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Abstract—We propose a standard micromagnetic problem, of method (FDM) adopted by OOMMF and the finite element
a nanostripe of permalloy. We study the magnetization dynamics method (FEM) used in Nmag. The latter is more suitable for
and describe methods of extracting features from simulations. geometries with irregular edges [16]. However, the compu-
Spin wave dispersion curves, relating frequency and wave vector, ;.. .
are obtained for wave propagation in different directions relative ftatlon OYefhead gnd mf':magement of resou_rces become major
to the axis of the waveguide and the external applied field. iSsues in FEM simulations. To compare different numerical
Simulation results using both finite element (Nmag) and finite solvers, the Micromagnetic Modeling Activity GroupNlag)
difference (OOMMF) methods are compared against analytic publishes standard problems for micromagnetism [17]-[19]
results, for different ranges of the wave vector. A more recent addition included the effects of spin transfer

torque [20]. However, there has thus far been no standard

INTRODUCTION problem that includes the calculation of the spin wave dis-

There have been steady improvements in computatiorFP&rSiO” of a magnonic waveguide. We believe that specifying
micromagnetics in recent years, both in techniques as well& Standard problem will promote the use of micromagnetic
in the use of graphical processing units (GPUs) [1]—[4]. Sehe Simulations and assist in the design of experiments to sbser
are complemented by efforts to compute the magnetization djagnetization dynamics.
namics in various kinds of magnonic crystals and waveguides
of different geometries and made of different materialsB]. I. PROBLEM SELECTION
The dispersion relationy(k), provides valuable insights into . .
the cha?acteristics of pro(p;gzting spin waves (SW%), arel aid For a standard problem, we require that (a) different

. : o . . . _simulation tools can produce the same initial magnetiratio
in our pursuit of building functional devices around magieon configuration, (b) the excitation field perturbs the magneti
waveguides [8]-[10]. Dispersion relations have trad#ibn 9 ’ P ¢

been obtained using experimental means, which often me%r%'on su_ff|C|ent_Iy to excite multiple spin wave modes (c)
computational times are reasonable, and (d) the results can

S T . X .
: . o . .aB/e verified, preferably compared against analytic expoessi
Analytic solutions must rely on approximations that sirfypli We define a problem that satisfies these criteria.

the details of an experiment. Computational methods offer _ _ _
a compromise between the two, although agreement with® The problem is separated into two sub problems which
analytic solutions can become elusive. This becomes eviden are tackled with two different simulations. The first deals
in some of the figures in this article, where we observe with obtaining the initial magnetization for the configura-
good agreement in the dispersion relation for the fundaatent  tion by applying the bias field along a direction suitable
propagating mode, but gradual disagreement as we study for the configuration. The resulting relaxed magnetization
higher order modes. Our primary goal is to define a standard state _obtained is used as initial magnetization for the
problem and provide sufficient numerical and analytic suppo ~ following step. . _ .
to establish the dynamics in a simple magnonic waveguide. * We apply an excitation that is varying as a sinc pulse
The Landau-Lifshitz-Gilbert (LLG) [11] equation is the in both time and space. Various other excitations were
governing differential equation that describes the magaet tried out but the one mentioned above led to the optimum
tion dynamics. There are many packages and methods used to dispersion curves. The sinc concentrates the SW power
solve the LLG equation. Among them are the Object Oriented N & window in the frequency domain, and the dispersion
Micromagnetic Framework (OOMMF) [12], LLG [13], Micro- curve obtained is prominent in detail. In particular, the

magus [14] and Nmag [15]. We rely on the finite difference excitation would launch all the modes in the frequency
range of interest. The same logic was applied in determin-
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ing the wave vector range of the excitation. The excitation
should also be continuous in time, i.e., the amplitude
of the excitation is determined at each time-step of the
solver and not at any pre-determined time instants. Both
OOMMF and NMAG had provisions to do this.

In the relaxation simulation, the damping parametein

the LLG equation, is kept high for faster convergence. At
the same time, the convergence criterion is made stiffer
to avoid a loss of accuracy. For the second simulation,



. Lo . H, @
we disable the convergence criterion (on the time ra — Tk /

of change of magnetization) and stopped the simulatic -k / © — »H,
after a given length of time. ( Lk J/
« We save magnetization data (as a function of space & o |
time), as provided by the packages used for the simul °
tion. This data is then used for the purpose of obtainir, o= k= /
the dispersion relation data, by using the Discrete Fourier
transform (DFT) [21]. Figure 2. Excitation geometry for (a) backward volume, (bjward volume

and (c) surface spin waves.

I[I. PROBLEM DEFINITION
The proposed geometry for the problem is that of a nano-3) Surface waves are also forward volume waves, i.e. the

stripe of permalloy (100050x1) nnt’, shown in Fig. 1. By phase velocityv,) and the group velocityv,) are along
the same direction. Surface waves are excited when both
J H, andk are in the plane of the stripe, but are mutually
perpendicular to each other.
, X A comparison with Fig. 1 suggests that the BV configuration

is the most likely to be used in a magnonic device. However,

for reasons of completeness, we will also present simuiatio
b=50 nm ! .
results for the other two configurations.
- L»/:=1nm
=1000 .
# m A. Meshing
Figure 1. The geometry of the nano stripe. A few details about the statistics of the unit cell (in the

) ) case of OOMMF) and the mesh used (in the case of Nmag)
choosing a cuboid, we ensure that the FDM method, usedjp, i, order. A stringent condition to follow in the creation
OOMMF, does not introduce errors due to irrégular edges. o the meshes is that the maximum mesh element size should

« The length of the stripe was chosen to be long enougt exceed the exchange length of the material. The exchange
to make the notion of dispersion;(k), meaningful and |ength for permalloy is around 5 nm. This criterion is stezbs

to minimize edge effects. o _upon so that the effect of exchange interactions is kept
« The width was chosen to make the possibility of standingominent.
wave occurrence, in the cross-section, realistic. Since OOMMEF is a finite difference solver, it uses a regular

« The thickness was chosen to be small enough to saf@yd and we set the cell size tbnmx2nmx2nm, with the
assume that the dynamics are uniform along this diregnortest edge along the thickness of the waveguide. It veas al
tion. possible to simulate an extended stripe length by apptiaati

Further specifications of the problem are given in Table &f a periodic boundary condition, with the help of an OOMMF

Parameter values chosen are typical for permalloy, with te&tension [23].

exception of the damping parameter22]. In the case of the Nmag, initially, the package NETGEN

[24] (which uses the advancing front method) was used to

[ Parameter _ | Value . | create the mesh for the simulations. However, this did not
:ig;:::gg gffsqzm‘t'oMS) fﬁgﬁgﬁﬂm meet the criteria above. Instead, we used a mesh created
Anisofropy Constant() 0 by decomposing the cuboidal body into cubes [20]. The
Gyromagnetic ratioy) 1.7x10° Hz/T mesh generated had 65025 volume elements, 45184 surface
Damping coefficientt) 0 elements. The average mesh length was 2.21 nm while the
DC bias field o) 101 kOe maximum mesh length was 2.52 nm.

Table |

FIELDS AND CONSTANTS USED IN THE SIMULATION
B. Excitation

In order to excite SWs, an excitation pulgézx,y,t) was
applied (along directions which differed according to the
Ill. RESULTSAND DISCUSSIONS direction of £ for each of the three configurations). The

In Fig. 2 we provide a schematic depiction of the differeméxcitation was a sinc pulse, with the mathematical form :

SW excitation configurations.
g sin [kca'] sin [key'] sin [27 fct']

1) In the backward volume (BV) wave configuration, the h(z,y,t) =T T o ot Q)
external bias fieldH,) is along the length of the stripe ot c¥ m fet
and parallel to the wave vectok); Definingz’ = x—x0, y' = y—yo andt’ = t—t,, the excitation

2) In the forward volume (FV) wave configuratioH, is was offset byt, = 50 ps and was applied at the center of the
normal to the plane of the stripe witk being in the stripe at(z,y0) = (500 nm25nm). k¢ is the cut-off value
plane of the stripe. for the wave vectok, i.e., we excite waves with wave number
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Figure 3. The applied excitation pulsk(500x10~?,50x10~?, ¢), starts  Figure 4. The hysteresis loop for the stripe, with the bias fpplied along
att = 0, has a maximum at = 50 ps and continues for the duration of thethe easy(x) and hard(z) directions.
simulation.

—ke < kg < kc. To obtain N = 250 points in the dispersion
curve, with L = 1 um, we choose

N 2

5 x % = 27x0.1255¢10° rad/m.  (2)

I' = 5.1kOe was the maximum amplitude of the excitation
and f. = 500 GHz was the cutoff frequency. A part of the
excitation, is shown in Fig. 3.

ke = N Ak =
2

f (GHz)

C. Smulation Methodology

: -0.2 0.0 0.2 0.4
We first calculate the lowest energy state in the presence of k (rad/nm)

an external bias field. The convergence criterion was set b

a
lx—igure 5. Surface plot af;, from (4), using data from an Nmag simulation.

tolerance value fo, The curves depict the dispersion relation for BV spin wavethée nanostripe.

1

s ‘ ) ) to relax till 5 ns. The integration time step is computed
Nmag uses the ODE solver from Sundials [25]. The simulatifsing a second order backward difference formula [25], and
was run thrice, withe being progressively tightened, andm(x’y’zJ) was saved every pico-second. Settingo zero
the absolute and relative tolerances on the time s$tep improved the quality of the dispersion curves.
were also reduced each time. The values farér) used  To generate a dispersion curve, we must view a surface plot

in the three simulations wergl, 107°), (0.1, 10°) and  of the magnetization components e, (k,,w). We define
(0.01, 10~7), with the output of the first and second runs

acting as input to the second and third runs, respectivélis T 7 (kz, w) = F2 [ma (2, Y0, 20, 1) — ma (%90, 20,0)],  (4)

step-wise relaxation allowed us to achieve faster convege where, is the two dimensional Fourier transform apdand

with an artificially inflated damping parameter,=1, without " o6 4t the center of the stripe. The resulting surface plot,

compromising the energy minimization procedure. A Morom Nmag simulations, is shown in Fig. 5
systematic approach is described in [ i

26].The hysteresig 10 o sefyl analytic approximation for spin wave dispersion

(shown in Fig. 4) of the stripe is obtained by applying thg a5 gerived by Kalinikos [27]. For the lowest order modes,

external bias field along an'dé, the easy (in thg plane) andy,q regyt (after taking exchange interactions into actjoisn
hard (out of the plane) axis of the stripe. This part of th&s]

simulation also allows us to

dM;
dt

1) confirm that the chosen value d¢f, = 10.1 kOe is 1 oke
greater than the hard axis saturation field, and Wex: (Wex + Wi = ) BV

2) savem(z,y,z,t), at the end of the simulation. The w2 = ¢y (wex + wu (1_ 1—;;“)) FV (5)
magnetization is saved cell-wise (for FDM) and site- 2 ke
wise (for FEM) and is used am(z,y,z,0) for the wex- (Wex + wm) + 5+ (1—e725)  Surface
second simulation. where

In the second part of the simulation, bddy andh (z, y, t)
are applied,a is set to zero and the simulation is allowed Wex = wo + Aexwmk?, (6)



[ Variables ] Typical value |
dex = 224 3.23x107 17" m?
wm = yuoMs | 2wx28.13 Grad/sec

Table Il
VARIABLES COMMONLY USED IN ANALYTIC EQUATIONS.

0.0
k (rad/nm)

k (rad/nm)

Figure 6. The dispersion curves, for (a) backward volumes(oface wave,
and (c) forward volume configurations, obtained using OOMNte dots are
the dispersion relations from the analytic models.

and
BV and Surface

FVvV "

~ ) vroHo
wo =
Yo (Ho — Ms)

600

—00.8 -0.6

-04 -02 0.0 0.6 0.8

k (rad/nm)

0.2 0.4

Figure 7. Optimal values abyp = 27 x 26.07 GHz andAexch = 2.96 X
10~17m? were obtained by fitting (5) (dotted line) to (13). Restrigtithe
fit to the region|k,| < 0.1rad/nm yielded a fit withR? = 0.9949.

even and odd modes, we modify the excitation to have the

form

sin [kez'] sin [27 fet']
kex! 2r fet!

N
E sin

i=1

h(z,y,t)=T [my] , (12

Ymax

whereymax = 50 nm andN = 25. This time we use OOMMF

to generate the dispersion curves, shown in Fig. 6. The ainaly
form of the first few modes, superimposed as dots, seems to
agree well with the quadratic form of the dispersion curves
from the simulations. For higher order modes we observe
that theory predicts a higher value forfk, — 0) compared

to what we see in the simulations. This difference is more
pronounced in the case of BV waves. A second observation is

Note thatAex has units of M. The remaining variables arethat ask — k, there is a larger discrepancy between analytic
defined in Table Il. We assume that the demagnetization fieRiRd simulated values af(,). This is due to the proximity
are negligible for the BV and surface wave cases, white the Brillouin boundary, along;, and can be reduced by

Hgemag= —Ms for the forward volume case.

reducing the micromagnetic cell size [30]. We also observe

Dynamic dipolar interactions can also influence the boundaieflections of the dispersion curves abgut f., which appear
conditions in the stripe [29]. This results in a special gisanPecause we take the discrete Fourier transform on a finite

zation condition along,

™

k, = (ny+1) , ny,=012,.. (8)
beff
for the different modes, where
d
= b—— 9
beff bd _ 27 ( )
P S— (10)
P {1 +2In (%)]
C
= - 11
p 2 (11)
andk =
thatc < bi.e. p < 1. In our casep = 0.02.

The excitation signal in (1) is asymmetric about the- g

length time series. The use of a periodic boundary condition
along the length, did not alter the thek,.) curves.

IV. BACKWARD VOLUME WAVES

The BV configuration is the most natural scheme for ex-
citation of SWs in a nano-stripe, 8, || k, and both are
along the length of the stripe. Hence, we use this configurati
to establish the validity of the dispersion relations atali
from micromagnetic simulations vis-a-vis those obtairrearf
analytic approximations for a thin film geometry.

To facilitate a detailed comparison with analytic models we
extract the dispersion curve of the fundamental mode fram th
surface plot and fit it to a polynomial (in rad/s):

w(kz) = (5.54x107%)k2 + 2.36x 10", (13)

k2 + k3. (8) has been derived under the assumptiqihere &, is the wave vector along the length shown in Fig.

7.Ask, = 0, w = Jwp (wo +wm) = 2rx37.6 Grad/sec
demonstrating a reasonable agreement between the analytic

line passing through the centre of the stripe. To excite bo#imd simulation results fo,| < 0.1 rad/nm.
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— Kalinikos without Guslienko quantization
+ Kalinikos with Guslienko quantization
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Figure 8. The dispersion curve exhibiting BV behavior, gshimag, with  Figure 9. BV dispersion curves, from (5) without includirg),((5) after
A =2.515x 10713 J/m. including (8), and (15). The first two coincide, except in the— 0 limit.
Zero group velocity occurs at;, min ~1.3x 10° rad/nm, 1.k 10° rad/nm and
2.5% 10% rad/nm for the three cases, respectively.
It should be noted that (5) shows BV behaviour only for

small values ofk,, where phase and group velocities have o ) o ]
opposite signs. Fotk,| > 2.8x10° rad/m the exchange also between finite difference and finite element solverss Th

term (k2) dominates the dipolar term. Increasing the lengtfjould be a starting point, before embarking on studies to un-
of the stripe to10 um would give us enough resolution inderstand the influence of irregular shapes or edge defesniti
k. to see BV behaviour, but would significantly increase th@" SPin wave excitation and propagation.

computational complexity. Instead, we changed the valué of We have shown reasonable agreement betvie@r) ob-

to 2.515<10~ '3 J/m. Nmag simulations gave the dispersioﬁ"“”ed from micromagnetic simulations, andk) obtained

curve shown in Fig. 8 where a Hanning window function [3110m analytic approximations, for different configuratoonf
Ws. This is evident especially for the lower order modes.

H(n) = 1 {1 — cos < 2mn ﬂ , 0<n<N-1 (14) TheBV nature of the waves is exhibited only for small values
2 N-1 - of k as the exchange term dominates for lakgdhe analytic
with N = 5000 was applied to smoothen the plot. Thequations do not appear to accurately capture the dispersio
minimum is clearly visible ak, min ~ 4x10° rad/nm. behaviour for largek. We have shown that it is possible
When the exchange interactions are comparable to the diff-obtain more resolution, in the regioh — 0 without
lar interactions, we need to improve upon the approximatioicreasing the length of the stripe, by altering the value of
made in the derivation of (5). The dispersion relation fae ththe phenomenological exchange constatit (

BV configuration (with exchange interactions) is [32] Micromagnetic simulations are sensitive to factors such as
) ) the discretization in the gepmetry, the featurgs of theteﬁ(_Jh
W = wex (Wex"v‘WM ky + k2 ) (15) pulse (ter_’nporal and spatial variation, maximum amplitude)
k24+k2+ K2 )7 the damping constant, and post processing of the data [, [2

h for the odd d h idering th f.kgS]. While we have tried to systematize these parameters,
where, tor the odd moces (here we are considering the i % must stil rely on practice and experience to obtain good
mode), k. is solved for from the relation

dispersion curves.
k. = k,tan(k.c) (16)

andk, = 0. Using the value of the reduced exchange constant, VI. ACKNOWLEDGMENT
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As we begin designing magnonic waveguides, we mugtile ID: 09/575/(0090)/2011 EMR-I)
also find ways of simulating spin wave propagation in these
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