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Abstract. After a series of works on RC4 cryptanalysis in last few years (published in flagship cryp-
tology conferences and journals), the most significant (and also very recent) attack on the cipher has
been the discovery of vulnerabilities in the SSL/TLS protocol, by AlFardan, Bernstein, Paterson, Po-
ettering and Schuldt. They ran extensive computations to identify significant short-term single-byte
keystream biases of RC4, and utilized that knowledge in the attack. The biases identified by AlFardan
et al. consist of earlier known biases of RC4, as well as some newly discovered ones.

In this paper, we attempt at proving the new, unproved or partially proved biases amongst the
above-mentioned ones. The theoretical proofs of these biases not only assert a scientific justification, but
also discover intricate patterns and operations of the cipher associated with these biases. For example,
while attempting the proof of a bias of the first output byte towards 129, we observe that this bias
occurs prominently only for certain lengths of the secret key of RC4. In addition, our findings reveal that
this bias may be related to the old and unsolved problem of “anomalies” in the distribution of the state
array after the Key Scheduling Algorithm. In this connection, we prove the anomaly in S0[128] = 127,
a problem open for more than a decade.

Other than proving the new biases, we also complete the proof for the extended keylength
dependent biases in RC4, a problem attempted and partially solved by Isobe, Ohigashi, Watanabe and
Morii in FSE 2013. Our new proofs and observations in this paper, along with the connection to the
older results, provide a comprehensive view on the state-of-the-art literature in RC4 cryptanalysis.
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1 Introduction

Over the last three decades of research in stream ciphers, several designs have been proposed and
analyzed by the community. The RC4 stream cipher, ‘allegedly’ designed by Rivest in 1987, has
sustained to be one of the most popular ciphers in this category for more than 25 years. The cipher
has continued gaining its fabled popularity for its intriguing simplicity that has made it widely
accepted in the community for various software and web applications.

The cipher consists of two major components, the Key Scheduling Algorithm (KSA) and the
Pseudo-Random Generation Algorithm (PRGA). The internal permutation of RC4 is of N bytes,
and so is the key K. The original secret key is of length typically between 5 to 32 bytes, and is
repeated to form the final key K. The KSA produces the initial permutation of RC4 by scrambling
an identity permutation using key K. The initial permutation S produced by the KSA acts as an
input to the next procedure PRGA that generates the output keystream, as shown in Fig. 1.

Notation. For round r ≥ 1 of RC4 PRGA, we denote the indices by ir, jr, the output byte by Zr,
the index location of output Zr as tr, and the permutations before and after the swap by Sr−1 and
Sr respectively. Thus, round r of RC4 PRGA is defined by ir = ir−1+1, jr = jr−1+Sr−1[ir], swap
Sr−1[ir] ↔ Sr−1[jr], tr = Sr[ir]+Sr[jr], and Zr = Sr[tr]. After r ≥ 1 rounds of KSA, we denote the
state variables by adding a superscript K to each variable. By SK

0 and S0, we denote the initial
permutations before KSA and PRGA respectively. Note that SK

0 is the identity permutation and
S0 = SK

N is the permutation obtained right after the completion of KSA. Throughout this paper,
all operations in context of RC4 are to be considered ‘modulo N ’.
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Fig. 1. Key-Scheduling Algorithm and Pseudo-Random Generation Algorithm of RC4.

1.1 Motivation of our work

In a recent paper [24] at FSE 2013, Sepehrdad, Susil, Vaudenay, and Vuagnoux have rightly claimed:

For some people, attacking WEP is like beating a dead horse, but this horse is still running wildly

in many countries all over the world. Also, some companies are selling hardware using modified

versions of the WEP protocol, they claim to be secure.

IEEE WiFi security protocol WEP is based on the stream cipher RC4, and hence the same
statement applies to RC4 as well. The history of RC4 cryptanalysis is more than 20 years old.
However, in recent times, there is a renewed surge of interest in RC4 cryptanalysis in the crypto-
graphic community. For example, significant cryptanalytic results on WEP and WPA have been
published in Eurocrypt 2011 by Sepehrdad, Vaudenay, and Vuagnoux [26]. In only the first quarter
of the current year (2013), RC4 has attracted 10 publications [1, 6, 8–10, 17, 20, 22, 24, 27]. In spite
of this, many problems are still open and the cipher is not yet broken.

As a stream cipher, RC4 promises to deliver pseudo-random bytes as keystream output. Thus,
any lapse in that goal creates interesting consequences towards the security of the cipher. This is the
reason why statistical weaknesses like biases and their application as distinguishers have attracted
the main focus of RC4 cryptanalysis to date. There have been numerous results on RC4 biases over
years, and the trend still continues.

Most of the existing results are targeted towards specific short-term (involving only the initial
few bytes of the output) biases and correlations [1,5–7,11,12,15,16,19,22,23,25,26], while there exist
only a few important results for long-term (prominent even after discarding an arbitrary number
of initial bytes of the output) biases [2, 4, 5, 7, 12, 14].

In this paper, we concentrate on the short-term traits of non-random behavior in the initial
keystream bytes of RC4, especially in the first N output bytes. The prominent results on the
short-term biases of RC4 include Mantin and Shamir second byte bias [15], Mironov first byte sine-
curve-like distribution [16], Maitra, Paul and Sen Gupta short-term biases towards zero [11], Sen
Gupta, Maitra, Paul and Sarkar proof of first byte bias [22], Sarkar second byte negative bias [20],
Isobe, Ohigashi, Watanabe and Morii full broadcast attack [6], and the most recent results by
AlFardan, Bernstein, Paterson, Poettering and Schuldt [1, 3].

AlFardan, Bernstein, Paterson, Poettering and Schuldt [1,3]. The most prominent attempt
at identifying all possible single-byte short-term biases in the initial keystream bytes of RC4 was
recently made by AlFardan, Bernstein, Paterson, Poettering and Schuldt [1,3]. They ran extensive
experiments, using more than 244 random keys, to generate a list of approximately 65536 single-
byte short-term biases of RC4, including the previously known ones [6, 11, 15, 16, 22]. This search
provides a comprehensive list of non-random behavior of the initial keystream bytes (bytes 1 to
N = 256) of RC4 when a 16-byte key is used.



The main goal of this analysis [1] was to exploit those in a practical attack against the SSL/TLS
protocol that uses RC4 for confidentiality. The authors could use all of the above-mentioned 65536
initial short-term biases of RC4 to mount a plaintext recovery attack on the SSL/TLS protocol
that recovers the first 256 bytes of the plaintext from the knowledge of only 232 ciphertexts gener-
ated using random keys, with no prior plaintext knowledge. This attack by AlFardan, Bernstein,
Paterson, Poettering and Schuldt [1] is undoubtedly the most extensive attack on any practical
RC4 protocol to date, with far-reaching consequences. This attack alone is sufficient to highlight
the practical importance of identifying, proving and exploiting short-term biases in RC4.

RC4 short-term landscape generated from the data of [1, 3]. The extensive experimen-
tal results by AlFardan, Bernstein, Paterson, Poettering and Schuldt [1] identified several non-
randomnesses in the short-term output keystream of RC4. Figure 2 presents a 3D model of the
probabilities Pr(Zr = v) for r = 1, . . . , N and v = 0, . . . , N − 1, which we call the RC4 landscape
of initial keystream bytes.

Note that this landscape is for the most practical version of RC4 that uses a 16-byte key, and is
not identical for RC4 initial keystream patterns generated by secret keys of various other lengths.
For example, the non-random peaks and troughs present in the 16-byte key landscape reduce to a
certain extent if one uses a full length N = 256 bytes key.

Fig. 2. The RC4 landscape of initial keystream bytes (data from [1,3]).

The visible vertical walls and spikes in Fig. 2 identify the prominent short-term bias patterns
in the RC4 landscape. The main ones are for the events Z2 = 0 (largest positive spike), Z2 = 2
(largest negative spike), Z1 = v where v = 0, . . . , N − 1 (sine-curve-like vertical wall on the left
side), Zr = 0 (decreasing vertical wall on the right side), Zr = r (decreasing vertical wall at the
center) and Zr = −r (decreasing series of spikes at the center), where r = 1, . . . , N denotes the
number of the round in RC4 PRGA.

The proofs for most of these major non-random events are present in the literature. The biases
in Z2 = 0 and Z2 = 2 have been proved by Mantin and Shamir [15] in 2001 and Sarkar [20] in 2013



respectively. The sine-curve-like pattern of Z1 for full-length key, including the negative biases in
Z1 = 0, 1, have been proved by Sen Gupta, Maitra, Paul and Sarkar [22] in 2013, and the general
proof for Zr = 0 has been done by Maitra, Paul and Sen Gupta [11] in 2011. In 2011, Sen Gupta,
Maitra, Paul and Sarkar [21] proved the Zr = −r case for r = 16 (keylength), and in 2013, the
general pattern for Zr = −r was partially proved by Isobe, Ohigashi, Watanabe and Morii [6].
In the same paper of 2013, Isobe, Ohigashi, Watanabe and Morii [6] proved the bias pattern for
Zr = r, and the slightly weaker single-byte bias of Z3 = 131.

Table 1. Identified and/or proved short-term keystream biases of RC4.

Bias in event Type of bias Discovered Proved

Isolated short-term biases

Z1 = 0 Negative [16] [22]
Z1 = 1 Negative [22] [22]
Z1 = 129 Negative (16-byte key) [1] Open
Z2 = 0 Positive [15] [15]
Z2 = 2 Negative [1, 20] [20]
Z2 = 129 Negative [1, 20] Open
Z2 = 172 Positive [1] Open
Z3 = 131 Positive [1, 6] [6]
Z4 = 2 Positive [1] Open
Z256 = 0 Negative [1, 6] Open
Z257 = 0 Positive [6] Open

Patterns of short-term biases

Z1 = v Sinusoidal (v = 0, . . . , 255) [16] [22]
Zr = 0 Positive (r = 3, . . . , N − 1) [11] [11]
Zr = r Positive (r = 3, . . . , N − 1) [1, 6] [6]
Zl = −l Positive (l is the keylength) [21] [21, 22]
Zxl = −xl Positive (l is the keylength) [6] Open (attempted in [6])

A consolidated account of the current state-of-the-art in terms of identified and/or proved short-
term keystream biases of RC4 is presented in Table 1. Our motivation for this paper is to attempt
proofs for all “Open” (or partially proved) problems listed in Table 1.

1.2 Contributions of our work

We can summarize the contributions of our work as follows.

– In Section 2, we prove all open isolated short-term single-byte keystream biases reported and
exploited by AlFardan, Bernstein, Paterson, Poettering and Schuldt in their recent attack [1,3]
on the SSL/TLS protocol. This includes the biases in the events Z2 = 129, Z2 = 172, Z4 = 2,
Z256 = 0 and Z257 = 0.

– In Section 3, we observe that the bias of Z1 towards 129 occurs prominently only for certain
lengths of the secret key of RC4. We also discover that this bias may be related to the long-
standing mysterious problem of “anomalies” in the distribution of the state array after the RC4
KSA. In this connection, we prove the anomaly in S0[128] = 127, a problem open for more than
a decade [13].

– In Section 4, we complete the proof for the extended keylength dependent biases in RC4, i.e.,
biases in the events Zxl = −xl for any positive integer x and keylength l. This problem was
attempted and partially solved by Isobe et al. in [6]. However, the proof was left incomplete
which we settle here. Note that the particular case of x = 1 in this class of biases reduces to
the keylength-dependent biases of [22].



2 Proof of some isolated short-term biases

In this section, we prove all open isolated short-term biases of Table 1, except the case of Z1 = 129.
The latter case is related to the “anomaly pairs” and hence we treat it separately in Section 3.

2.1 Proof of bias in (Z2 = 129)

We notice that the bias in (Z2 = 129) for N = 256 is a special case of the general bias in (Z2 =
N/2 + 1) for any even value of N . We present the general result as follows.

Theorem 1. Suppose that the initial permutation S0 of RC4 PRGA is randomly chosen from the
set of all permutations of {0, 1, . . . , N−1}, where N is even. Then Pr(Z2 = N/2+1) ≈ 1/N−2/N2.

Proof. We consider two mutually exclusive paths from the initial state S0.

Path 1. Consider S0[2] = 0 and S0[1] 6= 2. From the analysis of Mantin and Shamir [15] for the
bias in (Z2 = 0), we know that Z2 = 0 in this situation. Thus, Z2 6= N/2 + 1.

Path 2. Consider S0[2] = N/2 + 1 and S0[1] 6= 2. After the first round, j1 = S0[1] = X 6= 2,
and thus S1[2] = N/2 + 1 and S1[X] = X. In the second round, we get j2 = (N/2 + 1) + X,
and let us say S1[j2] = S1[(N/2 + 1) + X] = Z. Since S1 is a permutation, X = S1[X] 6=
S1[(N/2 + 1) +X] = Z. After the swap in the second round, we get Z2 = S2[(N/2 + 1) + Z] 6=
S2[(N/2 + 1) +X] = N/2 + 1. Figure 3 illustrates the scenario.

X N/2 + 1 Y Z

0 1 2 X (N/2 + 1) +X

i, j

Y N/2 + 1 X Z

i j

Y Z X N/2 + 1 S2[(N/2 + 1) + Z]

i j

Fig. 3. The first two rounds of RC4 main cycle when S0[2] = N/2 + 1 and S0[1] 6= 2.

Let us denote the aforesaid mutually exclusive events as A = (S0[2] = 0 ∧ S0[1] 6= 2) and
B = (S0[2] = N/2 + 1 ∧ S0[1] 6= 2) to obtain Pr(Z2 = N/2 + 1) as

Pr(Z2 = N/2 + 1 | A) · Pr(A) + Pr(Z2 = N/2 + 1 | B) · Pr(B)

+ Pr(Z2 = N/2 + 1 | A ∧B) · Pr(A ∧B) ≈ 0 + 0 + Pr(Z2 = N/2 + 1 | A ∧B) · (1− 2/N).

Assuming Pr(Z2 = N/2 + 1 | A ∧ B) ≈ 1/N , due to random association, we get the desired
probability as Pr(Z2 = N/2 + 1) ≈ (1/N) · (1− 2/N) = 1/N − 2/N2. ⊓⊔



2.2 Proof of bias in (Z2 = 172)

Theorem 2. In practical RC4 with N = 256, Pr(Z2 = 172) ≈ 1/N + 0.28/N2.

Proof. We consider the following mutually exclusive paths from the initial state S0.

Path 1. Consider S0[2] = 0. If S0[1] 6= 2, from the analysis of Mantin and Shamir [15] for the bias
in (Z2 = 0), we know that Z2 = 0 in this situation. Thus, Z2 6= 172. In case S0[1] = 2, we may
assume that Z2 = 172 occurs with probability 1/N . Thus, Pr(Z2 = 172 | S0[2] = 0) ≈ 1/N2.

Path 2. Consider S0[2] = 86. In this case, we have the following sub-paths.
1. Consider S0[1] = 172. In this case, j1 = S0[1] = 172 results in a swap to produce S1[172] =

172, while S1[2] = 86 remains untouched. In the next round, j2 = j1 + S1[2] = 172 + 86 =
258 = 2 = i2 ensures that there is no swap in the S-array. Thus, Z2 = S2[S2[i2] + S2[j2]] =
S1[86 + 86] = S1[172] = 172. Note that this path is possible for any X is S0[1] = X
and S0[2] = X/2, and if X + X/2 = 2. Thus, this path results in the modular equation
3X ≡ 4 mod N , which has a unique solution X = 172 for N = 256.

2. Consider S0[1] 6= 172 and S0[S0[1] + 86] = 172. In the first round, S1[2] = 86 remains
untouched, and j2 = j1 + S1[2] = S0[1] + 86 results in a swap to produce S2[2] = S1[j2] =
S1[S0[1]+ 86] = S0[S0[1]+ 86] = 172 and S2[S0[1]+ 86] = 86. Thus, in the second round, we
get Z2 = S2[S2[i2] + S2[j2]] = S2[172 + 86] = S2[2] = 172. Figure 4 illustrates the scenario.

X 86 Y 172

0 1 2 X X + 86

i, j

Y 86 X 172

i j

Y 172 X 86 S2[2] = 172

i j

Fig. 4. The first two rounds of RC4 main cycle when S0[2] = 86, S0[1] 6= 2, 172 and S0[S0[1] + 86] = 172.

Let us denote the aforesaid events as B = (S0[2] = 86), C = (S0[1] = 172), and D = (S0[S0[1]+
86] = 172). This results in

Pr(Z2 = 172 | S0[2] = 86) = Pr(Z2 = 172 | B)

= Pr(Z2 = 172 | B ∧ C) · Pr(C) + Pr(Z2 = 172 | B ∧ C) · Pr(C)

≈ 1 · (1/N) +
(

Pr(Z2 = 172 | B ∧ C ∧D) · Pr(D)

+Pr(Z2 = 172 | B ∧ C ∧D) · Pr(D)
)

· (1− 1/N)

≈ (1/N) + (1 · (1/N) + (1/N) · (1− 1/N)) · (1− 1/N) ≈ 3/N − 3/N2.

Path 3. Consider S0[2] = 172. In this situation, Z2 = 172 if S0[1] = 2 and S0[4] = N − 1, and in
all other cases, Z2 6= 172. Thus, Pr(Z2 = 172 | S0[2] = 172) ≈ 1/N2.



Let us combine the aforesaid paths to obtain Pr(Z2 = 172) as

Pr(Z2 = 172 | S0[2] = 0) · Pr(S0[2] = 0) + Pr(Z2 = 172 | S0[2] = 86) · Pr(S0[2] = 86)

+ Pr(Z2 = 172 | S0[2] = 172) · Pr(S0[2] = 172)

≈ (1/N2) · Pr(S0[2] = 0) + (3/N − 3/N2) · Pr(S0[2] = 86) + (1/N2) · Pr(S0[2] = 172).

In the above equation, computing the probability terms involving S0 using the formula of Mantin [13],
we get Pr(Z2 = 172) ≈ 1/N + 0.28/N2. ⊓⊔

2.3 Proof of bias in (Z4 = 2)

Theorem 3. Suppose that the initial permutation S0 of RC4 PRGA is randomly chosen from the
set of all permutations of {0, 1, . . . , N − 1}, where N = 256. Then Pr(Z4 = 2) ≈ 1/N + 1/N2.

Proof. We observe the main paths for this bias as follows.

Path 1. Consider j4 = 4. Then, Z4 = S4[S4[4] + S4[j4]] = S4[2 · S4[4]]. We may further consider
some subpaths within this case.

– Subpath 1: S4[4] = 2 gives Z4 = S4[4] = 2 with probability 1. However, the event (S4[4] =
2 | j4 = 4) occurs with probability approximately 2/N , as follows.

• If S0[4] = 2 and j1, j2, j3 6= 4, then S4[4] = 2 remains constant during the first three
rounds. Thus, Pr(S4[4] = 2 | j4 = 4 ∧ S0[4] = 2) ≈ 1.

• If S0[1] = 2 and j3 6= 4, it can be shown that S4[4] = 2 through the first three rounds.
Thus, Pr(S4[4] = 2 | j4 = 4 ∧ S0[1] = 2) ≈ 1.

• Consider S0[4] 6= 2 and S0[1] 6= 2. In this case, we show that S4[4] = 2 and j4 = 4 can
not occur simultaneously. Suppose the event (j4 = 4 ∧ S4[4] = 2) does occur. Then we
have j3 = 0, and hence S2[4] = S3[4] = S4[4] = 2. As we know S0[4] 6= 2, this implies
j1 = 4 and/or j2 = 4.
If j1 = 4 and j2 = 4, we get S2[4] = 0, contradiction, as S2[4] = 2.
If j1 = 4 and j2 6= 4, we have S1[4] = S2[4] = 4, contradiction, as S2[4] = 2.
Consider j1 6= 4 and j2 = 4. Since j2 = S0[1] + S1[2] and S0[1] 6= 2, we must have
S2[4] = S1[2] 6= 2, a contradiction.

In summary, Pr(S4[4] = 2 | j4 = 4) ≈ 2/N , and Pr(Z4 = 2 ∧ S4[4] = 2 | j4 = 4) ≈ 2/N .

– Subpath 2: S4[4] = N/2 + 2 gives Z4 = S4[N + 4] = S4[4] = N/2 + 2 6= 2. So, Pr(Z4 =
2 ∧ S4[4] = N/2 + 2 | j4 = 4) = 0.

– Subpath 3: S4[4] = 0 gives Z4 = S4[0] = 2 with probability 1/N . However, the event
(S4[4] = 0 | j4 = 4) occurs with probability 2/N , as follows.

• If S0[1] = 2 and S0[3] = 0, then j1 = 2, S1[2] = S0[1] = 2, which implies j2 = 4. This
produces S2[4] = S1[2] = 2, and we get j3 = j2 = 4 because of S2[3] = S1[3] = S0[3] = 0.
After the third round, S3[4] = S2[3] = 0, and in the next round, j4 = j3 = 4 ensures no
swap. Thus, we get both j4 = 4 and S4[4] = S3[4] = 0.

• In other situations, S4[4] = 0 and j4 = 4 occur due to random situation.

In summary, Pr(S4[4] = 0 | j4 = 4) ≈ 2/N , and Pr(Z4 = 2 ∧ S4[4] = 0 | j4 = 4) ≈ 2/N2.

– Subpath 4: S4[4] 6= 0, 2, N/2 + 2 gives Z4 = 2 with probability approximately 1/N due
to random association. Due to the previous subpaths, we know that the event (S4[4] 6=
0, 2, N/2 + 2 | j4 = 4) occurs with probability (1− 5/N). Thus,

Pr(Z4 = 2 ∧ S4[4] 6= 0, 2, N/2 + 2 | j4 = 4) ≈ (1/N) · (1− 5/N) = 1/N − 5/N2.



Combining all the subpaths mentioned above, we get Pr(Z4 = 2 ∧ j4 = 4) as

Pr(Z4 = 2 ∧ S4[4] = 2 | j4 = 4) · Pr(j4 = 4)

+ Pr(Z4 = 2 ∧ S4[4] = N/2 + 2 | j4 = 4) · Pr(j4 = 4)

+ Pr(Z4 = 2 ∧ S4[4] = 0 | j4 = 4) · Pr(j4 = 4)

+ Pr(Z4 = 2 ∧ S4[4] 6= 0, 2, N/2 + 2 | j4 = 4) · Pr(j4 = 4)

= (2/N) · (1/N) + 0 + (2/N2) · (1/N) + (1/N − 5/N2) · (1/N) = 3/N2 − 3/N3.

Path 2. Consider j4 6= 4. Then, Z4 = S4[S4[4]+S4[j4]] = S4[S4[4]+X], where X = S4[j4] 6= S4[4],
say. Here we may consider two subpaths, as follows.
– Subpath 1: S4[4] = 2 gives Z4 = S4[2+X] 6= S4[4] = 2, as X = S4[j4] 6= S4[4] = 2 for j4 = 4.

Thus, Pr(Z4 = 2 ∧ S4[4] = 2 | j4 6= 4) = 0.
– Subpath 2: S4[4] 6= 2 gives Z4 = 2 with due to random association. Thus, Pr(Z4 = 2∧S4[4] 6=

2 | j4 6= 4) ≈ 1/N · (1− 1/N) = (1/N − 1/N2).
Combining the subpaths mentioned above, we have Pr(Z4 = 2 ∧ j4 6= 4) as

Pr(Z4 = 2 ∧ S4[4] = 2 | j4 6= 4) · Pr(j4 6= 4) + Pr(Z4 = 2 ∧ S4[4] 6= 2 | j4 6= 4) · Pr(j4 6= 4)

= 0 + (1/N − 1/N2) · (1− 1/N) = 1/N − 2/N2 + 1/N3.

Adding the contributions from the two mutually exclusive paths above, we get

Pr(Z4 = 2) = Pr(Z4 = 2 ∧ j4 = 4) + Pr(Z4 = 2 ∧ j4 6= 4)

= (3/N2 − 3/N3) + (1/N − 2/N2 + 1/N3) = 1/N + 1/N2 − 2/N3.

Hence we get Pr(Z4 = 2) ≈ 1/N + 1/N2. ⊓⊔

2.4 Proof of bias in (Z256 = 0)

Theorem 4. In practical RC4 with N = 256, Pr(ZN = 0) ≈ 1/N − 0.36/N2.

Proof. Let us consider the following two paths.

Path 1. Consider S1[0] = 0. In this case, if j2, . . . , jN−1 are all non zero, then one can check that
ZN 6= 0. In all other cases, one may consider Pr(ZN = 0 | S1[0] = 0) ≈ 1/N due to random
association. Thus, Pr(ZN = 0 | S1[0] = 0) ≈

(

1− (1− 1/N)N−2
)

· (1/N).
Path 2. Consider S1[0] 6= 0. In this case, we may again consider the following sub-paths, depending

on the state SN−3.

Pr(ZN = 0 | S1[0] 6= 0)

= Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[0] = 0) · Pr(SN−3[0] = 0 | S1[0] 6= 0)

+ Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[N − 2] = 0) · Pr(SN−3[N − 2] = 0 | S1[0] 6= 0)

+ Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[N − 1] = 0) · Pr(SN−3[N − 1] = 0 | S1[0] 6= 0)

+

N−3
∑

x=1

Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[x] = 0) · Pr(SN−3[x] = 0 | S1[0] 6= 0).

– Case 1: If SN−3[0] = 0 and jN−2, jN−1 6= 0, we have SN−1[0] = 0, which implies jN =
jN−1 and SN−1[jN−1] 6= jN−1. Thus, ZN = SN [SN−1[jN ] + SN−1[0]] = SN [SN−1[jN−1]] 6=
SN [jN−1] = SN [jN ] = SN−1[0] = 0. Thus for ZN = 0, we must have either jN−2 = 0 or
jN−1 = 0 in this case, and in each case, ZN = 0 will occur with probability 1/N of random
association. Hence Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[0] = 0) ≈ 2/N2.



– Case 2: If SN−3[N − 2] = 0 and jN−2 = 0, we have SN−2[0] = 0 and jN−1 = SN−2[N −
1] 6= 0. Thus, SN−1[0] = 0 and jN = jN−1, which gives ZN = SN [SN−1[0] + SN−1[jN ]] =
SN [SN−1[jN−1]] = SN [SN−2[N − 1]] = SN [jN−1] = SN [jN ] = SN−1[0] = 0. So, Pr(ZN =
0 | S1[0] 6= 0 ∧ SN−3[N − 2] = 0 ∧ jN−2 = 0) = 1. On the other hand, if SN−3[N − 2] = 0
and jN−2 6= 0, then ZN 6= 0 where jN−1 6= 0 and SN−1[jN ] = 0, and ZN = 0 due to random
association in all other cases. So, Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[N − 2] = 0 ∧ jN−2 6= 0) ≈
1/N − 1/N2. Combining the two items as above, we get

Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[N − 2] = 0) ≈ 2/N − 2/N2.

– Case 3: Similarly for SN−3[N − 1] = 0, it can be proved that Pr(ZN = 0 | S1[0] 6= 0 ∧
SN−3[N − 1] = 0) ≈ 2/N − 2/N2.

– Case 4: Now consider the case SN−3[x] = 0 for 1 ≤ x ≤ N − 3. If jN−2 6= x, jN−1 6= x and
jN = x, one can verify that ZN 6= 0. In all other cases, ZN = 0 occurs with probability 1/N .
Thus for 1 ≤ x ≤ N − 3, Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[x] = 0) ≈ 1/N − 1/N2.

Now, let us consider the conditional events (SN−3[x] = 0 | S1[0] 6= 0), for 0 ≤ x ≤ N − 1,
to complete the picture. Starting with S1[0] 6= 0, if j2, . . . , jN−3 are all non zero, we have

SN−3[0] 6= 0 as well. So, Pr(SN−3[0] = 0 | S1[0] 6= 0) =
(

1− (1− 1/N)N−4
)

· (1/N) = PA, say.

For all x 6= 0, we may now assume Pr(SN−3[x] = 0 | S1[0] 6= 0) ≈ (1− PA)/(N − 1) = PB, say.
Taking into account the contributions from all four sub-cases within this path, we get

Pr(ZN = 0 | S1[0] 6= 0) = (2/N2) · PA + (2/N − 2/N2) · PB

+ (2/N − 2/N2) · PB + (1/N − 1/N2) · (1− PA − 2PB)

= (1/N − 1/N2)− (1/N − 3/N2) · PA + (2/N − 2/N2) · PB.

Combining the above two paths, we get Pr(ZN = 0) as

Pr(ZN = 0 | S1[0] = 0) · P (S1[0] = 0) + Pr(ZN = 0 | S1[0] 6= 0) · P (S1[0] 6= 0)

≈
(

1− (1− 1/N)N−2
)

· (1/N) · (2/N)

+ ((1/N − 1/N2)− (1/N − 3/N2) · PA + (2/N − 2/N2) · PB) · (1− 2/N) ≈ 1/N − 0.36/N2,

for N = 256, as in the case with practical RC4. ⊓⊔

2.5 Proof of bias in (Z257 = 0)

Theorem 5. In practical RC4 with N = 256, Pr(ZN+1 = 0) ≈ 1/N + 0.36/N2.

Proof. We may write ZN+1 = SN+1[SN [1] + SN [jN+1]], and consider the following two paths.

Path 1. Consider the case SN [1] = 1, where we may write ZN+1 = SN+1[1 + SN [jN+1]]. If
SN [jN+1] = 0, we have ZN+1 = SN+1[1] = SN [jN+1] = 0. Otherwise if SN [jN+1] = X 6= 0,
we have ZN+1 = SN+1[1 + X] = 0 only due to random association. Let us denote events
A = (SN [1] = 1) and B = (SN [jN+1] = 0) to get

Pr(ZN+1 = 0 | A) = Pr(ZN+1 = 0 | A ∧B) · Pr(B) + Pr(ZN+1 = 0 | A ∧B) · Pr(B)

≈ 1 · (1/N) + (1/N) · (1− 1/N) = 2/N − 1/N2.



Path 2. Consider the case SN [1] = X 6= 1. Here we have ZN+1 = SN+1[X + SN [jN+1]]. If
SN [jN+1] = 0, we will get ZN+1 = SN+1[X] 6= SN+1[1] = SN [jN+1] = 0. Otherwise, for
SN [jN+1] = Y 6= 0, we may have ZN+1 = SN+1[X + Y ] = 0 due to random association. Let us
denote events A = (SN [1] = 1) and B = (SN [jN+1] = 0) to get

Pr(ZN+1 = 0 | A) = Pr(ZN+1 = 0 | A ∧B) · Pr(B) + Pr(ZN+1 = 0 | A ∧B) · Pr(B)

≈ 0 + (1/N) · (1− 1/N) = 1/N − 1/N2.

From [22, Theorem 1], we have Pr(SN [1] = 1) ≈ 0.00532 when N = 256. Thus,

Pr(ZN+1 = 0) = Pr(ZN+1 = 0 | A) · Pr(A) + Pr(ZN+1 = 0 | A) · Pr(A)

≈ (2/N − 1/N2) · (0.00532) + (1/N − 1/N2) · (1− 0.00532) ≈ 1/N + 0.36/N2,

for N = 256, as in the case with practical RC4. ⊓⊔

3 Negative bias in Z1 = 129 and the anomaly in S0[128] = 127

In this section, we attempt at solving the mystery of the negative bias in Z1 = 129, which was
observed in [1, 3], but not in [16, 22]. We first notice that the length of the secret key used in the
experiments of [1,3] was consistently l = 16, whereas the same for [16,22] might have been different.
This hinted that the bias in Z1 = 129 may be keylength dependent. Our experiments revealed that
the negative bias of Z1 = 129 is prominent only for keylength l equal to non-trivial factors of 256,
that is, for l = 2, 4, 8, 16, 32, 64, 128. This behavior is depicted in Fig. 5.

Dependence of keystream biases on the secret keylength l was first proved in [22], for any
keylength l, but no such pattern for specific keylengths was discovered earlier. Our experiments
with these specific keylengths l = 2, 4, . . . , 128 revealed that there exists another bias of the same
kind, a negative bias in S0[128] = 127. Figure 6 shows the keylength dependence of this bias. This
bias had been pointed out quite a few years ago [13, 18] as an “anomaly” in the otherwise smooth
distribution of S0[u] = v, but it was never observed as a keylength dependent phenomenon.

In this section, we first settle the mysterious open issue of the S0[128] = 127 anomaly, and then
proceed to analyze its connection with the negative bias of Z1 = 129, if any. We will require the
following technical results to prove the main theorem later.

Lemma 1. In practical RC4 with N = 256, for 1 ≤ r ≤ N , Pr(SK
r−1[r] = r) ≈ 1/N + (1− 1/N)r.

Proof. We know that SK
0 is the identity permutation of {0, . . . , N − 1}, and thus SK

0 [r] = r. This
value will remain at the same index till round (r−1) if none of jK1 , jK2 , . . . , jKr−1 touches the index r,
which occurs with probability (1−1/N)r−1, or otherwise due to random association, with probability
1/N . Hence, we get Pr(SK

r−1[r] = r) ≈ (1−1/N)r−1 ·1+(1−(1−1/N)r−1)·(1/N) = 1/N+(1−1/N)r.

Lemma 2. In practical RC4 with N = 256, Pr(SK
127[128] = −K[128]) ≈ 0.4/N if and only if l, the

length of the RC4 secret key, is a non-trivial factor of N = 256.

Proof. Let us consider the following two paths.

Path 1. Consider SK
127[128] = 128. In this case, we surely require K[128] = −128 = 128 (modulo

N = 256). Now, if l = 2, 4, . . . , 128, then K[128] = K[0] = 128. This implies jK1 = jK0 +
SK
0 [0] + K[0] = 0 + 0 + 128 = 128, which in turn results in SK

1 [0] = 128 and SK
1 [128] = 0

after swap in the first round. As iK does not touch index locations 0 or 128 during rounds 2
to 127, we can not have SK

127[128] = 128, a contradiction. If l does not divide 128, then K[128]



Fig. 5. Bias in the event (Z1 = 129) for keylength 1 ≤ l ≤ 256.

Fig. 6. Bias in the event (S0[128] = 127) for keylength 1 ≤ l ≤ 256.

may not be equal to K[0], and in this case SK
127[128] = 128 may occur with probability 1/N .

In summary, Pr(SK
127[128] = −K[128] | SK

127[128] = 128) = 0 if l = 2, 4, . . . , 128. Otherwise,
Pr(SK

127[128] = −K[128] | SK
127[128] = 128) ≈ 1/N .

Path 2. In case SK
127[128] 6= 128, there is no special behavior dependent on the keylength l, and

we may assume that Pr(SK
127[128] = −K[128] | SK

127[128] 6= 128) ≈ 1/N .

Combining the two paths, we get

Pr(SK
127[128] = −K[128]) = Pr(SK

127[128] = −K[128] | SK
127[128] = 128) · Pr(SK

127[128] = 128)

+ Pr(SK
127[128] = −K[128] | SK

127[128] 6= 128) · Pr(SK
127[128] = 128)

≈ 0 · (156/N) + (1/N) · (1− 156/N) ≈ 0.4/N,

if l = 2, 4, . . . , 128, where Pr(SK
127[128] = 128) ≈ 156/N is by Lemma 1 with r = 128. For all other

values of l, we get Pr(SK
127[128] = −K[128]) ≈ (1/N) · (156/N) + (1/N) · (1− 156/N) = 1/N . ⊓⊔



Theorem 6. In practical RC4 with N = 256, Pr(S0[128] = SK
N [128] = 127) ≈ 0.63/N if and only

if l, the length of the RC4 secret key, is a non-trivial factor of N = 256.

Proof. Let us first compute Pr(SK
128[128] = 127), using the following paths.

Path 1. Consider SK
127[128] = −K[128]. In this case, j128 = j127 + SK

127[128] + K[128] = j127.
So, SK

128[128] = SK
127[j128] = SK

127[j127] = SK
126[127]. Now, by Lemma 1 with r = 127, we get

Pr(SK
126[127] = 127) ≈ 156/N . Thus, Pr(SK

128[128] = 127 | SK
127[128] = −K[128]) ≈ 156/N .

Path 2. Consider SK
127[128] 6= −K[128]. In this case, SK

128[128] = SK
126[X] for some X 6= 127.

Thus by normalization over the probability values Pr(SK
126[X] = 127) for X 6= 127, we get

Pr(SK
128[128] = 127 | SK

127[128] 6= −K[128]) ≈ (1− 156/N)/(N − 1) ≈ 0.4/N .

Combining the two paths as above, we get

Pr(SK
128[128] = 127) = Pr(SK

128[128] = 127 | SK
127[128] = −K[128]) · Pr(SK

127[128] = −K[128])

+ Pr(SK
128[128] = 127 | SK

127[128] 6= −K[128]) · Pr(SK
127[128] 6= −K[128])

≈ (156/N) · (0.4/N) + (0.4/N) · (1− 0.4/N) ≈ 0.64/N,

if l = 2, 4, . . . , 128. For all other values of l, we get Pr(SK
128[128] = 127) ≈ (156/N)·(1/N)+(0.4/N)·

(1− 1/N) ≈ 1/N . In both cases, the value of Pr(SK
127[128] = −K[128]) comes from Lemma 2.

Once we have SK
128[128] = 127, we know that S0[128] = SK

N [128] = 127 if none of j129, . . . , jN
touches the index 128. If otherwise SK

128[128] 6= 127 and the value 127 is in any index less than 128,
then SK

N [128] 6= 127. If SK
128[128] 6= 127 and the value 127 is in any index I greater than 128, then

SK
N [128] = 127 may occur due to the following association.

– Indices j129, . . . , jI−1 do not touch location I before i = I.
– When i = I, we have j equal to 128, so that the appropriate swap occurs.
– Moreover, none of jI+1, . . . , jN touches the location 128 after the previous event.

This path entails a approximate probability (1/N)·(1−1/N)127 for each I, and the total probability
of the aforesaid association, over I = 129, . . . , 255, becomes approximately 0.24/N . Thus,

Pr(SK
N [128] = 127) = Pr(SK

128[128] = 127) · (1− 1/N)128 + Pr(SK
128[128] 6= 127) · (0.24/N)

≈ (0.64/N) · (155/N) + (1− 0.64/N) · (0.24/N) ≈ 0.63/N,

if l = 2, 4, . . . , 128. For other values of l, we get Pr(S0[128] = SK
N [128] = 127) following the value

predicted by the distribution of S0[u] = v by Mantin [13,15]. Hence the “anomaly”. ⊓⊔

The theoretical results regarding the anomaly in S0[128] = 127, as above, closely match with the
experimental results, both from our own experiments, as well as that reported in the literature [18].
This settles a long-standing mysterious issue in RC4 literature, and hints at the possibility that
all “anomalies” or deviations of probabilities in the distribution of S0 from that predicted by
Mantin [13], may actually result from intricate keylength dependence in the cipher.

Experimentally, we find that Pr(Z1 = 129 | S0[128] = 127) ≈ 1/N − 0.5/N2 and Pr(Z1 =
129 | S0[128] 6= 127) ≈ 1/N − 2/N2. Thus, using the anomaly, one may estimate Pr(Z1 = 129) as

Pr(Z1 = 129 | S0[128] = 127)Pr(S0[128] = 127) + Pr(Z1 = 129 | S0[128] 6= 127)Pr(S0[128] 6= 127)

≈ (1/N − 0.5/N2) · (0.63/N) + (1/N − 2/N2) · (1− 0.63/N) ≈ 1/N − 2/N2.

It may be the case that the anomaly is not directly influencing the bias in Z1 = 129. However,
investigation and proof of all causal paths towards proving the negative bias in Z1 = 129 remains
an interesting open question, which requires an independent rigorous analysis.



4 Complete proof of generalized keylength dependent biases

In [22, Section 2], Sen Gupta et al. presented a family of biases in RC4 that are dependent on the
length of the secret key. The most important of those biases was a keylength-distinguisher based
on the positive bias in the event (Zl = −l), where l is the length of RC4 secret key in bytes.

Subsequently, in [6, Section 3.4], Isobe et al. observed that similar bias also exists in the class
of events (Zxl = −xl) for any positive integer x. In an attempt to prove these biases, they explored
certain paths involving the expression fy = y(y+1)/2+

∑y
x=0K[x]. However, they could not prove

all the paths and substituted experimental values to compute what they referred as semitheoretical
values. They also commented the following.

Since semitheoretical value are partially based on experimental results, we can not claim that

the proof of these bias are given.

We observe that instead of following the approach of [6], if one follows the approach in [22], then
the theoretical derivation of the generalized keylength-dependent biases become much simpler. In
this section, we generalize all the keylength-dependent biases of [22] for any keylength l ∈ [3, N −1]
and any integer x ∈ [1, ⌊N

l
⌋] and thereby complete the proof of extended keylength distinguisher

that was left open in [6]. As a result, the biases in [22] become special cases of our results here with
x = 1. Note that though the general proof follows the same approach as in [22], the extension is
not obvious. A general proof always imply the special cases, but the converse need not be true. We
experimentally verified all the intermediate claims and assumptions related to the events involving
“xl” and we found them to be consistent with our theoretical claims. We present the general
theorems below and present the proofs in Appendix A for the sake of completeness.

All the biases that we are interested in are related to (SK
xl+1[xl−1] = −xl ∧ SK

xl+1[xl] = 0), where

x is an integer between 1 and ⌊N
l
⌋. So we first derive the probability for this event in Lemma 3.

Lemma 3. Suppose that l is the length of the secret key of RC4. Then for 1 ≤ x ≤ ⌊N
l
⌋, we have

Pr(SK
xl+1[xl−1] = −xl ∧ SK

xl+1[xl] = 0) ≈ 1
N2+

(

1− 1
N2

)

αx,l, where αx,l =
1
N

(

1− 3
N

)xl−2 (
1− xl+1

N

)

.

Theorem 7. Suppose that l is the length of the secret key of RC4. Then for 1 ≤ x ≤ ⌊N
l
⌋, we have

Pr(Sxl[xl] = −xl ∧ Sxl[jxl] = 0) = Pr(txl = −xl ∧ Sxl[jxl] = 0) ≈ 1
N2 +

(

1− 1
N2

)

βx,l, where

βx,l =
1
N

(

1− 1
N

) (

1− 2
N

)N−3 (
1− 3

N

)xl−2 (
1− xl+1

N

)

.

Theorem 8. Suppose that l is the length of the secret key of RC4. Then for 1 ≤ x ≤ ⌊N
l
⌋, we have

Pr(Zxl = −xl ∧ Sxl[jxl] = 0) ≈ 1
N2 +

(

1− 1
N2

)

γx,l, where

γx,l =
1
N2

(

1− xl+1
N

)
∑N−1

u=xl+1

(

1− 1
N

)u (
1− 2

N

)u−xl (
1− 3

N

)N−u+2xl−4
.

Theorem 9. For any keylength l ∈ [3, N − 1] and any integer x ∈ [1, ⌊N
l
⌋], the probability

Pr(Sxl[jxl] = 0) is given by

δx,l ≈ Pr(S1[xl] = 0)
(

1− 1
N

)xl−2
+
∑xl−1

y=2

∑xl−y
w=0

Pr(S1[y]=0)
w!·N

(

xl−y−1
N

)w
(

1− 1
N

)xl−3−w
.

Theorem 10. Suppose that l is the length of the secret key of RC4. Then for 1 ≤ x ≤ ⌊N
l
⌋, we

have τx,l = Pr(txl = −xl) ≈ 1
N2 +

(

1− 1
N2

)

βx,l+(1− δx,l)
1
N
, where βx,l is given in Theorem 7 and

δx,l is given in Theorem 9.

Theorem 11. Suppose that l is the length of the secret key of RC4. Then for 1 ≤ x ≤ ⌊N
l
⌋,

Pr(Zxl = −xl) ≈
1

N2
+

(

1−
1

N2

)

γx,l + (1− δx,l)
1

N
,

where γx,l is given in Theorem 8 and δx,l is given in Theorem 9.



In Figure 7, we compare the experimental values of (Zxl = −xl), obtained from the data of [1,3],
with our theoretical values derived from Theorem 11, for keylength l = 16 and x = 1, 2, . . . , 15. We
have obtained similar results for other keylengths as well, and some figures are in Appendix A.1.

Fig. 7. Bias in the event (Zxl = −xl) for keylength l = 16 and x = 1, 2, . . . , 15.

5 Conclusion

We have proved almost all open short-term single-byte biases that have been exploited in the recent
TLS attack [1,3]. We have also given complete proof of ‘extended keylength biases’ from [6]. Table 2
compares the experimental data of [1, 3, 6] to our theoretical results.

Table 2. Proved short-term single-byte keystream biases of RC4.

Bias in event Discovered Theoretical proof (this paper) Experimental [1, 3, 6]

Z2 = 129 [1, 20] 1/N − 2/N2 1/N − 1.82/N2

Z2 = 172 [1] 1/N + 0.28/N2 1/N + 0.2/N2

Z4 = 2 [1] 1/N + 1/N2 1/N + 0.8/N2

Z256 = 0 [1,6] 1/N − 0.36/N2 1/N − 0.38/N2

Z257 = 0 [6] 1/N + 0.36/N2 1/N + 0.35/N2

Zxl = −xl [6] Theorem 11 Figure 7 for l = 16

We also attempted the proof of the bias in Z1 = 129, but could not settle it completely. However,
we discovered that this bias is a new ‘keylength dependent’ bias of RC4, which is prominent only
for certain keylengths l = 2, 4, 8, . . . , 128. In the process, we tried to relate it with the long-standing
open issue of ‘anomalies’ in RC4 initial state, and could prove an important anomaly regarding
the bias in S0[128] = 127. Our work reveals that a thorough analysis of the “anomaly pairs” is
necessary, not only for their independent theoretical interest, but also to investigate their potential
implications towards keystream biases.
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A Proofs of the results in Section 4

We first list some existing results that will be needed in our proofs.

Proposition 1. [13, Theorem 6.2.1] At the end of RC4 KSA, for 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1,

Pr(S0[u] = v) =















1
N

(

(

N−1
N

)v
+
(

1−
(

N−1
N

)v
)

(

N−1
N

)N−u−1
)

, if v ≤ u;

1
N

(

(

N−1
N

)N−u−1
+
(

N−1
N

)v
)

, if v > u.

Proposition 2. [22, Lemma 1] After the first round of RC4 PRGA, for 0 ≤ u ≤ N − 1, 0 ≤ v ≤
N − 1, the probability Pr(S1[u] = v) is:

Pr(S1[u] = v) =



















































Pr(S0[1] = 1) +
∑

X 6=1

Pr(S0[1] = X ∧ S0[X] = 1), u = 1, v = 1;

∑

X 6=1,v

Pr(S0[1] = X ∧ S0[X] = v), u = 1, v 6= 1;

Pr(S0[1] = u) +
∑

X 6=u

Pr(S0[1] = X ∧ S0[u] = u), u 6= 1, v = u;

∑

X 6=u,v

Pr(S0[1] = X ∧ S0[u] = v), u 6= 1, v 6= u.

Proposition 3. [22, Theorem 1] In RC4 PRGA, for 3 ≤ u ≤ N − 1 and 0 ≤ v ≤ N − 1,

Pr(Su−1[u] = v) ≈Pr(S1[u] = v)

(

1−
1

N

)u−2

+
u−1
∑

y=2

u−y
∑

w=0

Pr(S1[y] = v)

w! ·N

(

u− y − 1

N

)w (

1−
1

N

)u−3−w

.

Now we present complete proofs of all the results in Section 4.

Lemma 3. Suppose that l is the length of the secret key of RC4. Then for 1 ≤ x ≤ ⌊N
l
⌋, we have

Pr(SK
xl+1[xl − 1] = −xl ∧ SK

xl+1[xl] = 0) ≈
1

N2
+

(

1−
1

N2

)

αx,l,

where αx,l =
1
N

(

1− 3
N

)xl−2 (
1− xl+1

N

)

.

Proof. The major path that leads to the target event is as follows.

– In the first round of the KSA, when iK1 = 0 and jK1 = K[0], the value 0 is swapped into the
index SK [K[0]] with probability 1.

– The index jK1 = K[0] /∈ {xl − 1, xl,−xl}, so that the values xl − 1, xl,−xl at these indices
respectively are not swapped out in the first round of the KSA. We as well require K[0] /∈
{1, . . . , xl − 2}, so that the value 0 at index K[0] is not touched by these values of iK during
the next xl − 2 rounds of the KSA. This happens with probability

(

1− xl+1
N

)

.



– From round 2 to xl− 1 (i.e., for iK = 1 to xl− 2) of the KSA, none of jK2 , . . . , jKxl−1 touches the

three indices {xl,−xl,K[0]}. This happens with probability
(

1− 3
N

)xl−2
.

– In round xl of the KSA, when iKxl = xl−1, jKxl becomes −xl with probability 1
N
, thereby moving

−xl into index xl − 1.
– In round xl+ 1 of the KSA, when iKxl+1 = xl, jKxl+1 becomes jKxl + SK

xl [xl] +K[xl] = −xl+ xl+
K[0] = K[0], and as discussed above, this index contains the value 0. Hence, after the swap,
SK
xl+1[xl] = 0. Since K[0] 6= xl − 1, we have SK

xl+1[xl − 1] = −xl.

Considering the above events to be independent, the probability that all of above occur together

is given by αx,l = 1
N

(

1− 3
N

)xl−2 (
1− xl+1

N

)

. If the above path does not occur, then the target
event happens due to random association with probability 1

N2 , thus contributing a probability of
(1− αx,l)

1
N2 . Adding the two contributions, the result follows. ⊓⊔

Theorem 7. Suppose that l is the length of the secret key of RC4. Then for 1 ≤ x ≤ ⌊N
l
⌋, we have

Pr(Sxl[xl] = −xl ∧ Sxl[jxl] = 0) = Pr(txl = −xl ∧ Sxl[jxl] = 0) ≈
1

N2
+

(

1−
1

N2

)

βx,l,

where βx,l =
1
N

(

1− 1
N

) (

1− 2
N

)N−3 (
1− 3

N

)xl−2 (
1− xl+1

N

)

.

Proof. From the proof of Lemma 3, consider the major path with probability αx,l for the event
(SK

xl+1[xl − 1] = −xl ∧ SK
xl+1[xl] = 0). For the remaining N − xl − 1 rounds of the KSA and for

the first xl − 2 rounds of the PRGA (i.e., for a total of N − 3 rounds), none of the values of jK

(corresponding to the KSA rounds) or j (corresponding to the PRGA rounds) should touch the

indices {xl − 1, xl}. This happens with a probability of
(

1− 2
N

)N−3
.

Now, in round xl−1 of PRGA, ixl−1 = xl−1, from where the value xl−1 moves to index jxl−1

due to the swap. In the next round, ixl = xl and jxl = jxl−1 +Sxl−1[xl] = jxl−1, provided the value
0 at index xl had not been swapped out by jxl−1, the probability of which is 1− 1

N
. So during the

next swap, the value −xl moves from index jxl to index xl and the value 0 moves from index xl to
jxl. The probability of the above major path leading to the event (Sxl[xl] = −xl ∧ Sxl[jxl] = 0) is

given by βx,l = αx,l

(

1− 2
N

)N−3 (
1− 1

N

)

. If this path does not occur, then there is always a chance
of 1

N2 for the target event to happen due to random association. Adding the two contributions and
substituting the value of αx,l from Lemma 3, the result follows.

Further, as txl = Sxl[xl] + Sxl[jxl], the event (Sxl[xl] = −xl ∧ Sxl[jxl] = 0) is equivalent to the
event (txl = −xl ∧ Sxl[jxl] = 0), and hence the result. ⊓⊔

Theorem 8. Suppose that l is the length of the secret key of RC4. Then for 1 ≤ x ≤ ⌊N
l
⌋, we have

Pr(Zxl = −xl ∧ Sxl[jxl] = 0) ≈
1

N2
+

(

1−
1

N2

)

γx,l,

where γx,l =
1
N2

(

1− xl+1
N

)
∑N−1

u=xl+1

(

1− 1
N

)u (
1− 2

N

)u−xl (
1− 3

N

)N−u+2xl−4
.

Proof. From the PRGA update rule, we have jxl = jxl−1+Sxl−1[xl]. Hence, Sxl[jxl] = Sxl−1[xl] = 0
implies jxl = jxl−1 as well as Zxl = Sxl[Sxl[xl] + Sxl[jxl]] = Sxl[Sxl−1[jxl] + 0] = Sxl[Sxl−1[jxl−1]] =
Sxl[Sxl−2[xl−1]]. Thus, the event (Zxl = −xl ∧ Sxl[jxl] = 0) is equivalent to the event (Sxl[Sxl−2[xl−
1]] = −xl ∧ Sxl−1[xl] = 0).

From the proof of Lemma 3, consider the major path with probability αxl for the joint event
(SK

xl+1[xl − 1] = −xl ∧ SK
xl+1[xl] = 0). This constitutes the first part of our main path leading to

the target event. The second part, having probability α′
x,l, can be constructed as follows.



– For an index u ∈ [xl + 1, N − 1], we have SK
u [u] = u. This happens with probability

(

1− 1
N

)u
.

– For the KSA rounds xl + 2 to u, the jK values do not touch the indices xl − 1 and xl. This

happens with probability
(

1− 2
N

)u−xl−1
.

– In round u+1 of KSA, when iKu+1 = u, jKu+1 becomes xl−1 with probability 1
N
. Due to the swap,

the value u moves to SK
u+1[xl − 1] and the value −xl moves to SK

u+1[u] = SK
u+1[S

K
u+1[xl − 1]].

– For the remaining N − u− 1 rounds of the KSA and for the first xl − 1 rounds of the PRGA,
none of the jK or j values should touch the indices {xl− 1, S[xl− 1], xl}. This happens with a

probability of
(

1− 3
N

)N−u+xl−2
.

– So far, we have (Sxl−1[Sxl−2[xl − 1]] = −xl ∧ Sxl−1[xl] = 0). Now, we should also have
jxl /∈ {xl − 1, S[xl − 1]} for Sxl[Sxl−2[xl − 1]] = Sxl−1[Sxl−2[xl − 1]] = −xl. The probability of
this condition is

(

1− 2
N

)

.

Assuming all the individual events in the above path to be mutually independent, we get α′
x,l =

1
N

∑N−1
u=xl+1

(

1− 1
N

)u (
1− 2

N

)u−xl (
1− 3

N

)N−u+xl−2
. Thus, the probability of the entire path is

given by γx,l = αx,l · α
′
x,l =

1
N2

(

1− xl+1
N

)
∑N−1

u=xl+1

(

1− 1
N

)u (
1− 2

N

)u−xl (
1− 3

N

)N−u+2xl−4
.

If this path does not occur, then there is always a chance of 1
N2 for the target event to happen

due to random association. Adding the two contributions, we get the result. ⊓⊔

Theorem 9. For any keylength l ∈ [3, N − 1] and any integer x ∈ [1, ⌊N
l
⌋], the probability

Pr(Sxl[jxl] = 0) is given by

δx,l ≈ Pr(S1[xl] = 0)

(

1−
1

N

)xl−2

+

xl−1
∑

y=2

xl−y
∑

w=0

Pr(S1[y] = 0)

w! ·N

(

xl − y − 1

N

)w (

1−
1

N

)xl−3−w

.

Proof. Note that Sxl[jxl] is assigned the value of Sxl−1[xl] due to the swap in round xl. Hence, by
substituting u = xl and v = 0 in Proposition 3, we get the result. ⊓⊔

Theorem 10. Suppose that l is the length of the secret key of RC4. Then for 1 ≤ x ≤ ⌊N
l
⌋, we

have

τx,l = Pr(txl = −xl) ≈
1

N2
+

(

1−
1

N2

)

βx,l + (1− δx,l)
1

N
,

where βx,l is given in Theorem 7 and δx,l is given in Theorem 9.

Proof. We can write Pr(txl = −xl) = Pr(txl = −xl ∧ Sxl[jxl] = 0) + Pr(txl = −xl ∧ Sxl[jxl] 6=
0), where the first term is given by Theorem 7. When Sxl[jxl] 6= 0, the event (txl = −xl) can
be assumed to occur due to random association. Hence the second term can be computed as
Pr(Sxl[jxl] 6= 0) · Pr(txl = −xl | Sxl[jxl] 6= 0) ≈ (1 − δx,l)

1
N
. Adding the two terms, we get the

result. ⊓⊔

By dividing the joint probabilities Pr(Sxl[xl] = −xl ∧ Sxl[jxl] = 0) and Pr(txl = −xl ∧ Sxl[jxl] =
0) of Theorem 7, and Pr(Zxl = −xl ∧ Sxl[jxl] = 0) of Theorem 8 by the appropriate marginals
δx,l = Pr(Sxl[jxl] = 0) of Theorem 9 and τx,l = Pr(tx,l = −xl) of Theorem 10, we get theoretical
values of the following conditional biases

1. Pr(Sxl[xl] = −xl | Sxl[jxl] = 0) = Pr(txl = −xl | Sxl[jxl] = 0).
2. Pr(Sxl[jxl] = 0 | txl = −xl).
3. Pr(Zxl = −xl | Sxl[jxl] = 0).

Theorem 11. Suppose that l is the length of the secret key of RC4. Then for 1 ≤ x ≤ ⌊N
l
⌋, we

have

Pr(Zxl = −xl) ≈
1

N2
+

(

1−
1

N2

)

γx,l + (1− δx,l)
1

N
,

where γx,l is given in Theorem 8 and δx,l is given in Theorem 9.



Proof. We can write Pr(Zxl = −xl) = Pr(Zxl = −xl ∧ Sxl[jxl] = 0) + Pr(Zxl = −xl ∧ Sxl[jxl] 6=
0), where the first term is given by Theorem 8. When Sxl[jxl] 6= 0, the event (Zxl = −xl) can
be assumed to occur due to random association. Hence the second term can be computed as
Pr(Sxl[jxl] 6= 0) · Pr(Zxl = −xl | Sxl[jxl] 6= 0) ≈ (1 − δx,l)

1
N
. Adding the two terms, we get the

result. ⊓⊔

By dividing the joint probability Pr(Zxl = −xl ∧ Sxl[jxl] = 0) of Theorem 8 by Pr(Zxl = −xl) as
given above, we get the theoretical value of Pr(Sxl[jxl] = 0 | Zxl = −xl).

A.1 Supporting figures for some keylengths other than 16-bytes

Fig. 8. Bias in the event (Zxl = −xl) for keylength l = 20 and x = 1, 2, . . . , 12.

Fig. 9. Bias in the event (Zxl = −xl) for keylength l = 24 and x = 1, 2, . . . , 10.



Fig. 10. Bias in the event (Zxl = −xl) for keylength l = 28 and x = 1, 2, . . . , 9.

Fig. 11. Bias in the event (Zxl = −xl) for keylength l = 32 and x = 1, 2, . . . , 7.


