21 = A21B11 + A22B21 and C22 = A22B22. Using the
above three blocked equations we present an algorithm which multiplies A and B recursively in recursive packed form and
returns C in recursive packed form.
Algorithm RP_TMTMM(A, B)(Recursive Packed TriangularMatrix Triangular MatrixMultiplication)

INPUT: Two triangular matrices A, B of order n in recursive packed form
OUTPUT: Triangular matrix C of order n in recursive packed form.

1 if (n = 1) then
2 C = A× B % since A and B are scalar
3 else
4 C11 ← RP_TMTMM (A11, B11) % Recursive Packed Multiplication of A11 and B11

5 Ĉ21 ← A21 × B11 % RP Triangular Rectangular Matrix Multiplication

1536 M. Kaliyappan et al. / Computers and Mathematics with Applications 59 (2010) 1532–1540

6 C21 ← Ĉ21 + (A22 × B21) % RP Triangular Rectangular Matrix Multiplication
and addition

7 C22 ← RP_ TMTMM (A22, B22) % Recursive Packed multiplication of A22 and B22

8 end if

6. Recursive formulation of the Matrix Padé Extended Euclidean algorithm in packed storage

The Extended Euclidean algorithm (EEA) is awell known algorithm, originally suggested by Aho et al. [10]. An application
of the EEA to the ordinary non-matrix Padé case was presented by McEliece and Shearer [11] and Brent et al. [12]. The
application of the Extended Euclidean algorithm to the matrix Padé case was presented by Achuthan and Sundar [6] for
square matrix coefficients.

We present here a new algorithm RFMAPEAP (Recursive Formulation of MAtrix Padé Extended Euclidean Algorithm in
Packed storage) for computing matrix Padé approximants if the coefficient matrices of a matrix polynomial are triangular.
The above algorithm is an extension of MAPEA (MAtrix Padé Extended Euclidean Algorithm) presented in [6] by applying
triangular matrix coefficients of the matrix polynomials in packed form as explained in Section 3.

Algorithm description
Nameof the algorithm:RFMAPEAP(Recursive Formulation ofMAtrixPadéExtendedEuclideanAlgorithm inPacked storage)
INPUT: n,N,M, [S(x)] where n is the order of the matrix, M is Maximum Padé numerator degree, N is the maximum Padé
denominator degree, [S(x)] is the series whose coefficients are triangular matrices.
OUTPUT: Sequence of anti-diagonal approximants starting from (M + N, 0) to (M,N) if all the approximants exist.
Function RFMAPEAP ([S(x)], degree_S,N,M, n)

1 degree _sum← M + N
2 IF degree_S < degree _sum THEN exit 1

3 [a(x)] ← In xdegree_sum+1

4 [RP_S(x)]
5 [RP_a(x)]
6 [RP_b(x)] ← [RP_S(x)]mod [RP_a(x)]
7 IF N = 0 THEN exit 2
8 [dummy1(x)] ← ∅n
9 RP_[dummy1(x)]
10 [dummy2(x)] ← In
11 RP_[dummy2(x)]
12 count← 0
13 found← false

REPEAT
14 bn ← Highest degree coefficient matrix of [RP_b(x)]

15 IF (b−1n not exists) THEN exit 3
16 [RP_Q (x)] ←quotient ([RP_a(x)], [RP_b(x)])
17 [RP_R(x)] ← remainder ([RP_a(x)], [RP_b(x)])
18 IF ([RP_R(x)] = ∅n) THEN (found← true)

ELSE BEGIN
19 FOR index= 2 TO degree_[RP_Q (x)] DO
20 count← count+1
21 IF count≥ N THEN found← true

ELSE BEGIN
22 [RP_R1(x)] ← [RP_dummy1(x)] − [RP_Q (x)] × [RP_dummy2(x)]
23 count← count+1
24 Padé _ approximant← [RP_R(x)]/[RP_R1(x)]
25 OUTPUT [Padé approximant (x)]
26 IF count <> N THEN

BEGIN
27 [RP_a(x)] ← [RP_b(x)]
28 [RP_b(x)] ← [RP_R(x)]
29 [RP_dummy 1(x)] ← [RP_ dummy 2(x)]
30 [RP_ dummy 2(x)] ← [RP_R1(x)]

END
END

END

M. Kaliyappan et al. / Computers and Mathematics with Applications 59 (2010) 1532–1540 1537

31 UNTIL(count≥ N) OR (found= true)
END (of RFMAPEAP)

exit 1: Insufficient degree for the input matrix polynomial [S(x)],
Padé approximant cannot be found.

exit 2: As the Padé denominator degree is zero,
[b(x)] itself is the required Padé approximant.

exit 3: As the inverse of bn does not exist, Padé approximant cannot be found.

7. Calculation of the CPU time and memory comparison

7.1. CPU time

We have computed the matrix Padé approximants for the semi-normal power series

[S(x)] = I + Ix+ Ix2 + Ix4 + Ix8 + Ix16 + · · · (7)

used in [13] by using the algorithms MAPEA from [6] and RFMAPEAP for various matrix orders and various Padé orders
when x = 1. We have considered identity matrices in (7) as triangular matrices while using the RFMAPEAP algorithm.

CPU times for computing (7/7) matrix Padé approximants for the semi-normal power series (7) at x = 1 for various
orders of square matrices are presented in Table 1 (Fig. 6).

CPU times for computing (7/7) matrix Padé approximants for the semi-normal power series (7) at x = 1 for various
orders of triangular matrices in packed form are presented in Table 2 (Fig. 7).

From Tables 1 and 2, it is clear that the RFMAPEAP algorithm is very fast compared to MAPEA if the input matrix
polynomial coefficients are triangular (Fig. 8).

Table 1
CPU times for computing (7/7) matrix Padé approximants for the semi-normal power series (7) at x = 1 for various orders of square matrices.

Matrix order 100 200 300 400 500 600 700 800 900 1000

CPU time (s) 1 7 29 61 162 336 672 1048 1662 2645

Table 2
CPU times for computing (7/7) matrix Padé approximants for the semi-normal power series (7) at x = 1 for various orders of triangular matrices in packed

form.

Matrix order 100 200 300 400 500 600 700 800 900 1000

CPU time (s) 1 2 12 34 41 84 133 267 436 871

Fig. 6. Graphical representation of Table 1.

Fig. 7. Graphical representation of Table 2.

1538 M. Kaliyappan et al. / Computers and Mathematics with Applications 59 (2010) 1532–1540

Fig. 8. Graphical representation for the comparison of Tables 1 and 2.

Table 3
Memory allocation for various matrix polynomials for computing (M/N) matrix Padé approximants.

S No Name of the matrix polynomial Memory needed to store the matrix polynomial

1 [S(x)] (M + N + 2)n2 +M + N + 2

2 [a(x)] (M + N + 2)n2 +M + N + 2

3 [b(x)] (M + N + 2)n2 +M + N + 2

4 [dummy1(x)] (M + N + 2)n2 +M + N + 2

5 [dummy2(x)] (M + N + 2)n2 +M + N + 2

6 Q (x) (M + N + 2)n2 +M + N + 2

7 R(x) (M + N + 2)n2 +M + N + 2

8 R1(x) (M + N + 2)n2 +M + N + 2

Table 4
Memory allocation for various subroutines for computing the (M/N) matrix Padé approximant.

S No Name of the subroutine Memory required to execute the subroutine

1 Matrix polynomial division 6((M + N + 2)n2 +M + N + 2)+ 4n2

2 Matrix polynomial multiplication 5((M + N + 2)n2 +M + N + 2)+ 2n2

3 Matrix polynomial addition ((M + N + 2)n2 +M + N + 2)

4 Matrix polynomial subtraction 2((M + N + 2)n2 +M + N + 2)

5 Matrix multiplication n2

6 Matrix inversiona 6n2

7 Determinantb n2

a We have used the LU decomposition method to find the inverse of a matrix [14].
b We have used a modification of the Gauss elimination process for computing the value of the determinant of a matrix [15].

7.2. Memory comparison

The memory needed to store a matrix polynomial depends on its matrix coefficients and degree. Hence the memory
needed to store a matrix polynomial is the product of the number of coefficients and order of the matrix and its degree. The
differences in memory size for computing (M/N) matrix Padé approximants for the square matrix case and the triangular
matrix case in packed form are presented below.

7.2.1. The memory required for computing the (M/N) matrix Padé approximant for the square matrix case

To get the (M/N) matrix Padé approximant, the degree of the input series [S(x)]must beM + N + 1; hence the number
of coefficient matrices of [S(x)] is at most M + N + 2. So the memory needed to store [S(x)] in the square matrix case is
(M + N + 2)n2 + (M + N + 2). Similarly, the memory allocations needed to store various matrix polynomials used for
computing the (M/N) matrix Padé approximant are presented in Table 3.

We have used various subroutines for computing the (M/N)matrix Padé approximant. Thememory allocations required
to execute the subroutines are presented in Table 4.

The total memory that we require for computing the (M/N) matrix Padé approximant for the square matrix case is

22(M + N)n2 + 58n2 + 22(M + N + 2).

7.2.2. The memory required for computing the (M/N) matrix Padé approximant for the triangular matrix case in packed storage

The memory required to store a triangular matrix of order n in recursive packed form is n(n + 1)/2. To get the
(M/N) matrix Padé approximants, the degree of the input series [S(x)] must be M + N + 1; hence the number of
coefficient matrices of [S(x)] is at most M + N + 2. So the memory needed to store [S(x)] in the packed form case is
(M + N + 2)(n(n + 1)/2) + M + N + 2. Similarly, the memory needed to store the various matrix polynomials used
to compute the (M/N) matrix Padé approximant in packed form are presented in Table 5.

M. Kaliyappan et al. / Computers and Mathematics with Applications 59 (2010) 1532–1540 1539

Table 5
Memory allocation for various matrix polynomials for computing the (M/N) matrix Padé approximant in packed form.

S No Name of the matrix polynomial Memory needed to store the matrix polynomial

1 [RP_ S(x)] (M + N + 2)(n(n+ 1)/2)+M + N + 2

2 [RP_ a(x)] (M + N + 2)(n(n+ 1)/2)+M + N + 2

3 [RP_ b(x)] (M + N + 2)(n(n+ 1)/2)+M + N + 2

4 [RP_ dummy1 (x)] (M + N + 2)(n(n+ 1)/2)+M + N + 2

5 [RP_ dummy2 (x)] (M + N + 2)(n(n+ 1)/2)+M + N + 2

6 [RP_ Q (x)] (M + N + 2)(n(n+ 1)/2)+M + N + 2

7 [RP_ R(x)] (M + N + 2)(n(n+ 1)/2)+M + N + 2

8 [RP_ R1(x)] (M + N + 2)(n(n+ 1)/2)+M + N + 2

Table 6
Memory allocation for various subroutines for computing the (M/N) matrix Padé approximant in packed form.

S No Name of the subroutine Memory required to execute the subroutine

1 Packpoly_ division 6(M+N+2)(n(n+1)/2)+ 6(M+N+2)+ 4(n(n+1)/2)

2 Packpoly_ multiply 5(M+N+2)(n(n+1)/2)+ 5(M+N+2)+ 2(n(n+1)/2)

3 Packpoly_ add (M + N + 2)(n(n+ 1)/2)+ (M + N + 2)

4 Packpoly_ subtract 2(M + N + 2)(n(n+ 1)/2)+ 2(M + N + 2)

5 Recursive_ multiply (n(n+ 1)/2)

6 Recursive_ inversion (n(n+ 1)/2)

7 Recursive pack (n(n+ 1)/2)+ p(p− 1)/2, where p = xn/2y

8 Polynomial packing 2(M + N + 2)(n(n+ 1)/2)+ 2(n(n+ 1)/2)

We have used various subroutines to compute the (M/N) matrix Padé approximants in packed form; the memory
allocations required for executing the subroutines are presented in Table 6.

In addition we made a 4(M + N + 2)n2 + 4(M + N + 2) storage space allocation for storing [S(x)], [a(x)], [dummy1(x)]
and [dummy2(x)] before packing. Therefore the total memory that we require for computing the (M/N) matrix Padé
approximant in packed storage is

24((M + N)(n2 + n)/2)+ 59(n2 + n)/2+ 4(M + N + 2)n2 + 26(M + N + 2)+ p(p− 1)/2.

Hence the difference in memory size for computing the (M/N) matrix Padé approximants between the square matrix and
triangular matrix cases is

6(M + N)n2 − 12(M + N)n+ (41/2)n2 − (59/2)n− 4(M + N + 2)− p(p− 1)/2.

This quantity is positive starting from M = 0,N = 1 and n = 2 or M = 1,N = 0 and n = 2 up to the higher values of
M,N and n. When n is large, for different values ofM and N this quantity varies from nearly one quarter to nearly one third
compared to the memory required for the square matrix case.

8. Subroutines used in C

The following subroutines are used to calculate the matrix Padé approximant in packed form:

1 Pack poly_ division: Returns the quotient and remainder of the two
matrix polynomials in recursive packed form.

2 Pack poly_ multiply: Returns the result of multiplication of two
matrix polynomials in recursive packed form.

3 Pack poly_ add: Returns the result of addition of two matrix
polynomials in recursive packed form.

4 Pack poly_ subtract: Returns the result of subtraction of two matrix
polynomials in recursive packed form.

5 Recursive_ multiply: Returns the result of multiplication of two
triangular matrices in recursive packed form.

6 Recursive_ inversion: Returns the inverse of a triangular matrix in
recursive packed form.

7 Recursive pack: Returns the recursive packed form of a
triangular matrix.

8 Polynomial packing: Returns the packed form of the coefficient
matrices of polynomial matrix.

Concluding remarks

We have shown here the methods used to construct matrix Padé approximants if the coefficient matrices of the input
matrix polynomial are triangular, by using the recursive formulation of the Matrix Padé Extended Euclidean Algorithm in

1540 M. Kaliyappan et al. / Computers and Mathematics with Applications 59 (2010) 1532–1540

Packed storage (RFMAPEAP). If the coefficients of the input matrix polynomial are triangular, the RFMAPEAP algorithm is
very useful in getting matrix Padé approximants, instead of using the square matrix case algorithm MAPEA. This packed
algorithm is very fast while using higher order triangular matrix coefficients of the matrix polynomial. Its memory usage
is also considerably reduced compared to the square matrix case when the order of the matrix is large. This procedure can
also be used for the upper triangular case.

Acknowledgement

The authors wish to thank the referee for his or her suggestions which improved the content of this article.

Appendix

The configuration of the system used to find the CPU time for computing the matrix Padé approximants for the semi-
normal power series (7) is presented below.

System configuration:

Operating system: Linux

Processor: Intel (R) Pentium (R) 4 CPU 2.93 GHz

RAM: 256 MB

Cache size: 1 MB

References

[1] G.A. Baker Jr., Essentials of Padé Approximants, Academic Press, New York, 1975.
[2] G.A. Baker Jr., P.R. Graves-Morris, Padé Approximants, Part I: Basic Theory, in: Encyclopedia Math. Appl., vol. 13, Addison-Wesley, Reading, MA, 1981.
[3] W.B. Gragg, The Padé table and its relation to certain algorithms of numerical analysis, SIAM Rev. 14 (1972) 1–62.
[4] G. Claessens, A new look at the Padé table and the different methods for computing its elements, J. Comput. Appl. Math. 1 (1975) 141–152.
[5] L. Wuytack, Commented Bibliography on Techniques for Computing Padé Approximants, in: Lecture Notes in Mathematics, vol. 765, Springer, 1979,

pp. 375–392.
[6] P. Achuthan, S. Sundar, A new application of the extended Euclidean algorithm for matrix Padé approximants, Comput. Math. Appl. 16 (4) (1988)

287–296.
[7] A. Bultheel, Recursive algorithm for matrix Padé problem, Math. Comp. 35 (1980) 875.
[8] J. Rissanen, Recursive evaluation of Padé approximants for matrix sequences, IBM J. Res. Dev. 401 (1972).
[9] Bjarne S. Anderson, JerzyWasniewski, Fred G. Gustavson, A recursive formulation of Choleskey factarization of amatrix in packed storage, ACM Trans.

Math. Softw. 27 (2) (2001) 214–244.
[10] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass, 1974.
[11] Robert J. McEliece, James B. Shearer, A property of Euclid’s algorithm and an application to Padé approximation, SIAM J. Appl. Math. 34 (4) (1978)

611–615.
[12] R.P. Brent, F.G. Gustavson, D.Y.Y. Yun, Fast solution of Toeplitz systems of equations and computation of Padé approximation, J. Algorithm. 1 (1980)

259.
[13] W. Leighton, W.T. Scott, A general continued fraction expansion, Bull. Amer. Math. Soc. 45 (1939) 596.
[14] M.K. Jain, S.R.K. Iyengar, R.K. Jain, Numerical Methods for Scientific and Engineering Computation, fourth ed., New Age International (P) Ltd, New

Delhi, 2003.
[15] Robert J. Schilling, Sandra L. Harries, Applied Numerical Methods for Engineers Using MATLAB and C, second ed., Thomson Asia (P) Ltd., Singapore,

2002.

	Recursive formulation of the matrix Padé approximation in packed storage
	Introduction
	The matrix Padé approximants
	The lower triangular matrix in recursive packed storage
	Packing of the coefficient matrices of the matrix polynomial [S(x)]

	The recursive triangular inverse in recursive packed form
	Recursive multiplication of two triangular matrices in recursive packed form
	Recursive formulation of the Matrix Padé Extended Euclidean algorithm in packed storage
	Calculation of the CPU time and memory comparison
	CPU time
	Memory comparison
	The memory required for computing the (M/ N) matrix Padé approximant for the square matrix case
	The memory required for computing the (M/ N) matrix Padé approximant for the triangular matrix case in packed storage

	Subroutines used in C
	Acknowledgement
	Appendix
	References

