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ABSTRACT. Let R(z) denote the ring of polynomials in g freely noncommuting
variables ¢ = (z1,...,xzg4). There is a natural involution * on R(z) determined
by 2% = z; and (pg)* = ¢*p*, and a free polynomial p € R(z) is symmetric
if it is invariant under this involution. If X = (X1,...,Xy) is a g tuple of
symmetric n X n matrices, then the evaluation p(X) is naturally defined and
further p*(X) = p(X)*. In particular, if p is symmetric, then p(X)* = p(X).
The main result of this article says if p is symmetric, p(0) = 0 and for each n
and each symmetric positive definite n X n matrix A the set {X : A—p(X) > 0}
is convex, then p has degree at most two and is itself convex, or —p is a
hermitian sum of squares.

1. INTRODUCTION

Let R{z) denote the ring of polynomials over R in the freely noncommuting
variables © = (z1,...,%4). A p € R(z) is a free polynomial and is a finite sum

P=>_ puw,

over words w in = with coefficients p,, € R. The empty word, which plays the role
of the multiplicative identity, will be denoted (0.

For a word
(1'1) W= Tj; Ljy """ Ty

let

* — . PR . .
w = Ty, LjyLjy -

The operation * extends naturally to an involution on R{xz) by

PP = puw’

Let S, (RY) denote the set of g-tuples X = (Xi,...,X,) of n x n symmetric
matrices. For a word w as in (1.1), substituting X, for z; gives
XY =w(X) = X;,Xj, - X,

This evaluation extends to R{z) in the obvious way,

p(X) =) puw(X).

Observe, for 0 € S, (RY), that p(0) = pgl,, where I,, is the n x n identity.
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2582 S. BALASUBRAMANIAN AND S. MCCULLOUGH

* *

The transpose operation
R{x) in that

on matrices is compatible with the involution * on

P(X)* = p"(X).
A polynomial p € R{z) is symmetric if p = p*, and in this case p(X)* = p*(X) =
p(X) so that p takes symmetric values.

Let S, (R) denote the collection of symmetric n x n matrices. Given S € S, (R)
the notation S > 0 and S > 0 indicate that S is positive definite and positive
semidefinite respectively. A symmetric p € R{z) is quasi-convex if p(0) = 0, and
for each n and positive definite matrix n X n matrix A the set

D(A) = {X €S,(RY) : A— p(X) = 0}

is convex.
A symmetric polynomial p is a (hermitian) sum of squares if there exists an m
and hy, ..., hy, € R{z) such that
p=2_ hihj.

Evidently such a p is positive in the sense that for each n and X € S,,(R9),
p(X) = 0.
The following theorem is the main result of this article.

Theorem 1.1. If p is quasi-convex, then either —p is a sum of squares, or there
exist a linear polynomial £ € R(x) and finitely many linear polynomials s; € R{z)
such that

(12) p(e) = @) + 37 5 (2)s;2).

Thus, p is a hermitian sum of squares of linear polynomials plus a linear term.

Further, if there is an N such that for each n > N there is a B € S,,(R) such
that B % 0 and {X € S,(R9) : B —p(X) = 0} is convez, then —p is a sum of
squares if and only if p = 0.

Remark 1.2. It is easy to see that if p is a hermitian sum of squares of linear
polynomials plus a linear term, then p is quasi-convex.

1.1. Related results and remarks. Theorem 1.1 falls within the emerging fields
of free analysis and free semialgebraic geometry. Free semialgebraic geometry is,
by analogy to the commutative case, the study of free polynomial inequalities. For
instance there are now a number of free Positivstellensatze for which [2], [15], [16]
and [11] are just a few references. In this regard, see also [22] and its Proposi-
tion 17. There is also a theory of free rational functions. Recent developments in
this direction have been related to noncommutative multi-variate systems theory.
See for instance [1]. Free rational functions actually appeared much earlier in the
context of finite automata. See for instance [20]. Issues of convexity in the context
of free polynomials and rational functions naturally arise in systems theory prob-
lems [12,14] and mathematically are related to the theory of operator spaces and
systems and matrix convexity [6]. More generally, there is a theory of free analytic
functions which arise naturally in several contexts, including free probability. A
sampling of references includes [23], [13], [19] and [18].
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Some systems theory problems present as a free polynomial inequality (or more
realistically as a system of matrix-valued free polynomial inequalities) involving
two classes of free (freely noncommuting) variables, say the a variables and the x
variables. The a variables are thought of as known (system or state) parameters and
the x variables as unknowns. For a given free polynomial ¢, of interest is the case
that, for each fixed A in some distinguished collection of known parameters, the
inequality ¢(A,z) > 0 is convex in x. Thus this article considers the simplest such
case. Namely, there is just one a variable and ¢(a,z) = a — p(z) for a polynomial
p in the variables x alone. For comparison, a main result of [8] says, generally, if
g(A, ) is convex in z for each fixed A, then ¢(a,z) = L(a,z) + Y h;(a,z)*h;(a, )
where L has degree at most one in = and each h; is linear in z. The articles [3-5,9]
contain results for polynomials f whose positivity set, namely the set of those X
such that f(X) > 0, is convex.

A symmetric polynomial p is matrix convex if for each n, each pair X,Y €
Sp(RY), and each 0 < ¢ <1,

ptX + (1= t)Y) 2 tp(X) + (1 - t)p(Y).

The following theorem, pointed out by the referee, generalizes the main result of
[10].
Theorem 1.3. For a symmetric polynomial p the following are equivalent:
(i) p—p(0) has the form in (1.2);
(i) p is matriz convex;
(iii) D(A) is convex for every A € S, (RY);
(iv) p(z) — p(0) is quasi-convex and p(0) — p(x) is not a nonzero sum of squares.

A remark is in order about the definition of quasi-convex used here. A classical
definition says that a function f of several (commuting) variables is quasi-convex
if each of its sub-level sets is convex. (The interested reader can work out the rela-
tionships between this definition of quasi-convex and the seemingly more popular
one f(tz + (1 —1t)y) < max{f(x), f(y)} for 0 <t < 1.) In considering a free analog
here, because of the role that positivity plays in the arguments, it was convenient
to make the harmless normalization that p(0) = 0 and then only require convexity
of the (level) sets D(A) for A positive definite in the definition of quasi-convex.

1.2. Reader’s guide. The remainder of this paper is organized as follows. Issues
surrounding sums of squares are dealt with in Section 2. Just as in the commutative
case, convexity is related to positivity of a Hessian. The necessary definitions and
basic results appear in Section 3. Section 4 examines membership in the boundary
of the set D(A) as well as consequences of the convexity hypothesis. Theorem 1.1
is proved in the final section, Section 5.

2. THE SUM OF SQUARES CASE

The following proposition dispenses with the alternative that —p is a sum of
squares.

Proposition 2.1. If there is an N such that for each n > N there exists a B €
Sn(R) such that B % 0 and the set D(B) is convez, then —p is not a nonzero sum
of squares.
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Proof. Arguing by contradiction, suppose —p is a sum of squares. Consider the
polynomial

2d 4
~plta) = 3 p, (@)

where the p; are homogeneous of degree j polynomials in the free variables z.
Since —p is a sum of squares, —p(tx) has even degree as a polynomial in ¢, and
so, without loss of generality, we may assume that psy is nonzero. Now pog is
itself a sum of squares and hence it takes positive semi-definite values. If, on the
other hand, pyq(X) is never positive definite, then det(p24(X)) = 0 for all n and
X € S,(RY). An application of the Guralnick-Small lemma as found in [8] then
gives the contradiction that pog is the zero polynomial. Thus there is an n and an
X € S, (RY) such that p2q(X) > 0. By assumption, there is a B € S, (R) such that
B % 0 and D(B) is convex. Choosing ¢ sufficiently large, it may be assumed that
both B—p(tX) and B —p(—tX) are positive definite. In this case tX and —tX are
in D(B) and thus 0 = 1(tX + (—tX)) € D(B), contradicting the assumption that
B is not positive semidefinite and completing the proof. O

2.1. When —p is not a sum of squares. Given n, let K(n) denote the set of
those X € S, (RY9) such that p(X) has a positive eigenvalue. The K(n) are open
sets, the issue is whether they are empty or not. In the free setting, and unlike in
the case of several commuting variables, positive polynomials are sums of squares
with [21], [22] and [7] as a very small sampling of the references. (For a reference
which explicitly treats the case of the symmetric variables (2} = z;) used here, see
[17].) In particular, each IC(n) is empty if and only if —p is a sum of squares.

The conclusion of the following lemma will be used later in the proof of Theorem
1.1 when —p is not a sum of squares.

Lemma 2.2. Suppose q¢ € R{x) and —p is not a sum of squares. If det(q(X)) =0
for every n and X € K(n), then ¢ = 0.

Before beginning the proof of Lemma 2.2 we record the following simple fact.

Lemma 2.3. Suppose ¢ € R(z) and m is a positive integer. If IC(m) is nonempty
and det(q(X)) =0 for all X € K(m), then det(¢(X)) =0 for all X € S,,,(R9).

Proof. The function S,,(R?) 3 X — det(g(X)) is a polynomial in the entries of X.
Hence, if it vanishes on an open set it must be identically zero. |

Given integers k, ¢, let m = k 4 ¢ and consider the subspace
S =Sk(RY) & Sp(RY)

of S;,,(RY). Each tuple X € S is a direct sum X = (Y1 @ Z1,...,Y, & Z,), where
Y=M,...,Y,) € Sg(R?) and Z = (Z1,...,Zy) € S¢(RY) and where

Y; 0
Y8 2= <0J Zj)'

Proof of Lemma 2.2. Since —p is not a sum of squares, by the remarks at the
outset of this section, there is an m and a Y € K(m) such that p(Y") has a positive
eigenvalue. First observe that for any positive integer k and X € Si(RY) that
p(X@Y) =p(X) @ p(Y) too has a positive eigenvalue. Thus, K(n) is nonempty
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for each n > m. Lemma 2.3 now implies that det(q(X)) = 0 for each n > m and
X €S, (R9Y).

Now suppose 1 < ¢ < m. Since n = mf > m, det(¢(X)) =0 for all X € S,,(R9).
Given X € S;(RY), the tuple

X =P x es.(RY).
1
Thus (det(g(X)))™ = det(q(X)) = 0. Hence det(¢(X)) = 0 for every X € Sy(R9).
Since det(g(X)) = 0 for every n and X € S, (RY), the Guralnick-Small lemma in
[8] implies ¢ is the zero polynomial. O

3. DIRECTIONAL DERIVATIVES AND THE HESSIAN

Given p € R(x), another set of freely noncommuting variables h = (h1, ..., hy)
and the real parameter t,

ple+th) =3 py(@)[H)F,

where p;(z)[h] are polynomials in the variables (z,h) = (z1,...,2q,h1,...,hy)
(which are of course freely noncommuting). The notation indicates the different
role that these variables play. Indeed, observe that p;(z)[h] is homogeneous of
degree 7 in h.

The polynomial py(z)[h] is the directional derivative or simply the derivative of
p (in the direction h) and is denoted p’(z)[h]. The polynomial 2ps(x)[h] is the
Hessian of p and is denoted by p”(z)[h].

Given X € S, (RY) and v € R", let

T(X,v) = {H € S,(RY) : p/(X)[H]v = 0} C S,,(RY).

In the case that (A — p(X))v = 0, the subspace T (X,v) is the clamped tangent
plane to D(A) at (X,v) [3]. In this case, if one chooses H € T(X,v), then

(A= p(X + tH))o,v) = — 20 (X)[H]o, o) + (1),

for some polynomial e(t). This identity, much as in the commutative case, provides
a link between convexity and positivity of the Hessian of p.

4. THE BOUNDARIES
Fix p satisfying the hypothesis of Theorem 1.1. In particular, p(0) = 0.

Lemma 4.1. Let n and a positive definite A € S, (R) be given. A given X € S,,(RY)
is in the boundary of D(A) if and only if A — p(X) is positive semidefinite and has
a nontrivial kernel.

Proof. Suppose that X is in the boundary of D(A). It follows that A — p(X) = 0.
It must be the case that A — p(X) has a nontrivial kernel, because otherwise,
X € D(A), which is an open set.

To prove the converse, suppose A — p(X) is positive semidefinite and has a
nontrivial kernel. Clearly, X & D(A). For positive integers n, let A, = (%) A.
Then A,, —p(X) is positive definite. Hence X € D(A,,) and by convexity of D(A,),
for a fixed 0 < s < 1, 4, — p(sX) > 0. Letting n tend to infinity, it follows that
A—p(sX)=0.
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Consider the function ¢ : R — R defined by v (t) = det(A — p(tX)). From what
has already been proved, ¥ (t) > 0 for 0 < ¢ < 1. Since 9(t) is a polynomial in the
variable ¢, either it vanishes everywhere on R or only on a finite subset of R. If
1 (t) vanishes everywhere, then ¢(0) = det(A) = 0, which contradicts the positive
definiteness of A. Thus 1 (¢t) > 0 except for finitely many points in (0,1), and thus
there is a sequence (sy,) from (0, 1) such that each s, X € D(A4) and s, X — X.
Hence X is in the boundary of D(A). O

Suppose that X € S, (RY) is in the boundary of D(A) and v # 0 is a vector in
R™ such that Av = p(X)w.

Proposition 4.2. With X and v as above, if the dimension of the kernel of A—p(X)
is one, then there exists a subspace H of T(X,v) of codimension one (in T(X,v))
such that, for H € H,

(4.1) (p"(X)[H]v,v) >0

Remark 4.3. Since T (X, v) has codimension at most n in S, (R?), it turns out that
‘H will have codimension at most n+ 1 in S, (RY). In fact, a slight modification of
the proof below shows that there is a subspace K of S,,(RY) of codimension at most
n for which equation (4.1) holds. The key point is, with A as in the proof of the
proposition, if A(H) = 0, then (p'(X)[H]v,v) = 0.

Unlike a related argument in [3], the proof here does not rely on choosing a curve
lying in the boundary of a convex set, thus eliminating the need for a corresponding
smoothness hypothesis.

Proof. Since X is in the boundary of the convex set D(A), there is a linear functional
A:S,(R9) — R such that A(Z) <1 for Z € D(A) and A(X) = 1. The subspace

H={H e T(X,v): A(H) =0}

has codimension one in 7 (X, v).

Fix H € H and define F : R — S,,(R) by F(t) = A —p(X +tH). Thus, F is a
matrix-valued polynomial in the real variable ¢. Let [v] denote the one dimensional
subspace of R™ spanned by the vector v. Write F'(¢), with respect to the orthogonal
decomposition of R™ as [v]* @ [v], as

Q) g
F“)—(g@)* f(t))’

where ) is a square matrix-valued polynomial, g is a vector, and f is a scalar-
valued polynomial. The assumption (A4 — p(X))v = 0 implies that f and g vanish
at 0. The further assumption that H € T(X,v) implies that f and g actually
vanish to second order at 0. In particular, there are polynomials 8 and y such that
g(t) = £28(t) and f(t) = t>y(1).
Observe that
7(0) = =" (X)[H]v, v).

Thus, to complete the proof of the theorem it suffices to use the choice of A (and
thus the convexity hypothesis on D(A)) and the assumption on the dimension of
the kernel of A —p(X) to show that v(0) < 0. Indeed, since the kernel of A —p(X)

has dimension one, it follows that Q(0) > 0. Therefore, there exists an ¢ > 0 such
that if |t| < €, then Q(t) > 0. On the other hand, A(X +tH) = A(X) =1 for all ¢.
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Thus X +tH ¢ D(A), which means F'(t) = A — p(X +tH) # 0. Hence, the Schur
complement of F' is nonpositive; i.e.,
£2ly(t) — 67 (HQ™ (H)B(H)] < 0.
It follows that, for [t| < e,
V() < BT (QTHBB®),
and hence (0) < 0. O

We end this section with the following simple observation.

Lemma 4.4. Suppose X € S,(RY) and 0 # v € R™. If there is a A > 0 such
that p(X)v = Av, then there exists a positive definite A € S, (R) such that X is in
the boundary of D(A) and v spans the kernel of A — p(X). Hence, for the triple
(A, X, v) the conclusion of Proposition 4.2 holds.

Further, if, for a given positive definite A € S, (R), X is in the boundary of
D(A), and v is a nonzero vector such that (A —p(X))v = 0, then for each € > 0
there is a Ac > 0 such that ||A — Ac|| < €, X is in the boundary of D(A.) and the
kernel of (Ac — p(X)) is spanned by v.

Proof. With respect to the decomposition of R as [v] @ [v]*,

p(X) = (3 3)

for some symmetric matrix 7. Choose y > 0 so that u — T > 0 and let
A0
(0.

0 0
A_p(X)_<O M_T>
is positive semidefinite with a one dimensional kernel spanned by v. From Lemma
4.1, X is in the boundary of D(A).
As for the further statement, diagonalize with respect to same orthogonal de-

composition of R™ as above,
0 0

for some positive semidefinite 7. Let P denote the projection onto [v]* and let

A. = A+ eP. Then
0 0
Ae = p(X) = (0 6+T)

and the result follows. O

In particular,

5. DIRECT SUMS AND LINEAR INDEPENDENCE

As in Section 2, let KC(n) denote the set of those X € S,,(RY) such that p(X) has
a positive eigenvalue. From here on, it is assumed that —p is not a sum of squares.
Equivalently, K(m) is not empty for some m.

Let K(n) denote the set of pairs (X, v) such that X € K(n) and v is an eigenvector
of p(X) corresponding to a positive eigenvalue. By Lemma 4.4, if (X,v) € I@(n),
then there exists a positive definite A € S,,(R) such that X is in the boundary of
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D(A) and the kernel of A —p(X) is spanned by v. Let (x); denote the set of words
of length at most k.

Lemma 5.1. Fiz a positive integer k. Given X € S,,(RY) and v € R", there is a
nonzero q € R{x) of degree at most k such that q(X)v = 0 if and only if the set
{w(X)v:w € (x)} is linearly dependent.

If g € R{z) and ¢(X)v =0 for alln and (X,v) € K(n), then ¢ = 0.

Proof. The first statement is evident. As for the second, the hypotheses imply that
det(¢(X)) = 0 for each n and X € K(n). Hence by Lemma 2.2, ¢ = 0. O

Lemma 5.2. Let d denote the degree of p. Given a positive integer N, there exists
ann > N and a pair (X,v) with X € S,(RY) and v # 0 in R™ such that:

(i) there is a subspace H of T(X,v) of codimension at most one such that, for
all H e H,
(p"(X)[H]v,v) = 0;
(i) if q is of degree at most d — 1 such that ¢(X)v =0, then ¢ = 0.

Proof. Let P denote the vector space of polynomials in g variables of degree at
most d — 1. Given (Y, w) € K(n), let

QY,w)={qeP:qY)w=0}.

Thus, Q(Y,w) is a subspace of the finite dimensional vector space P. Further, by
Lemma 5.1,

(e, w): (Y,w) € K(n), neN}=/{0}.

Because of finite dimensionality, there are positive integers ¢t and ni,...,n; and
(Y7, w?) € K(n;) such that

N, w) = {0},

In particular, if ¢ € R(z) has degree at most d—1 and q(Y7)w? =0 for j =1,... ¢,
then ¢ = 0.

Let Z=@ Y7 and z = @w’. Thus Z acts on a space of dimension n’ = n;.
Choose a positive integer k such that n = kn/ > N and let X = @le and
v = @lf z. From the definition of K(n) and by Lemma 4.4, for each j there is
a positive definite A; € S, (R) such that Y7 is in the boundary of D(4;) and
(A4; —p(Y7)w? =0. Let B= A; and A’ = @]f B. Then (A" — p(X))v =0 and
A’ —p(X) = 0. Moreover, if ¢ has degree at most d — 1 and ¢(X)v = 0, then ¢ = 0.

Finally, choose a positive definite A € S,,(R) by the second part of Lemma 4.4
such that X is in the boundary of D(A) and the kernel of (A — p(X)) is spanned
by v. In particular, X is in the boundary of D(A). The triple (4, X, v) satisfies
the hypotheses of Proposition 4.2. Hence there is a subspace H of T(X,v) of
codimension at most one such that

(" (X)[H]v,v) >0
for all H € H. O
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The symmetric polynomial

r(z)[h] = p"(x)[h]

in the 2g variables (z1,...,24,h1,...,hy) is homogeneous of degree two in h. It
admits a representation of the form
Vo(z)[h]
r(@)[h] = [Vo(@)[R]" - - Va—a(2)[R]"] Z(x) : ;
Va—2(x)[h]

where Z(z) is a (uniquely determined square symmetric) matrix of free polynomials
and Vj(z)[h] is the vector with entries hyw over free words w of the variables
x1,...,x4 of length j and 1 < ¢ < g. (For details see [4].) The matrix Z = Z(0) is
the middle matrix.

Lemma 5.3. If Z is positive semidefinite, then p has degree at most two and,
moreover, p has the form in (1.2).

A proof can be found in [10]. The idea is that the middle matrix Z has an
antidiagonal structure which implies, if it is positive semidefinite, that only its
nonzero entries correspond to Vy[h], which is linear in h and independent of z.
Thus,

r(z)[h] = r[h] = Vo[h]T ZVo[h]

and it can be shown that Z must be positive semidefinite. Writing Z as a sum of
squares and using
1
p(a) = () + r(2)a]
expresses p in the form of (1.2).
The following lemma is a consequence of Lemma 7.2 from [4].

Lemma 5.4. There is an integer v depending only upon the degree d of the poly-
nomial p and the number g of variables such that the following holds. If
(i) n satisfies “T1 <1,
(i) X € S,(RY) and v € R™, and
(iii) there exists a subspace H of T(X,v) of codimension at most one such that for
each H € H (4.1) holds, and
(iv) there does not exist a nonzero polynomial q of degree at most d — 1 satisfying
¢(X)v =0,

then Z is positive semidefinite.

To prove Theorem 1.1 simply observe that the existence of an n that satisfies
conditions (i) - (iv) of Lemma 5.4 is guaranteed by Lemma 5.2. The conclusion Z
is positive semidefinite, combined with Lemma 5.3, now completes the proof.

It remains to prove Theorem 1.3. The equivalence of conditions (i) and (ii)
is the main result of [10]. That (ii) implies (iii) is easily checked. If (iii) holds,
then, by definition, p(z) — p(0) is quasi-convex. Moreover, by the second part of
Theorem 1.1, condition (iii) implies p(0) — p(x) is not a nonzero sum of squares.
Hence (iii) implies (iv). If (iv) holds, then Theorem 1.1 implies p(z) — p(0) is a
linear term plus a (hermitian) sum of squares of linear polynomials, and thus (i)
holds.
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