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Queue-Aware Optimal Resource Allocation for the

LTE Downlink with Best M sub-band Feedback
Hussam Ahmed, Krishna Jagannathan, Srikrishna Bhashyam

Abstract—We address the problem of optimal downlink re-
source allocation in an OFDMA system, in a scenario where very
limited channel quality information (CQI) is available at the base-
station. Our work is particularly applicable in the context of the
LTE downlink, since the feedback mechanism we consider closely
resembles one of the CQI reporting modes in LTE. Specifically,
the users only report the indices of their best M sub-bands and
an effective CQI corresponding to these best M bands. Our
policy simultaneously performs optimal sub-band assignment and
rate allocation, by taking into account channel quality as well
as the queue backlogs of each user. The technical novelty of
our work lies in exploiting a limit theorem on the best SNRs
reported by the users, and combining it within a Lyapunov
stability framework. We show that our policy is throughput
maximizing among all policies which are constrained to the CQI
mechanism considered. Numerical results indicate that in terms
of throughput and average delay, our policy compares favorably
to existing resource allocation policies such as proportional fair.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is

employed in most of the emerging high data-rate wireless cel-

lular standards such as Long Term Evolution (LTE) [1]. In this

paper, we tackle the problem of optimal resource allocation on

the downlink of an OFDMA system, in a scenario where very

limited channel quality information (CQI) is available at the

base-station (BS). Our work is particularly applicable in the

context of an LTE downlink, since the feedback mechanism

we consider closely resembles one of the CQI reporting modes

in LTE.

In an OFDM system such as the LTE downlink, the available

bandwidth (of say 20 MHz) is divided into several hundred

sub-carriers (e.g., 512, 1024, or 2048). These sub-carriers need

to be allocated to multiple user equipment (UEs). In practice,

a resource block (RB) pair consisting of 12 contiguous sub-

carriers and 14 OFDM symbols in time is the smallest resource

allocation unit [2]. After accounting for unusable tones, this

leaves us with about 50 to 100 RBs to allocate to the UEs.

In order to schedule the UEs opportunistically, the base-

station, in principle, needs to obtain channel quality informa-

tion from each UE, on each of the resource blocks. This is
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highly impractical, since it leads to an enormous amount of

control overheads on the uplink. To overcome this, the UEs in

an LTE system report CQI to the base-station in a very sparse

manner.

A. Related Work

Various reduced feedback mechanisms have been studied

in the literature, in the context of resource allocation on the

OFDM downlink. In [3], the CQI of each UE is fed back only

for those sub-bands1 whose quality is better than a certain

threshold. The feedback overhead is further reduced in [4],

where the UEs report one-bit per sub-band whenever the

channel quality exceeds the threshold. In [5], an opportunistic

feedback strategy is considered, wherein only the channel

gains of a pre-specified number M of best sub-bands2 are

reported. A variation of this policy has been considered in

[6], [7]. In [6], the UEs feedback the average gain of the

best M sub-bands and the corresponding indices while in [7],

each UE reports an Effective Exponential Signal-to-noise ratio

Mapping (EESM) of the best M sub-bands and their respective

indices. In effect, EESM translates the different SNRs on

parallel channels into a single effective flat-fading SNR [8].

The throughput of adaptive modulation and coding based on

EESM is analyzed in [9]. In [10], a reduced feedback scheme

with different sub-band sizes for different UEs is studied. An

opportunistic hybrid feedback scheme, where the number of

sub-bands for feedback can be random, is studied in [11].

In this paper, we assume a CQI feedback mechanism similar

to [6], [7], since it closely resembles one of the CQI reporting

modes – namely, the UE-selected sub-band feedback mode –

defined in the LTE standards [12]. Specifically, the UEs only

report the indices of their best M sub-bands, where M is a

small number (say 2 to 5), and the EESM corresponding to

these best M bands.

Downlink resource allocation for OFDM systems has been

studied from various perspectives in recent years. In [13], re-

source allocation in downlink OFDM is posed as a utility max-

imization problem, which includes proportionally fair resource

allocation [14], [15] as a special case. The optimal power and

sub-carrier allocation are then determined using convex duality

techniques. While [13] assumed full CQI availability except

for an estimation error term, [16] takes imperfect CQI into

account by factoring for outages due to erroneous CQI at the

1A sub-band typically consists of one to three resource blocks.
2Throughout the paper, we refer to the sub-bands with the M highest SNRs

as the ‘best M sub-bands.’

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TWC.2015.2429584

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

base-station. In [17], the authors consider opportunistic re-

source allocation in OFDM under various fairness constraints,

and propose a Hungarian algorithm based solution. It is worth

noting that [13], [16], [17] assume fully backlogged buffers

(i.e., that the base-station always has data to send to the UEs),

and do not consider any queuing dynamics.

There is a vast literature on optimal server allocation to

constrained queuing systems with time-varying connectivities.

Most of the literature in this area based on the landmark

papers [18], [19] which introduced Lyapunov techniques for

resource allocation. Subsequently, these Lyapunov methods,

which explicitly take queue lengths into account for making

resource allocation decisions, have been applied in various

contexts including high-speed switches [20], satellites [21],

wireless [22], and optical networks [23]. In addition to being

inherently throughput maximizing, Lyapunov based resource

allocation policies can also been used to ensure Quality of

Service (QoS) metrics such as delay guarantees [24], [25] and

fairness [26]. In [27], greedy algorithms with low delay are

proposed for an OFDM-based cellular downlink.

In the above Lyapunov based resource allocation policies,

the resource allocation decision is based on the UE’s channel

quality as well as queue backlogs, and these are typically

assumed to be available perfectly and instantaneously at the

base station. In contrast, [28] proposes a throughput optimal

resource allocation algorithm under delayed channel informa-

tion; their policy utilizes the conditional expectation of the

channel quality, given the delayed measurements. In [29],

a cross layer resource allocation policy which maximizes

the throughput under delayed CQI and takes into account

the channel outage event is proposed. There has also been

recent work on low-complexity dynamic resource allocation

for OFDM [30], [31] to ensure low delay, but these papers do

not consider sparse CQI feedback.

B. Our Contributions

In the present paper, we propose a queue-aware resource

allocation policy for the OFDM downlink that is optimized

for the specific form of the CQI available at the base-station.

As described earlier, we assume that the UEs only report

the indices of their best M sub-bands, where M is a small

number, and the EESM corresponding to these best M sub-

bands. We develop a sub-band assignment and rate allocation

algorithm which is throughput maximizing under this CQI

scenario, when the total number of sub-bands is large. In other

words, our algorithm is guaranteed to keep the queuing system

stable for all traffic rates that can be stabilized by any resource

allocation policy which is constrained to this CQI scenario.

One of the technical contributions of the paper lies in

obtaining an explicit characterization of the outage probability

on each of the M reported sub-bands. In order to obtain the

outage probability expression, we exploit a ‘Gumbel’ limit

theorem on the joint distribution of the best M sub-bands,

which subsequently leads to an explicit expression for the

conditional density, given the EESM. It is worth commenting

that the Gumbel weak limit is an attractor for the extremal

values of a fairly large family of distributions [32], so that

our work does not crucially depend on the assumption that

the sub-band gains are i.i.d. Rayleigh distributed. Another

distinguishing feature of our resource allocation policy is that

it naturally decouples for each sub-band, and does not entail

solving any computationally intensive matching problems [17],

[30].

II. SYSTEM MODEL

Consider a downlink system with one BS and K UEs.

The BS maintains a separate queue corresponding to each

UE. Time is slotted, and the queue corresponding to ith UE

receives exogenous arrivals according to a random process.

We denote the amount of data that enters queue i during time

slot t by Ai(t), and the queue length corresponding to the ith

UE during slot t by Qi(t). We assume that the arrival process

Ai(t) is i.i.d. from slot to slot, with mean λi and a finite

second moment.

We assume that the channel between the BS and ith UE is a

frequency selective Rayleigh fading channel. We remark that

this Rayleigh fading assumption is not crucial to our work,

but it makes exposition easier. OFDM transmission with Nc

sub-carriers is used. The SNR for the ith UE on the jth sub-

carrier follows an exponential distribution. The average SNR

for the ith UE is denoted as γave,i.

We assume that the downlink channel gains of the UEs are

not known to the BS unless the UEs feedback their CQI to

the BS. This corresponds to a scenario where the uplink and

the downlink channels are not reciprocal, or a scenario where

the UEs are not transmitting any data on the uplink, so that

reciprocity (even if present) cannot be exploited. In order to

reduce feedback overhead, we assume that the sub-carriers

are grouped into N sub-bands in such a way that the channel

can be approximated as flat-fading in each sub-band. Further,

we consider the ‘best M ’ feedback mechanism similar to [7],

where each UE reports (i) the EESM corresponding to its best

M(≪ N) sub-bands according to SNR, and (ii) the indices

of those sub-bands.

Let γj
i (t) be the SNR on the jth sub-band for the ith UE

in slot t, and γ
(j)
i (t) be the SNR of the jth best sub-band

of the ith UE in slot t, i.e., γ
(1)
i (t), γ

(2)
i (t) . . . γ

(N)
i (t) are the

ordered sub-band SNRs for ith UE in descending order. The

EESM for the best M sub-bands corresponding to the ith UE

in slot t, denoted γeff
i , is defined as [7]

γeff
i (t) = −η ln





1

M

M
∑

j=1

e−
γ
(j)
i

(t)

η



 , (1)

where η is a parameter that depends on the modulation

and coding scheme (MCS). Hence, the ith UE reports the

following two quantities to the BS during each slot.

(i) The EESM γeff
i ,

(ii) The index set Ii = {i1, i2, . . . iM},

where ij is the index of the jth best sub-band of the ith UE.

Since we are considering a downlink problem, the BS is

assumed to know the instantaneous queue lengths Qi(t) for

all the UEs.
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III. PROBLEM FORMULATION

In this section, we develop a mathematical formulation of

the optimal resource allocation problem. As mentioned earlier,

the following information is assumed to be available with the

BS during time-slot t (for simplified notation, we omit t):

(i) The EESMs γeff = [γeff
1 , γeff

2 , . . . , γeff
K ]

(ii) The index sets I = [I1, I2, . . . , IK ]
(iii) The queue length vector Q = [Q1, Q2, . . . , QK ].

Given this information, our aim is to come up with a resource

allocation policy which can maximize throughput while keep-

ing all queues at the BS stable. In order to make this statement

precise, we develop some terminology and notation.

A resource allocation policy performs the following two

operations in each slot.

• Sub-band assignment: For each sub-band j that is re-

ported by at least one UE, the policy determines a unique

UE to assign the sub-band. (Recall that a sub-band can

be allocated to at most one UE due to interference

considerations, whereas a UE can be allocated multiple

sub-bands).

• Rate allocation: Given that jth sub-band is assigned to

ith UE, determine the rate ri,j at which data transmission

will take place on jth sub-band.

From now on, we use the notation [i, j] for the ith UE

- jth sub-band pair. In the interest of simplicity, we restrict

our attention to policies which allocate equal power to all

scheduled sub-bands, although our framework can be modified

to include optimal power allocation for different sub-bands.

To be precise, define Î = ∪K
i=1Ii as the set of all sub-bands

reported by at least one UE, and let M ′ = |Î| denote the

total number of such sub-bands. Assume that the BS has a

power budget of P for transmissions during each slot. Then,

the base station allocates power P/M ′ to each sub-band. Let

Ci,j be the instantaneous capacity of [i, j]. Under the above

assumptions, we have

Ci,j = log2

(

1 +
P

M ′
γj
i

)

. (2)

For a reliable communication over a sub-band, the rate

assigned to [i, j], ri,j , should not exceed Ci,j . Given γeff and

the index sets I, we say [i, j] is in outage if the rate allocated

to [i, j] is greater than Ci,j . The outage probability for [i, j]
when the assigned rate is ri,j is defined as follows:

Pi,j(ri,j) = P

{

Ci,j < ri,j

∣

∣

∣γ
eff
i , Ii

}

. (3)

We define a natural metric, namely goodput, as the average

successfully transmitted rate over a sub-band [33]. The good-

put for [i, j] when the assigned rate is ri,j is defined as follows:

Gi,j(ri,j) = ri,j(1− Pi,j(ri,j)). (4)

Next, we briefly review the queuing dynamics and stability

considerations of the queuing system at the BS.

A. Stability considerations

The queue evolution equation for the ith UE can be written

as

Qi(t+ 1) = max{Qi(t)− µi(t), 0}+Ai(t), (5)

where Ai(t) and µi(t) are arrival and service processes of the

ith UE queue. Here, µi(t) is the amount of data served from

the ith UE queue during slot t, and can be written as

µi(t) =

N
∑

j=1

ai,jri,jHi,j(t),

where ai,j denotes the fraction of time the jth sub-band

is allocated to the ith UE during slot t, and Hi,j(t) is an

indicator random variable which takes a value 1 whenever the

transmission through [i, j] during slot t is successful, and 0
otherwise. Thus, P {Hi,j(t) = 0} = PN

i,j(ri,j). Further, it is

clear that
K
∑

i=1

ai,j ≤ 1. (6)

We will show later (in Proposition 1) that our optimal policy

allocates a sub-band to at most one UE during each time-slot.

In the spirit of [34], we say that the queuing system at the

BS is strongly stable if for each UE i,

lim sup
T→∞

1

T

T
∑

t=0

E[Qi(t)] < ∞. (7)

Denote by P the family of all resource allocation policies

which allocate equal power to all scheduled sub-bands, and

have access only to the parameters γeff , I, and Q in order to

make the resource allocation decisions during each slot. Let Λ
be the stability region of the network, which is defined as (the

closure of) the set of all arrival rates λ = (λ1, λ2, . . . , λK)
for which there exists some policy Π ∈ P under which the

queuing system is strongly stable.

We find a resource allocation policy in P which is through-

put optimal, in the same sense as in [34], i.e., it keeps the

queuing system stable for all arrival rates in the interior of Λ.

IV. THROUGHPUT OPTIMAL RESOURCE ALLOCATION

POLICY

During each time slot, the scheduler at the BS observes

γeff , I, and Q, and implements the following steps :

1) Determine Î = ∪K
i=1Ii and M ′ = |Î|.

2) for j = 1 to M ′ do

3) Determine Uj = {i|j ∈ Ii}.
4) Calculate an estimate of the outage probability P̂i,j(r)

as a function of r for each i ∈ Uj . (See equation (21)

in Section V)

5) Calculate

r∗i,j = argmax
r

{r(1− P̂i,j(r))} ∀ i ∈ Uj .

6) Calculate

i(j) = argmax
i∈Uj

{Qi(t)r
∗
i,j(1− P̂i,j(r

∗
i,j))}.

7) Assign jth sub-band to i(j)th UE, and transmit at rate

r∗
i(j),j .

8) end for
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A. Discussion

In the first step, the scheduler determines the set of all

distinct sub-bands reported by the UEs. Then, for each such

sub-band j, the scheduler determines the set Uj of all UEs

who report that sub-band as being one of their best M sub-

bands. In step 4, the outage probability on [i, j] is computed,

as explained in Section V. In step 5, the scheduler computes

the rate that ensures the best goodput for each UE i ∈ Uj .
Finally, in steps 6 and 7, the scheduler assigns jth sub-band

to the ith UE that has the maximum queue-length goodput

product.

Notice that the above algorithm assigns every reported sub-

band to a unique UE. Also, no power is assigned to sub-bands

that are not reported by any UE.

B. Lyapunov Analysis

In this section, we derive the optimal resource allocation

policy as a Lyapunov drift minimizing policy, and prove that

it is throughput optimal. We define the quadratic Lyapunov

function

L(Q(t)) =
K
∑

i=1

(Qi(t))
2,

and consider the conditional Lyapunov drift

∆(Q(t)) = E
{

L(Q(t+ 1))− L(Q(t))|Q(t)
}

.

We obtain the following inequality by squaring the both sides

of (5).

(Qi(t+ 1))2 ≤(Qi(t))
2 +





N
∑

j=1

ai,jri,jHi,j(t)





2

+ (Ai(t))
2

− 2Qi(t)





N
∑

j=1

ai,jri,jHi,j(t)−Ai(t)



 .

Taking the sum over all the UEs and using the fact that the

sum of squares of non-negative variables is less than or equal

to the square of the sum, we get the following inequality.

L(Q(t+ 1))−L(Q(t)) ≤

K
∑

i=1

(Ai(t))
2

+ 2

K
∑

i=1

Ai(t)Qi(t)





N
∑

j=1

K
∑

i=1

ai,jri,jHi,j(t)





2

− 2

K
∑

i=1

Qi(t)

N
∑

j=1

ai,jri,jHi,j(t).

(8)

Using (6), we get the following upper bound

K
∑

i=1

ai,jri,jHi,j(t) ≤ max
i

{Ci,j} < ∞, ∀ j.

Thus, taking conditional expectations and exploiting the inde-

pendence of Ai(t) and Qi(t), we get

∆(Q(t)) ≤B + 2

K
∑

i=1

Qi(t)λi

− 2

K
∑

i=1

N
∑

j=1

Qi(t)ai,jri,j(1− Pi,j(ri,j)),

(9)

where

B =





N
∑

j=1

max
i

{Ci,j}





2

+

K
∑

i=1

E
[

Ai(t)
2
]

< ∞.

We know from [34, Lemma 4.1] that the Lyapunov drift

becoming negative for large queue backlogs is a sufficient

condition for the strong stability of the queuing system. With

this in mind, we seek the policy that maximizes the negative

term on the right hand side of (9). We therefore formulate the

optimal resource allocation problem as follows.

max
{ai,j},{ri,j}

K
∑

i=1

N
∑

j=1

Qi(t)ai,jGi,j(ri,j), (10)

subject to

K
∑

i=1

ai,j ≤ 1, ∀ j, (C1)

ai,j ≥ 0, ∀ i, j, (C2)

ri,j ≥ 0, ∀ i, j. (C3)

We assume that it is possible to come up with modulation

and coding schemes for any desired rate ri,j . The solution is

discussed next.

C. Minimizing the Lyapunov Drift

We now solve the optimization problem (10) and arrive at

our resource allocation policy. First, note that for any sub-

band allocation {ai,j}, the objective function is maximized

by choosing ri,j = r∗i,j , where r∗i,j maximizes the goodput

Gi,j(ri,j) of the ith UE on the jth sub-band. Such an r∗i,j
can be shown to exist because: (1) Gi,j(r) = r(1 − P̂i,j(r)),
(2) (1 − P̂i,j(r)) is monotonically decreasing in r, and (3)

Gi,j(r) → 0 as r → ∞. This gives Step 5 of our policy in

Section IV.

Now, the optimization problem in (10) reduces to the

following linear program:

max
{ai,j}

K
∑

i=1

N
∑

j=1

Qi(t)ai,jGi,j(r
∗
i,j), (11)

subject to

K
∑

i=1

ai,j ≤ 1, ∀ j, (C1)

ai,j ≥ 0, ∀ i, j. (C2)

Introducing non-negative Lagrange multipliers {αj},{βi,j}
for constraints (C1)-(C2) respectively, the following condi-
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tions must be satisfied at the optimal solution (superscript (·)∗

denotes optimal values).

Qi(t)Gi,j(r
∗
i,j) + β∗

i,j − α∗
j = 0, ∀ i, j. (12)

α∗
j

(

K
∑

i=1

a∗i,j − 1

)

= 0, ∀ j. (13)

β∗
i,ja

∗
i,j = 0, ∀ i, j. (14)

Condition (12) is a gradient condition, and conditions (13) and

(14) are complementary slackness conditions corresponding to

the constraints (C1) and (C2), respectively [35].

Proposition 1. The optimal sub-band allocation for problem

(10) assigns a sub-band exclusively to a UE with the largest

corresponding queue-length goodput product.

Proof. It follows from (14) and (12) that if a∗i,j > 0, then

β∗
i,j = 0, and Qi(t)Gi,j(r

∗
i,j) = α∗

j . On the other hand, if

a∗i,j = 0, then β∗
i,j ≥ 0, i.e., Qi(t)Gi,j(r

∗
i,j) ≤ α∗

j . Therefore,

to maximize the objective function, the jth sub-band should be

assigned to the UE with largest queue-length goodput product

Qi(t)Gi,j(r
∗
i,j). If multiple UEs have the same queue-length

goodput product for the same sub-band j, the sub-band can

be shared in any arbitrary manner among these users without

affecting optimality in terms of the objective function in (10).

In such a scenario, without loss of generality, we will assume

that one such UE is arbitrarily chosen and allocated sub-band

j. From (13), a∗i,j = 1 as long as the queue-length goodput

product is positive for at least one UE.

Proposition 1 shows that the optimal sub-band allocation

assigns each reported sub-band j to the UE which has the

maximum queue-length goodput product on the jth sub-band.

This is Step 6 of the policy in Section IV.

Since the proposed policy ensures the “most negative”

Lyapunov drift among the class P, it seems plausible that

our policy should be able to stabilize the queuing system,

whenever some policy in P can do so. The following theorem

asserts that this is indeed true.

Theorem 1. The resource allocation policy proposed in Sec-

tion IV is asymptotically throughput optimal, i.e., given any

arrival rate vector λ that is stabilizable by some policy Π ∈ P ,

there exists an N such that, when the number of sub-bands is

at least N , the proposed policy will stabilize the queues.

The proof is relegated to Appendix A. Our policy is only

asymptotically throughput optimal since in Step 4, the policy

uses the limiting outage probability given by a limit theorem,

instead of the actual outage probability which is difficult to

compute.

V. DERIVATION OF OUTAGE PROBABILITY

In this section, we describe how the BS estimates the outage

probability on [i, j] in Step 4 of our algorithm, using only

the parameters γeff and I. We utilize a limit theorem on

the order statistics of the SNRs to derive an expression for

the conditional joint distribution of the SNRs on the best

M sub-bands for each UE, given the EESM and the sub-

band indices. For ease of exposition, we assume that the

SNRs on the sub-bands of a given UE are i.i.d. exponentially

distributed. This assumption will hold well in the case of

Rayleigh fading in a rich multi-path environment, with number

of paths comparable to the number of sub-bands. However, we

remark that the limit theorem we are about to exploit holds

for a fairly large class of distributions – namely, those which

lie within the Gumbel domain of attraction [32]. Therefore,

our policy remains asymptotically throughput optimal for this

class of sub-band SNR distributions. The correlated sub-bands

case is studied in the simulation results section (Section VI).

We first state a result which follows from [36, Theorem

15] regarding the order statistics of M extremal values, drawn

from N i.i.d. exponential random variables .

Theorem 2. Let Z1, Z2, . . . , ZN be a sequence of i.i.d. unit

exponential random variables, and Z(1), Z(2), . . . , Z(N) be the

corresponding order statistics in descending order. Then

(e−Z̃(1) , e−Z̃(2) , . . . , e−Z̃(M))
D
−→ (Y1, Y2, . . . YM ),

as N → ∞, where Z̃(i) = Z(i) − lnN , Yi =
∑i

j=1 Xj and

Xjs are i.i.d. unit exponential random variables.

Proof. Note that 1 − e−Z1 , 1 − e−Z2 , . . . , 1 − e−ZN is a

sequence of i.i.d. standard uniform random variables. Now

directly applying the [36, Theorem 15], the result follows.

Lemma 1. Let Y (n) = (Y1, Y2, . . . , Yn) with the entries

Yi =
∑i

j=1 Xj , ∀ i = 1, . . . , n, where Xjs are i.i.d. unit

exponential random variables. The joint pdf of Y (n) is given

by

fY (n)(y1, y2, . . . , yn) = e−yn , 0 ≤ y1 ≤ y2 ≤ . . . ≤ yn.
(15)

Proof. See Appendix B.

Consider the ith UE. Let Sj
i = e−(γ

ij
i −lnN) for j =

1, . . . ,M. Assuming that the number of sub-bands N is large,

we first apply the limit theorem in Theorem 2 for the vector

S
(M)
i = (S1

i , S
2
i , . . . , S

M
i ). Then, using Lemma 1, we obtain

the joint pdf of S
(M)
i as3

f
S

(M)
i

(s1, s2, . . . , sM ) = e−sM , 0 ≤ s1 ≤ s2 ≤ . . . ≤ sM .

Numerical results indicate that this approximation is good even

for moderate values of N. Next, define Seff
i = e−(γeff

i −lnN).

Choosing the parameter η in (1) as unity for simplicity, we

have

Seff
i =

1

M

M
∑

j=1

Sj
i .

Note that Seff
i is known to the BS. Next, conditioned on

Seff
i = s and Ii = I , S

(M)
i takes values only on the hyper-

plane 1
M

∑M
j=1 S

j
i = s. Hence, we ignore the M th best SNR

3We suppress the conditioning on the indices Ii in order to avoid cumber-
some expressions.
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and calculate the joint CDF 4 of (S1
i , . . . S

M−1
i , Seff

i ) as

follows.

F
S1
i ,...S

M−1
i ,S

eff
i

(s1, . . . sM−1, s) (16)

= P(S1
i ≤ s1, . . . , S

M−1
i ≤ sM−1, S

eff
i ≤ s), (17)

= P(S1
i ≤ s1, . . . , S

M−1
i ≤ sM−1, S

M
i ≤ Ms−

M−1
∑

j=1

sj),

= F
S

(M)
i

(s1, . . . sM−1,Ms−

M−1
∑

j=1

sj).

Now taking the partial derivatives with respect to

s1, . . . , sM−1, s, we get

f
S1
i ,...S

M−1
i ,S

eff
i

(s1, . . . sM−1, s) (18)

= Mf
S

(M)
i

(s1, . . . sM−1,Ms−

M−1
∑

j=1

sj), (19)

= Me−(Ms−
∑M−1

j=1 sj), (20)

for 0 ≤ s1 ≤ s2 ≤ . . . ≤ Ms−

M−1
∑

j=1

sj ,

where the factor M in equation (19) is the Jacobian of the

linear transformation relating the random vectors S
(M)
i and

[S1
i , . . . S

M−1
i , Seff

i ]. Next, we calculate the conditional joint

pdf of the best M − 1 sub-bands given Seff
i .

f
S

(M−1)
i |Seff

i =s
(s1, s2, . . . , sM−1)

=
f
S1
i ,...S

M−1
i ,S

eff
i

(s1, . . . sM−1, s)

f
S

eff
i

(s)
,

=
Me−(Ms−

∑M−1
j=1 sj)

f
S

eff
i

(s)
, 0 ≤ s1 ≤ s2 ≤ . . . ≤ Ms−

M−1
∑

j=1

sj .

Now, we can find the conditional marginal density

f
S

j
i |S

eff
i =s,Ii=I

(sj) for j = 1, . . . ,M − 1 by integrating out

the other variables in the above expression.

In order to compute the conditional pdf of SM
i ,

f
SM
i |Seff

i =s
(sM ), we start with the joint CDF of

(Seff
i , S2

i , . . . S
M−1
i , SM

i ) and repeat the above steps

starting from equation (17).

The outage probability can thus be determined as

P̂i,ij (r) = P(Ci,ij ≤ r|γeff
i = γ, Ii = I),

= P(log2(1 +
P

M ′
γ
ij
i ) ≤ r|γeff

i = γ, Ii = I),

= P(Sj
i ≥ Ne

− 2r−1
P
M′ |Seff

i = Ne−γ , Ii = I),

=

∫ N

y

f
S

j
i |S

eff
i =Ne−γ ,Ii=I

(sj)dsj .

(21)

where y = Ne
−

(

2r−1
P
M′

)

. Closed form expressions for the

outage probabilities (21) can be obtained through some tedious

computations. We provide explicit expressions for the case

4F(.) denotes Cumulative Distribution Function (CDF).

M = 3 in Appendix C. The outage probabilities computed in

(21) are used in Step 4 of the resource allocation algorithm.

VI. SIMULATION RESULTS

In this section, we present simulation results that demon-

strate the throughput gains achieved by the proposed policy

over other existing policies. We also demonstrate that the

limiting approximation we use to obtain closed form outage

probability expressions is a good approximation.

The proposed policy (labeled as “optimal” in the plots)

is throughput optimal among all policies that use the lim-

ited channel feedback scheme described in Section II. Three

important components of our policy are: (1) evaluation of

the conditional expected CQI for each sub-band from the

EESM, (2) evaluation of goodput while accounting for out-

age probability, and (3) optimal utilization of queue length

information. To illustrate the importance of each component

of our proposed policy, we compare the proposed policy

with the following policies (each of the heuristic policies

ignores at least one component of our proposed policy): (1) a

throughput optimal policy with perfect CQI (labeled “Perfect

CQI”), (2) a policy that uses queue length information but

assumes that the reported EESM is the CQI for all the best M
reported sub-bands (labeled “Heuristic 1”), (3) a policy that

uses queue length information and evaluates the conditional

expected CQI for the best M reported sub-bands without

accounting for outage probability (labeled “Heuristic 2”), and

(4) a proportionally fair rate allocation policy that uses the

conditional expected CQI and goodput evaluation without

using queue length information (labeled “PF”).

A. Throughput optimality: Comparison of aggregate arrival

rate

A single-cell OFDM downlink with K = 100 UEs is

simulated. The number of subcarriers is 512 and there are

12 subcarriers in each sub-band. Two channel models are

considered: (1) i.i.d. sub-bands, and (2) Correlated sub-bands

resulting from a 6-path channel (i.e., L = 6) with an uniform

power-delay profile where each path is Rayleigh fading. The

arrival traffic for the ith UE is assumed to be Poisson with with

parameter λi. The channel feedback from each UE is assumed

to be the best M sub-bands and EESM for these sub-bands.

Figures 1 and 2 show the average queue length (averaged

across UEs and time slots) versus the aggregate arrival rate

(i.e., sum of λi’s) for the i.i.d. and correlated sub-band cases

respectively. λi is chosen as iλ, i.e., each UE has a different

arrival traffic rate, and λ is varied to change the arrival traffic

load. Also, M = 3 and the number of sub-bands N = 43.

It is clear that the proposed policy can support significantly

higher arrival traffic for the same average queue length than

the heuristic policies. The Perfect CQI policy is also shown to

quantify the loss due to limited feedback. It is also clear that

the proposed policy provides performance gains even in the

correlated sub-band case. Similar results can been observed

for M = 4 in Figures 3, 4 and 5.
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Fig. 1. i.i.d. sub-bands case: M = 3, N = 43, L = 6, η = 1, γave,i = 1 ∀ i.
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Fig. 2. Correlated sub-bands case: M = 3, N = 43, L = 6, η = 1,
γave,i = 1 ∀ i.

B. Weak limit approximation: i.i.d. sub-bands case

The weak limit approximation improves as the number of

sub-bands increases. Figure 6 shows the conditional CDF of

the CQI of the best sub-band given a particular EESM for

the best M sub-bands. Four cases of N (the total number of

sub-bands) are shown. Note that the number of subcarriers is

12N . It can be observed that the weak limit approximation is

very good for N = 22 and N = 43.

C. Weak limit approximation: correlated sub-bands case

Figure 7 shows the conditional CDF of the CQI of the

best sub-band given a particular EESM for the best M sub-

bands. The sub-bands are correlated here since L < N . In this

comparison, the number of paths L is approximately equal to

half the number of sub-bands N . It can be observed that the

correlated sub-band case is very similar to the i.i.d. sub-band

case for this L/N ratio of approximately 0.5. Furthermore, as

N increases the weak limit approximation is very good.

In Figure 8, L/N is approximately 0.25. It can be observed

that the i.i.d. sub-bands case and correlated sub-bands case
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Fig. 3. i.i.d. sub-bands case: M = 4, N = 43, L = 6, η = 1, γave,i = 1 ∀ i.
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Fig. 4. Correlated sub-bands case: M = 4, N = 43, L = 6, η = 1,
γave,i = 1 ∀ i.

are not as close as in the case where L/N is approximately

0.5. However, it should be noted that even in this case the

proposed throughput optimal policy provides performance gain

over heuristic and PF policies (as seen in Figures 2, 4 and 5).

VII. CONCLUSIONS

We proposed a queue-aware policy for allocating sub-

bands in the LTE downlink when each UE reports the best

M sub-band indices and a single effective CQI for these

bands. The throughput optimality of the proposed policy was

shown using the Lyapunov stability framework. The policy

assigns each sub-band to the UE with the best queue-length

goodput product for that sub-band. The goodput was obtained

by deriving analytical expressions for the conditional outage

probability of each sub-band given the effective CQI. The

conditional outage probability was derived by exploiting a

limit theorem on the joint distribution of the SNR of the

best sub-bands. The proposed policy supports significantly
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Fig. 5. Correlated sub-bands case: M = 4, N = 22, L = 11, η = 1,
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Fig. 6. Conditional CDF of best sub-band given γeff = −1.5 + logN ,
M = 3, η = 1.

higher arrival traffic than existing policies like: (1) proportional

fair allocation based on CQI that does not consider queue

information, (2) queue-aware policies that use the effective

CQI as the CQI of each sub-band, and (3) queue-aware policies

that do not account for outage in the estimation of goodput.

APPENDIX A

PROOF OF THEOREM 1

Proof. If the arrival rate vector λ is stabilizable by some policy

Π ∈ P then ∃ǫ = (ǫ1, ǫ2, . . . , ǫK) with ǫi > 0 ∀ i such that

λi ≤

N
∑

j=1

bi,jri,j(1− Pi,j(ri,j))− ǫi, ∀ i,

where bi,j is the fraction of jth sub-band allocated to ith

UE and ri,j is the rate assigned to [i, j] by policy Π. Next,

we invoke Scheffé’s Lemma [37], which asserts the uniform

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

SNR

C
D

F
 o

f 
b
e
s
t 
s
u
b
−

b
a
n
d
 S

N
R

N=6, L=3

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

SNR

C
D

F
 o

f 
b
e
s
t 
s
u
b
−

b
a
n
d
 S

N
R

N=11, L=6

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

SNR

C
D

F
 o

f 
b
e
s
t 
s
u
b
−

b
a
n
d
 S

N
R

N=22, L=11

−3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

SNR

N=43, L=22

C
D

F
 o

f 
b
e
s
t 
s
u
b
−

b
a
n
d
 S

N
R

 

 

Weak limit

i.i.d. sub−bands

Correlated sub−bands

Fig. 7. Conditional CDF of best sub-band given γeff = −1.5 + logN ,
M = 3, η = 1.

−3 −2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

C
D

F
 o

f 
b
e
s
t 
s
u
b
−

b
a
n
d
 S

N
R

N=43, L=11

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

C
D

F
 o

f 
b
e
s
t 
s
u
b
−

b
a
n
d
 S

N
R

N=22, L=6

 

 

Weak limit

i.i.d. sub−bands

Correlated sub−bands

Fig. 8. Conditional CDF of best sub-band given γeff = −1.5 + logN ,
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convergence of |Pi,j(r)− P̂i,j(r)| to zero. Thus, for large N ,

|Pi,j(r)− P̂i,j(r)| ≤ δNi,j , ∀ r, i, j,

where δNi,j is a small positive number independent of r.. Hence,

for large N ,

1− Pi,j(r)− δNi,j ≤ 1− P̂i,j(r) ≤ 1− Pi,j(r) + δNi,j (22)

Since for every sub-band, our policy assigns a∗i,j and r∗i,j
such that

∑K
i=1 Qi(t)a

∗
i,jr

∗
i,j(1− P̂i,j(r

∗
i,j)) is maximized, the

following inequality holds good ∀ j, {bi,j}, {ri,j}.

K
∑

i=1

Qi(t)bi,jri,j(1− P̂i,j(ri,j))

≤

K
∑

i=1

Qi(t)a
∗
i,jr

∗
i,j(1− P̂i,j(r

∗
i,j)).

Using (22) we get,

K
∑

i=1

Qi(t)bi,jri,j(1− Pi,j(ri,j)− δNi,j)

≤

K
∑

i=1

Qi(t)a
∗
i,jr

∗
i,j(1− Pi,j(r

∗
i,j) + δNi,j).
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Therefore, for our policy, the Lyapunov drift can be upper

bounded as

∆(Q(t)) ≤ B−
K
∑

i=1

Qi(t)



ǫi −

N
∑

j=1

(a∗i,jr
∗
i,j + bi,jri,j)δ

N
i,j



 .

Note that at most M of the a∗i,j and bi,j are non-zero for each

user i which ensures that the summation is finite even if N
is large. Thus, for any ǫ, there exists a large enough N for

which

ǫi −

N
∑

j=1

(a∗i,jr
∗
i,j + bi,jri,j)δ

N
i,j > 0, ∀ i,

which ensures that the Lyapunov drift becomes negative as

queues grow. i.e., the proposed policy stabilizes all the arrival

rates which can be stabilized by any other policy for large

enough N . Hence it is asymptotically throughput optimal.

APPENDIX B

PROOF OF LEMMA 1

Proof. Let fXi
(xi) and fYi

(yi) denote the pdf of Xi and Yi

respectively. Thus,

fXi
(x) = e−x, x ≥ 0, ∀i.

Consider n = 2.

fY (2)(y1, y2) = fY1
(y1)fY2|Y1=y1

(y2), 0 ≤ y1 ≤ y2,

= fX1
(y1)fX2

(y2 − y1),

= e−y2 , 0 ≤ y1 ≤ y2.

Hence the lemma holds for n = 2. We use this as the basis

for the following proof by induction. We assume that the (15)

holds for given n. Then,

fY (n+1)(y1, y2, . . . , yn+1)

= fY (n)(y1, y2, . . . , yn)fYn+1|Y (n)=(y1,y2,...,yn)
(yn+1),

= e−ynfXn+1
(yn+1 − yn),

= e−yn+1 , 0 ≤ y1 ≤ y2 ≤ . . . ≤ yn+1.

So by induction, the lemma holds for all n ≥ 2.

APPENDIX C

EXPRESSION FOR OUTAGE PROBABILITY FOR M = 3

The region for which the conditional joint pdf of S1
i and

S2
i is non-zero is shown by the shaded area in Figure 9 We

↑s2

→
s1

3s
2

3s

(s, s)

Fig. 9. Region for which the conditional joint pdf of S1

i and S2

i given

S
eff
i = s is non-zero

can find the marginal density as follows. Note that conditional

pdfs are non-zero only for the specified region.

(i) Pdf of Seff
i .

– For 0 ≤ s ≤ ∞,

f
S

eff
i

(s) =

∫ s

0

∫

3s−s1
2

s1

3e−(3s−s1−s2)ds2ds1,

=
9

2
e−s +

3

2
e−3s − 6e−

3s
2 .

(ii) Best sub-band SNR.

– For 0 ≤ s1 ≤ s,

f
S1
i |S

eff
i =s

(s1) =

∫

3s−s1
2

s1

3e−(3s−s1−s2)

f
S

eff
i

(s)
ds2,

=
6e(−

3s
2 +

s1
2 ) − 6e2s1

3− 12e
3s
2 + 9e2s

.

(iii) Second best sub-band SNR.

– For 0 ≤ s2 ≤ s,

f
S2
i |S

eff
i =s

(s2) =

∫ s2

0

3e−(3s−s1−s2)

f
S

eff
i

(s)
ds1,

=
6es2(−1 + es2)

3− 12e
3s
2 + 9e2s

.

– For s ≤ s2 ≤ 3s
2 ,

f
S2
i |S

eff
i =s

(s2) =

∫ 3s−2s2

0

3e−(3s−s1−s2)

f
S

eff
i

(s)
ds1,

=
6e3s(e−s2 − e−3s+s2)

3− 12e
3s
2 + 9e2s

.

(iv) Third best sub-band SNR.

↑s3

→
s23s

2

3s

(3s, 0)

(s, s)

( 3s2 , 3s2 )

Fig. 10. Region for which the conditional joint pdf of S2

i and S3

i given

S
eff
i = s is non-zero

In-order to find the expression for f
S3
i |S

eff
i =s

(s3), we

follow a similar procedure but by ignoring the best sub-

band SNR. The joint pdf of (Seff
i , S2

i , . . . , S
3
i ) is given

by

f
S

eff
i ,S2

i ,...,S
3
i
(s, s1, . . . , sM )

= Mf
S

(3)
i

(3s− s2 − s3, s2, s3),

= 3e−s3 , 0 ≤ 3s− s2 − s3 ≤ s2 ≤ s3.
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The conditional joint pdf can is given by

f
S2
i ,S

3
i |S

eff
i =s,Ii=I

(s2, s3) =
3e−s3

f
S

eff
i

(s)
, (23)

for 0 ≤ 3s− s2 − s3 ≤ s2 ≤ s3.

The region specified in (24) is shown in Figure 10. The

conditional marginal pdf is obtained as follows.

– For s ≤ s3 ≤ 3s
2 ,

f
S3
i |S

eff
i =s

(s3) =

∫ s3

3s−s3
2

3e−s3

f
S

eff
i

(s)
ds2,

=
9e−s3(s3 − s)

3e−3s − 12e−
3s
2 + 9e−s

.

– For 3s
2 ≤ s3 ≤ 3s,

f
S3
i |S

eff
i =s

(s3) =

∫ 3s−s3

3s−s3
2

3e−s3

f
S

eff
i

(s)
ds2,

=
3e−s3(3s− s3)

3e−3s − 12e−
3s
2 + 9e−s

.

The outage probabilities P̂i,ij (r) for j = 1, . . . , 3 can be

obtained as follows. let y = Ne
−

(

2r−1
P
M′

)

.

(i) Best sub-band.

– For 0 ≤ y ≤ s,

P̂i,i1(r) =
3e2s + e2y − 4e(

3s
2 + y

2 )

1− 4e
3s
2 + 3e2s

.

(ii) Second best sub-band.

– For 0 ≤ y ≤ s,

P̂i,i2(r) =
2es

1 + 2e
s
2 + 3es

+
(es − ey)(es + ey − 2)

1− 4e
3s
2 + 3e2s

.

– For s ≤ y ≤ 3s
2 ,

P̂i,i2(r) =
2e−y(e

3s
2 − ey)2

1− 4e
3s
2 + 3e2s

.

(iii) Third best sub-band.

– For s ≤ y ≤ 3s
2 ,

P̂i,i3(r) =
3e−3s − 12e−

3s
2 − 9se−y + 9ye−y + 9e−y

3e−3s − 12e−
3s
2 + 9e−s

.

– For 3s
2 ≤ y ≤ 3s,

P̂i,i3(r) =
3e−3s − 3e−y + 9se−y − 3ye−y

3e−3s − 12e−
3s
2 + 9e−s

.
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