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While classical or quantum interacting liquids become turbulent under sufficiently strong driving,
it is not obvious what flow pattern an ideal quantum gas develops under similar conditions. Unlike
classical noninteracting particles which exhibit rather trivial flow, ideal fermions have to satisfy
the exclusion principle, which acts as a form of collective repulsion. We thus study the flow of an
ideal Fermi gas as it is driven out of a narrow orifice of width comparable to the Fermi wavelength,
employing both a microcanonical approach to transport, and solving a Lindblad equation for Marko-
vian driving leads. Both methods are in good agreement and predict an outflowing current density
with a complex microscopic pattern of vorticity in the steady state. Applying a bias of the order
of the chemical potential results in a short-range correlated antiferromagnetic vorticity pattern,
corresponding to local moments of the order of a tenth of a magneton, e~/2m, if the fermions are
charged. The latter may be detectable by magnetosensitive spectroscopy in strongly driven cold
gases (atoms) or clean electronic nanostructures (electrons).

PACS numbers: 03.75.Ss, 05.60.Gg, 05.30.Fk, 67.10.Hk

I. INTRODUCTION

Experimental advances in the rapid quenching and
imaging of ultracold atoms [1–6], as well as in the mi-
croscopy of nanoscale structures [7], make it possible
to observe interesting effects of current-carrying systems
with specific features attributable to their quantum na-
ture. On the other hand, it has long been known−ever
since the beginning of quantum mechanics [8]−that inter-
acting or noninteracting quantum fluids can be described
in terms of hydrodynamic equations [9–13]. In fact, the
many-body time-dependent Schrödinger equation is ex-
actly equivalent to the equations of motion for the den-
sity and velocity field, namely the continuity equation
and a hydrodynamic equation−albeit with an unknown
stress tensor [8, 10, 14]. As any viscous fluid, interacting
quantum liquids can exhibit a transition between lam-
inar and turbulent flows when driven strongly [13, 15],
and experiments on electron liquids to detect this phe-
nomenon have been proposed [16–18]. It has been argued
that electronic systems close to quantum criticality are
best suited to exhibit such turbulence, as they feature
a small ratio of shear viscosity and entropy density, un-
doped graphene [16, 19] or cold atoms at unitarity above
Tc [20] being probably the simplest such systems.
More specific effects in the flow of quantum fluids have

been studied, both experimentally and theoretically [21–
27], in the context of vorticity and turbulence in super-
fluids, focusing on the dynamics and the interactions
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of quantized vortices. However, another interesting as-
pect of fermionic quantum fluids has not received much
attention so far. Complex flow patterns are generally
attributed to the particles’ interactions which generate
nonlinearity and chaoticity in the dynamics. With the
advent of atomic gases where interactions among atoms
can be tuned to essentially zero [3], the question arises
whether the exclusion principle alone−a form of collec-
tive repulsion−may lead to interesting flow patterns, if
the Fermi gas is driven out of equilibrium. This is in
contrast to ideal classical gases, which definitely do not
have any interactions to produce a finite viscosity and the
associated turbulent effects [27]. However, that nontriv-
ial phenomena do arise in out-of-equilibrium flow of free
fermions was recently shown in 1d gases [28–31], where
the formation of shocks and interference ripples after a
local quench was observed, suggesting that even more in-
teresting phenomena could develop in higher dimensions.
Given that already in equilibrium, Pauli exclusion leads
to interesting interference phenomena in free fermions,
such as Friedel oscillations [32], one may expect even
more complex patterns out of equilibrium.

In this paper we study the simplest case exemplifying
these phenomena: driven ideal fermions in restricted
geometries in two dimensions. We show that they
indeed develop nontrivial vorticity patterns, which are
manifestations of the Fermi statistics. Antiferromagnetic
patterns are found not only in transients (unlike in the
above-mentioned 1d studies), but also in the long-time
steady state. The latter should facilitate their obser-
vation in experiments, such as most recent transport
measurements in cold atoms where constrictions as we
consider here have been realized [5, 6]. Note instead
that the ideal Bose gas, if prepared in a condensed
state at T = 0, reduces to a single-particle problem, so
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FIG. 1. (Color online) Studied setup: a narrow channel (A)
connected to a wide region (B). In the microcanonical setup
the dashed boundaries at ±L are hard walls, while they rep-
resent Markovian leads in the Lindblad approach. For large
L, the steady-state pattern near the orifice may be expected
to be the same in the two approaches.

that particular effects of “anti-exclusion” are absent.
However, we recall that the case of free bosons is a
pathological limit, which is likely to be modified by any
weak interaction, as it alters the low-energy spectrum
and thus ensures superfluidity, by establishing a finite
critical velocity.

The paper is organized as follows. In Sec. II we in-
troduce the model and the methods to be employed. In
Sec. III we present the main physical results, while their
experimental verification is discussed in Sec. IV. Conclu-
sions are given in Sec. V.

II. MODEL

In this work, we consider a two-dimensional Fermi gas
in the setup shown in Fig. 1: a narrow channel (A) of
width ǫ is connected at x = 0 to a much wider region
(B) of width W = 4ǫ (in all figures, if not specified
otherwise). We study the current flow, as the out-of-
equilibrium free Fermi gas is driven from A to B. We are
interested in the limit of very long regions, L→ ∞. This
problem is solved using two complementary approaches:
the microcanonical formalism [33, 34] for a closed sys-
tem, and the Lindblad equation in what was called the
“third quantization” formalism [35, 36] for a driven open
system. While the first method allows us in principle to
follow the entire dynamics at every instant of time, the
second one accesses directly the steady-state properties.

A. Microcanonical approach

We prepare fermions of mass m in the ground state

of the Hamiltonian H0 = − ~
2

2m∇2 + Vinθ(x) at chemical
potential µ, in the setup of Fig. 1, where θ(x) is the
Heaviside step function. This results in average densities
n̄A and n̄B in regions A, and B, respectively. We
consider L ≫ 1/n̄Aǫ, so as to simulate a quasi-infinite

system. At t = 0, we suddenly quench the potential

to H = − ~
2

2m∇2 + Vfinθ(−x), and study the ensuing
time evolution. As explained below, we only work with
combinations of biases (Vin, Vfin) for which either the
initial or the final potential is zero. In all numerical
implementations we discretize the system on a square
lattice with lattice constant a, using a tight-binding

model with hopping g = ~
2

2ma2 .

In order to highlight the effect of quantum statistics
within the microcanonical approach, we compare two dif-
ferent protocols. The first protocol, which we refer to as
expansion into fermions, starts from an initial state with
a roughly equal average density throughout the closed
geometry. This is obtained by fixing the initial potential
to Vin = 0 which establishes a chemical potential µ in
the sample. At t = 0, a bias of the order of the chemical
potential, Vfin ≈ µ/2, is turned on in region A, so as to
push the fermions out of the narrow channel into the large
box B. Under the influence of this bias, the fermions are
forced to exit from the narrow channel, and flow into the
Fermi sea, which is already present in the box B. Note
that the density profile of the latter is not entirely uni-
form, but oscillates in the transverse direction, because
of the boundary conditions imposed at y = ±W .

In the second protocol, which we refer to as expansion
into free space, the initial state is prepared by applying a
large potential Vin ≫ µ to region B, such that the gas is
initially confined to the narrow channel only. At t = 0,
the potential is released, and the gas is left to expand
freely (Vfin = 0) into the empty region B.

We will compare these two protocols to highlight the
role of finite density, and its oscillations in region B. The
latter are relevant only in the expansion into fermions
protocol. The quasisteady states obtained within that
protocol are the closest to the steady states that one
can realize within driven open systems, which will be
addressed in the next subsection.

We are interested in a quasisteady current flow in
the vicinity of the orifice, within a large time window
~/µ . t . L/vF , where vF ≈

√

2µ/m. In order to
ensure this, we always choose the conserved number of
fermions N , and the potentials Vin/fin such that the nar-
row channel is populated with a finite density in the ini-
tial state. In an expansion into fermions where no po-
tential is applied in the initial state, i.e., Vin = 0, a fi-
nite initial density in channel A requires that n̄Bǫ

2 > π
4

(assuming that n̄BW
2 ≫ 1, which we always ensured).

Since the wave function remains a Slater determinant at
all times, it is enough to solve for the time-dependent
single-particle eigenvalues, and eigenfunctions before the

quench, H0ψ
(0)
α (x, y) = Eαψ

(0)
α (x, y), and afterwards,

Hψβ(x, y) = Eβψβ(x, y). To this effect, both the pre-
and postquench Hamiltonians H0 and H, respectively,
are exactly diagonalized, and the time-dependent density
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ŷ

x̂ln(1 + ΓA/g)

ln
(1

+
Γ
B
/g

)

ln(1 + ΓA,B/g)

FIG. 2. (Color online) Steady state from the Lindblad equation at high average density, n̄ǫ2 ≈ 2.5. (a) Total current J in units

of ~

2m
n̄3/2ǫ as a function of the bath couplings ΓA,B/g. (b) Current as a function of driving, evaluated along the dashed red

line (ΓA = ΓB). At Γ & g, the dependence is nonmonotonic. (c) Current density field J(x, y) (red arrows) superimposed on
a contour plot of |∇ × J|, for ΓA,B = 0.256g. The orifice is marked by a solid bold line. (d) Corresponding density pattern.
Distances are measured in units of the orifice width ǫ [but note that the aspect ratio is 2:5 in (c) and (d)]. In all plots lighter
colors correspond to larger values (linear scale).

and current density are obtained as

〈n̂(x, y, t)〉 =
∑

α∈occ

∑

β,β′

ψ∗
β(x, y, t)ψβ′(x, y, t)Θ∗

βαΘβ′α,

〈Ĵ(x, y, t)〉 = ~

m Im

[

∑

α∈occ

∑

β,β′

ψ∗
β(x, y, t)

× ∇ψβ′(x, y, t)Θ∗
βαΘβ′α

]

, (1)

where

Θαβ = 〈ψ(0)
α |ψβ〉 (2)

are overlaps between eigenstates of the initial and final
Hamiltonian, and the time evolution is simply given by

ψβ(x, y, t) = ψβ(x, y)e
−iEβt. (3)

The summation over α in Eq. (1) is restricted to the
set of states (labeled as occ) that are occupied in the
initial Fermi sea. Herein lies the central difference
with a system of ideal bosons, where only the lowest
energy state would be occupied, which leads to rather
trivial patterns. We found numerically that at any fixed
position close to the orifice, after an initial transient a
steady state establishes, a result which is in fact not
obvious for free fermions.

B. Lindblad equation

In order to directly access the nonequilibrium steady-
state properties and compare with the microcanonical re-
sults we consider again the setup of Fig. 1, but now taking

the dashed boundaries to represent couplings to driving
Markovian baths. The density matrix ρ(t) of this open
quantum system evolves according to a master equation,
expressed in Lindblad form as [35, 36]

dρ

dt
= L̂ρ := − i

~
[H0, ρ]+

∑

b,y

(2Lb
yρL

b†
y −{Lb†

y L
b
y, ρ}). (4)

For convenience we directly formulate a discrete version
of the problem on a lattice with spacing a and hopping

amplitude g = ~
2

2ma2 . The operators Lb
y, which are linear

in the fermions, represent the coupling at coordinate y on
boundary b ∈ {A,B} to independent baths. This allows
for an exact solution via the method of third quantiza-
tion [35, 36]. To describe driving from A to B we choose
LA
y =

√
ΓAc

† (x = −L, y) and LB
y =

√
ΓBc (x = L, y),

where c†, c are creation and annihilation operators, re-
spectively.

III. RESULTS

In this section we present physical results obtained
within the two formalisms, and compare them. Our main
result is the existence of two density regimes, connected
by a smooth crossover in n̄ǫ2. In the high-density regime
(n̄ǫ2 ≫ 1) the Fermi wavelength is small as compared to
the channel width ǫ, and the flow behavior can be ex-
plained by semiclassical diffraction theory. In contrast,
in the low-density regime n̄ǫ2 ∼ 1, the Fermi wavelength
is comparable with the channel width and the flow ex-
hibits peculiar patterns that result from interference and
effects of Pauli exclusion, i.e., the fermionic statistics.
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FIG. 3. (Color online) Quasisteady state in the high-density regime (n̄Aǫ
2 ≈ 5), evaluated within the microcanonical formalism

(free expansion into an initially empty region B). The observed patterns, shown for the late time t ≈ 250~/µ, are qualitatively
very close to the steady state found in open systems. (a) Current density superimposed on the absolute value of the vorticity,
and (b) density. x and y coordinates are in measured in units of the orifice width ǫ. Note the aspect ratio 2:5 of the axis scales.

A. Quasisteady state in the microcanonical

approach

Within the microcanonical formalism, we found that,
after a short transient time following the quench, the
formed current and vorticity patterns remain remark-
ably stable under time evolution. Only much later, when
waves reflect from the boundaries at x = ±L flow back
to the junction, this pattern is obviously disturbed [cf.
Ref. [37] for a visualization of the initial dynamics which
result eventually in the nontrivial quasisteady flow pat-
tern of Fig. 4(a)]. This observation strongly suggests
that a genuine quasisteady state forms within our micro-
canonical setup, which is well defined and infinitely long
lived in the thermodynamic limit L → ∞. Note that
this is a nontrivial result, especially for noninteracting
particles, since it is not obvious that in the absence of in-
teractions and randomization of momenta a steady state
should establish. The existence of such a steady state
makes it meaningful to ask for the equivalence between
this microcanonical setup and the transport formalism
based on a driven open system.

B. Equivalence of transport approaches

The steady state of the open system and the quasis-
teady state that establishes in the microcanonical ap-
proach (both within the expansion into fermions and ex-
pansion into free space protocols) are usually closely re-

lated, except close to the boundaries. In fact, the two ap-
proaches to transport are expected to be equivalent in the
thermodynamic limit, if interactions and impurity scat-
tering induce thermalization and momentum randomiza-
tion far from the junction. However, for noninteracting
fermions the equivalence of the two methods is not guar-
anteed, since reflected waves from the contacts at x = ±L
can coherently propagate back to the junction. Despite
this caveat we found that the two approaches give quan-
titatively very similar results in the high-density regime
n̄ǫ2 ≫ 1, where reflections appear to be of minor impor-
tance, whereas in the low-density regime the agreement
is only qualitative. In that regime we expect the mi-
crocanonical approach to be a better description for a
realistic system with weak but finite interactions. We
therefore present our central results for the low-density
regime within that framework.

C. High-density regime

We first discuss the high-density regime, which fea-
tures rather simple semiclassical diffraction patterns. At
high densities, n̄ǫ2 ≫ 1, the Fermi wavelength is much
smaller than the width of the orifice. Hence, a semiclas-
sical diffraction picture is expected to hold. Accordingly,
we find a relatively simple steady-state pattern. For a
representative set of parameters ΓA/g = ΓB/g = 0.256,
the current density pattern and the absolute value of its
vorticity (|∇ × J|) are shown in Fig. 2(c), as well as the
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FIG. 4. (Color online) Current density J and contour plot of |∇ × J| computed in the microcanonical quasisteady state, for
increasing density. From left to right: n̄ǫ2 ≈ 1.1, n̄ǫ2 ≈ 2.2, n̄ǫ2 ≈ 4.8. The most interesting patterns are observed at relatively
low density, n̄ǫ2 ∼ 1.

density pattern in Fig. 2(d). In Fig. 2(a), we show the
total current J in the plane of couplings to the leads.
Interestingly, J is nonmonotonic in ΓA,B . Along every
line of constant ratio ΓA/ΓB it reaches a maximum and
decreases as 1/ΓA,B at strong coupling [see Fig. 2(b)],
similarly as was observed in related studies in 1d [38–43].

The most prominent feature of the current pattern in
Fig. 2(c) is a diffraction beam exiting from the orifice,
whose angle is determined by the transverse momentum
of the highest propagating band in channel A (here the
second band). Those beams are reflected at y = ±W/2
and give rise to two islands of intense vorticity around
(4ǫ,±ǫ/2). They are thus simple boundary effects due
to reflections at finite W ; see also the density pattern
in Fig. 2(d). The main characteristics of this regime
is a rhomboidal region of very small vorticity centered
at (2ǫ, 0). The microcanonical approach reproduces all
these features at high densities, n̄ǫ2 ≫ 1. In particu-
lar, for both protocols we defined in the microcanonical
ensemble, we found matching conditions of the driven
systems, such that density and current-density patterns
in the respective steady states coincided.
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FIG. 5. (Color online) The profile of the spatial density
(dashed blue line) and the y component of the current density
(solid red line) along the cross sections at x = 2ǫ (a), and 4ǫ
(b). Density oscillations and the current are anticorrelated.
The corresponding values have been rescaled to visually pro-
nounce the anticorrelated behavior.

In Fig. 3 we show the result for an expansion into free
space (for reasons of illustration only), with a finite initial
density n̄Aǫ

2 ≈ 5 in channel A. The gas is then left to ex-
pand freely (with Vfin = 0) into the empty region B. The
most important characteristics of the vorticity pattern is
again the empty rhomboidal region of size ∼ W 2 close
to the orifice. This is a main feature of the semiclassical
high-density regime, where only simple diffraction at the
orifice is observed. It results in two beams, which, how-
ever, produce little interesting interference and vorticity
patterns. Nevertheless, the very good agreement between
the microcanonical and the Lindblad approach to trans-
port is an interesting result in itself. It suggests that the
two approaches can be used essentially interchangeably
to describe steady states out of equilibrium, up to the
caveat that in a fully coherent system, interference with
reflections from the far boundaries may result in differ-
ences, as we will discuss below in the low-density regime.
The latter seems to be of negligible importance in the
high-density regime, however. Note that this equivalence
of approaches is quite analogous to the equivalence of
thermodynamic ensembles in equilibrium statistical me-
chanics. However, while such an equivalence appears
rather natural in the context of interacting, fully chaotic
systems, it is much less obvious for free fermions, as we
discussed above. For the latter even the existence of a
quasisteady state in the closed system could not be antic-
ipated a priori [14, 33]. It would be interesting to under-
stand this phenomenon from the perspective of quantum
chaos in many-fermion systems.

D. Low-density regime

The flow pattern is much more interesting at low den-
sity, n̄ǫ2 ∼ 1, where quantum effects are more pro-
nounced. In this regime, additional structures in the
current and vorticity develop within the rhomboidal re-
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in the microcanonical quench protocol (snapshots are taken at time t ≈ 16 ~

µ
): (a) Vin = 0 (roughly homogeneous initial density),

Vfin ≈ µ/2 applied to region A; (b) expansion into empty space, Vin ≫ 1 (region B initially empty), Vfin = 0. The vorticity
patterns in the two cases are evidently very different. In particular, in case (b) of the expansion into the initially empty region
B, there is no evidence of nontrivial features in the current flow and vorticity close to the orifice, in contrast to case (a). This
shows that a finite density in region B and the associated Friedel oscillations in the steady state are important for the formation
of nontrivial flow patterns. In both cases, we chose W = 14ǫ so that the boundaries at ±W are rather far from the orifice and
the difference between the two quench protocols is evident. The color code is the same for both figures. Note the aspect ratio
of 7:5 of the axis scales.

gion, which was nearly vorticity free at high density.
In Fig. 4(a), we show the current and vorticity pattern
computed within the microcanonical formalism at time
t ≈ 16~/µ, before reflections at x = ±L occur. Here,
we study the protocol corresponding to expansion into
fermions. The emerging steady-state current pattern ex-
hibits preferential zigzag-shaped stream lines, and thus
differs markedly from the simple picture predicted by
semiclassical diffraction theory. As one should expect,
the spatial scale of the vorticity variations is set by the
interparticle distance ∼ 1√

n̄
, i.e., the Fermi wavelength.

Note that here the islands of vorticity close to the orifice
(x < 4ǫ) are not simply due to the reflection of outflowing
waves from the boundaries at y = ±W/2.

We interpret the origin of the complex current patterns
as arising from current flow through regions that exhibit
boundary induced Friedel oscillations in the steady-state
density. These oscillations are provoked by a finite lateral
confinement (finite W ), even though W 2n̄ may be fairly
large. The current flow appears to avoid regions of higher
density in the steady state, which leads to nontrivial vor-
ticity patterns. This is illustrated in Fig. 5, which shows
that in an expansion into fermions, the y component of
the current density is strongly anticorrelated with the
density oscillations in region B in the steady state. This
suggests that one may view both effects as consequences

of Pauli exclusion, which leads to Friedel oscillations in
the density and the currents, in the steady state.

The patterns farther from the orifice (x & 4ǫ) depend,
naturally, rather strongly on the presence of the bound-
aries, as they are dominated by interference of waves that
are reflected from the boundaries. If instead one con-
siders periodic boundary conditions in the y direction,
the patterns are dominated by interference of waves that
wind around the cylinder. However, near the orifice, the
effect of changing boundary conditions is much less pro-
nounced. Even though the vorticity pattern is modified
quantitatively, it remains qualitatively similar (see Ap-
pendix A).

Even though from Eq. (1) it is clear that the cur-
rent density is simply the superposition of single-particle
contributions, the resulting pattern is quite nontrivial,
as forward and backward propagating states superpose,
each with their individual interference patterns. The
higher the initial density the larger is the number of
superposed modes, which tends to smoothen the inter-
ference patterns. Interesting patterns survive for low-
density n̄ǫ2 & π/4, while in the limit n̄ǫ2 → ∞ we ex-
pect to recover the classical limit where all nontrivial fea-
tures are smeared out. We illustrate this trend in Fig. 4,
where the current patterns obtained for increasing den-
sities are shown. Nontrivial structures emerge at low
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density where the Fermi wavelength is comparable with
the orifice width, provided that current is flowing into
a nonempty region B. Under these circumstances the
Pauli exclusion leads to boundary induced Friedel oscil-
lations in region B, which appear to play a crucial role,
and induce the observed vorticity patterns.
The importance of an appreciable density of fermions

in region B and the associated density oscillations in
the steady state can be best appreciated by comparing
an expansion into fermions with an expansion into free
space. We work at low density (n̄ǫ2 ≈ 1.3) within the
microcanonical formalism. Figure 6(a) shows the steady-
state pattern of current and vorticity in an expansion into
fermions.
We contrast the above protocol with an expansion into

empty space, with very similar initial density in region A.
Figure 6(b) shows the resulting flow pattern, which ex-
hibits hardly any interesting features. We interpret this
as being due to the low steady-state density of fermions
in region B, such that density oscillations in that area
are very weak and have little effect on the current flow.
The main conclusion from this comparison is that it is
not merely the geometry that is relevant for producing
interesting interference patterns in driven fermions, but
also the presence of an appreciable steady-state density
in the relevant spatial regions.
For a driven open system, we obtain similar steady-

state properties, but the details of the flow patterns dif-
fer, due to the pronounced role of reflections from the
boundaries at x = ±L, which act as a semitransparent
wall causing partial reflection of the particle flux. These
reflected waves are also the cause of minor differences in
the density patterns of Figs. 2(d) and Fig. 3(b). Con-
sequently, the reflected and incoming waves interfere to
form a complicated structure of currents and vorticities
(see Appendix B for the corresponding figures and dis-
cussion).

IV. POSSIBLE EXPERIMENTAL

VERIFICATION

If the fermions are charged, such as in a 2d electron
gas (which may still be considered weakly interacting in
the presence of a strong dielectric) a complex current
pattern as in Fig. 4(a) generates a nontrivial magnetic-
field distribution. To obtain the same, one defines

b(r = {x, y, z}) = µ0

4π

∫

dx′dy′j(r′)× r− r′

|r− r′|3 , (5)

where µ0 is the permeability of vacuum, and j is the 2d
number current density of atoms in the x-y plane (z = 0).
It then follows from the Biot-Savart law that the mag-
netic field B(r) generated by moving particles of charge
e is given by

B(r) = eb(r). (6)

+

+

+

+
+

+

-

-

-

-

-

−0.1

0.1

- B

µ0µBn̄3/2

1

-1

0

2                 4                 6                 8   

ŷ

x̂

FIG. 7. (Color online) The z component of the magnetic
field generated by a charged current flow as in Fig. 4(a): The
quasisteady state exhibits a staggered flux close to the orifice.

For strong drivings (Vfin ∼ µ) in the considered ge-
ometry, typical magnetic moments associated with the
circulation patterns are of the order of a tenth of a mag-
neton µ = e~

2m , that is, in principle, an experimentally
accessible intensity. Interestingly, the vorticity maxima
organize in a short-range correlated antiferromagnetic
pattern, which realizes an out-of-equilibrium staggered
flux state, cf. Fig. 7, reminiscent of equilibrium stag-
gered flux phases proposed in strongly correlated 2d sys-
tems [44, 45]. Similar patterns arise from currents of
magnetically (electrically) polarized neutral atoms. The
electric (magnetic) fields due to such moving dipoles are
proportional to a derivative of the field pattern of Fig. 7,
and are given by

E(r) = −(m · ∇)b(r). (7)

with E(r) being the electric field, and m the static mag-
netic moment. Similarly, the magnetic field produced due
to polarized neutral particles with a static electric dipole
d is given by

B(r) = (d · ∇)b(r). (8)

However, these fields may be too weak to be detected
by present experimental means. It may be interesting to
look for similar patterns in systems which have spin-orbit
coupling, e.g., in cold atoms.
Apart from the currents, the density patterns com-

puted in this paper can be measured experimentally by
resonant light absorption in atomic gases in optical lat-
tices. The limiting resolution is currently ∼ 660 nm [46],
which is smaller than typical Fermi wavelengths in those
systems. The setup discussed here has already been re-
alized in recent experiments [5, 6] where 6Li atoms are
confined in a geometry with a narrow constriction con-
necting two reservoirs.



8

(a) (b)

x̂ x̂

ŷ

1
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x̂ x̂

FIG. 8. (Color online) Comparison between (a) closed and (b) periodic boundary conditions at y = ±W/2 (here W = 4ǫ) in the
low-density regime (n̄ǫ2 ≈ 1.1). Shown is the current density, superimposed on the vorticity contour plot, as obtained within
the microcanonical approach, with Vin = 0, and Vfin ≈ µ/2. Two nontrivial patterns close to the orifice at (x, y) ≈ (2ǫ,±ǫ/2)
are encircled in yellow. The x and y coordinates are measured in units of the orifice width ǫ. Note the aspect ratio 2:5 of the
axis scales. The color code is the same for both figures.

V. CONCLUSION

Using two complementary approaches, we have ana-
lyzed both the steady-state properties and the transient
dynamics of an ideal Fermi gas pushed out of an orifice
into a wider region. Pauli exclusion was found to
strongly influence the current flow of fermions at finite
density: it induces current patterns with staggered
local moments of appreciable size, formed by itinerant
fermions in an out-of-equilibrium steady state. The
latter may be used to experimentally probe the predicted
patterns. Since these effects are after all interference
phenomena, we expect them to be robust towards weak
interactions. It would be interesting to extend the
present study to disordered systems and compare with
the predictions of very heterogeneous current flow with
substantial steady vorticity therein [47]. We expect that
density inhomogeneities due to Friedel oscillations from
strong impurities (which take the role of the walls at
±W ) will lead to similar interesting vorticity patterns
under a nonequilibrium steady state.

Acknowledgments M.D. acknowledges support from
DOE Grant No. DE-FG02-05ER46204. We thank S.
Kehrein and T. Prosen for useful discussions.

Appendix A: INFLUENCE OF BOUNDARY

CONDITIONS

We analyzed the influence of boundary conditions on
the formation of nontrivial current patterns in closed sys-
tems, by considering different boundary conditions. We
used the microcanonical formalism with Vin = 0, and
Vfin ≈ 1

2µ, in the low-density regime n̄ ≡ n̄B ≈ n̄A ≈
1.1/ǫ2, where nontrivial patterns appear. In Fig. 8(b)
we show patterns obtained with periodic boundary con-
ditions where y = ±W/2 are identified. We observe
that the main qualitative features of the patterns close
to the orifice (x . 4ǫ ∼ W ) are still present with peri-
odic boundary conditions; in particular, the two islands
of vorticity close to (x, y) ≈ (2ǫ,±ǫ/2) still form. How-
ever, one should not expect quantitative agreement near
the orifice.

Appendix B: STEADY STATE OF OPEN

SYSTEMS IN THE LOW-DENSITY REGIME

In an open system the current flow is controlled by the
strength of the couplings ΓA,B to the external leads. The
low-density regime, where the Fermi wavelength is of the
order of the orifice width, is obtained, e.g., by tuning the
injection rate ΓA, such that ΓA

g ≪ 1.

For this regime, the current and vorticity patterns of
the steady state are shown in Fig. 9. The rhomboidal
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FIG. 9. (Color online) The current density superimposed on
the absolute value of the vorticity, as obtained with a low
average density, n̄ǫ2 ≈ 1.1. In this regime quantum interfer-
ence effects are strong, as in closed systems, but they differ
quantitatively, because of important reflections at the leads
x = ±L, which are absent in the quasisteady state analyzed
in closed systems. x and y coordinates are in measured in
units of the orifice width ǫ. Note the aspect ratio 2:5 of the
axis scales.

region of size ∼ W 2 close to the orifice contains sev-
eral intense local maxima of the vorticity, in qualitative
agreement with what is found using the microcanonical
approach to closed systems. However, along with this fea-
ture a much more complicated structure of vorticity de-
velops throughout the wide region B. This arises because
the coupling to the absorbing bath at x = L = 10ǫ acts
only as a semitransparent wall (it becomes fully trans-
parent only in the limit of infinite absorption ΓB → ∞).
These effects due to reflected waves survive even close to
the junction, because of the lack of dephasing and ran-
domization in this noninteracting system. While some
reflection is certainly also present in the higher density
regime, its relative effect is apparently much smaller, so
that the driven open system and the quasisteady state of
the closed system are qualitatively very similar.

In contrast to the involved structure of the steady state
of the open system, the microcanonical approach can
access the quasisteady current pattern before reflections
from the boundary at ±L occur. It is thus more suit-
able to reveal the effects induced on the current pattern
by quantum statistics, and separating them from sim-
ple reflection effects. The most interesting effects due to
Pauli exclusion are found at low densities n̄Aǫ

2 & 1, in
the rhomboidal region close to the orifice where the re-
flection of diffracted beams from either boundary do not
play much of a role.
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