
PROPERTIES OF NORMAL HARMONIC MAPPINGS

HUA DENG, SAMINATHAN PONNUSAMY, AND JINJING QIAO ∗

Abstract. In this paper, we present several necessary and sufficient conditions
for a harmonic mapping to be normal. Also, we discuss maximum principle and
five-point theorem for normal harmonic mappings. Furthermore, we investigate
the convergence of sequences for sense-preserving normal harmonic mappings and
show that the asymptotic values and angular limits are identical for normal har-
monic mappings.

1. Introduction and Main results

Let D = {z ∈ C : |z| < 1} denote the unit disk in the complex plane C. A
function f meromorphic in D is called a normal function if the family F = {f ◦ ϕ :
ϕ ∈ Aut(D)} is a normal family, where Aut(D) denotes the class of conformal
automorphisms of D (cf. [10]). Normal functions were first studied by Yosida [17].
Subsequently, Noshiro [13] gave a characterization of normal functions by showing
that a meromorphic function f is normal if and only if

(1.1) sup
z∈D

(1− |z|2)f#(z) < ∞,

where f# denotes the spherical derivative of f given by f#(z) = |f ′(z)|/(1 + |f(z)|2).
The condition (1.1) is equivalent to say that f is Lipschitz when regarded as a
function from the hyperbolic disk D into the extended complex plane endowed with
the chordal distance (cf. [10]) which is defined as follows: The chordal distance
χ(a, b) between the complex values a and b, considered as points on the Riemann
sphere, is given by

(1.2) χ(a, b) =























0 if a = b,
|a− b|

√

1 + |a|2
√

1 + |b|2
if a 6= ∞ 6= b,

1
√

1 + |a|2
if a 6= ∞ = b.

Normal functions play important roles in studying properties of meormorphic func-
tions, specially the behaviour in the boundary of meormorphic functions. Many
results have appeared in the literature, see, for example, [8, 9, 10, 12, 14, 16]. The
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main focus in this article is to extend a number of results from theory of analytic
functions to the case of planar harmonic mappings.

Let Ω be a simply connected domain in C. A harmonic mapping f on Ω is a
complex-valued function which has the canonical decomposition f = h+ g, where h
and g are analytic in Ω and g(z0) = 0 at some prescribed point z0 ∈ Ω. We recall
that (see [11]) a necessary and sufficient condition for a complex-valued harmonic
mapping f = h+g is locally univalent and sense-preserving in D is that red h′(z) 6= 0
and the Jacobian Jf (z) is positive in D, where Jf (z) = |h′(z)|2 − |g′(z)|2.
A harmonic mapping f = h+ g in D is red said to be normal if

sup
z1 6=z2

χ(f(z1), f(z2))

ρ(z1, z2)
< ∞,

where ρ(z1, z2) denotes the hyperbolic distance between two points z1 and z2 in D,
that is,

ρ(z1, z2) =
1

2
log

(

1 + r

1− r

)

, r =

∣

∣

∣

∣

z1 − z2
1− z̄1z2

∣

∣

∣

∣

.

Following the idea of Colonna [4] on harmonic Bloch functions, Arbeláez et al. [2]
studied normal harmonic mappings and established some necessary conditions for a
harmonic mapping to be normal. We begin with the following equivalent definition
(see [2, Proposition 1]).

Definition 1. A harmonic mapping f = h+ g in D is said to be normal if

sup
z∈D

(1− |z|2)f#(z) < ∞,

where

f#(z) =
|h′(z)|+ |g′(z)|
1 + |f(z)|2 .

Following the investigation of [2], we continue in this paper the study of normal
harmonic mappings. First we extend the theorem of Lohwater-Pommerenke [12,
Theorem 1] to the case of normal harmonic mappings, in the following form.

Theorem 1. A non-constant function f harmonic in D is normal if and only if
there do not exist sequences {zn} and {ρn} with zn ∈ D, ρn > 0, ρn → 0 as n → ∞,
such that

(1.3) lim
n→∞

f(zn + ρnζ) = F (ζ)

locally uniformly in C, where F is a non-constant harmonic mapping.

It is worth pointing out that the important use of [12, Theorem 1] was to prove
the five-point theorem due to Lappan [8, Theorem 1] which asserts that a function
f meromorphic in D is normal if supz∈f−1(E) f

#(z)(1 − |z|2) is bounded for some
five-point set E ⊂ f(D). Being stated Theorem 1, it is natural to ask whether this
result continues to hold in the case of harmonic mappings to be normal.
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Theorem 2. Let E be any set consisting of five complex numbers, finite or infinite.
If f is a sense-preserving harmonic mapping in D such that

sup
z∈f−1(E)

(1− |z|2)f#(z) < ∞,

then f is a normal harmonic mapping.

Our next result is a natural generalization of [9, Lemma 1] from the case of normal
meromorphic functions to the case of harmonic mappings.

Theorem 3. Let K be a positive real number and let f be a normal harmonic
mapping in D. Then for each positive integer n, there exists a constant En(f,K)
satisfying the inequality

(1− |z|2)n(|h(n)(z)|+ |g(n)(z)|) ≤ En(f,K)

for each z ∈ D and that |f(z)| ≤ K.

Theorem 3 actually characterizes sense-preserving normal harmonic mappings.
For if f is a sense-preserving harmonic mapping in D which is not normal, then by
Theorem 2 for each fixed K > 0 and for each value w such that |w| < K, we have

sup
z∈f−1(w)

(1− |z|2)f#(z) = ∞

with at most four exceptions for w.
Moreover in [7], Lappan showed that a meromorphic function f is normal if and

only if
lim
n→∞

f(zn) = lim
n→∞

f(wn)

for all sequences {zn} and {wn} in D such that ρ(zn, wn) → 0 as n → ∞. This result
has a natural analog for normal harmonic mappings.

Theorem 4. Let f = h+ g be a harmonic mapping in D such that either h or g is
bounded. Then f is normal in D if and only if for each pair of sequences {zn} and
{wn} of D such that ρ(zn, wn) → 0 as n → ∞, the convergence of {f(zn)} implies
the convergence of {f(wn)} with the same limit.

Theorem 4 characterizes normal harmonic mappings which is indeed a general-
ization of [3, Theorem 1.3] for normal functions.

Theorem 5. Let f be harmonic in D and 0 < p < ∞. Then f is normal if and
only if

sup
z,w∈D,z 6=w

χ(f(z), f(w))

|z − w| |1− wz|1− 2

p (1− |w|2) 1

p (1− |z|2) 1

p < ∞.

The proof of this result is similar to the proof of [3, Theorem 1.3] and so, we omit
its proof. Note that the case p = 2 of Theorem 5 gives a compact and useful form
for a harmonic function to be normal.

The maximum principle for normal functions is established in [10] (see also [15,
Theorem 9.1]), as a generalization of the classical maximum principle for analytic
functions since there is no assumption on |f(z)| with z belonging to some subarc
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of the boundary. We next consider the maximum principle for normal harmonic
mappings, and get a harmonic analog of [15, Theorem 9.1], which is indeed a gen-
eralization of the classical maximum principle for harmonic mappings.

Theorem 6. Let f = h+ g be harmonic in D and

(1.4) sup
z∈D

(1− |z|2) |h
′(z)|+ |g′(z)|
1 + |f(z)|2 ≤ α < ∞.

Let G be a domain with G ⊂ D that lies in the lens-shaped domain of angle β (0 <
β < π) cut off from D by the circular arc B (see Figure 1). We suppose that

(1.5) |f(z)| ≤ δ < δ0

for z ∈ ∂G\B, where δ0 =
1
κ

(

1 +
√
1 + κ2

)

exp
[

−
√
1 + κ2

]

with κ = αβ

sinβ
. Then

(1.6) |f(z)| ≤ η for z ∈ G,

where η = η(δ, α, β) is the smallest positive solution of

(1.7) δ = b(η), b(t) = t exp

(

−κ

2

(

t+
1

t

)

)

.

It is a simple exercise to see that the function b(t) = t exp
(

−κ
2

(

t+ 1
t

))

is increas-

ing for 0 < t < t0 and decreasing for t0 < t < ∞ with t0 = 1
κ
(1 +

√
1 + κ2), and,

thus, we have δ0 = b(t0). It follows that, for 0 ≤ δ ≤ δ0, δ = b(η) has a unique
solution η with 0 ≤ η < t0.
By using the maximum principle for normal harmonic mappings, we prove that

a sequence of normal harmonic mappings {fn} converges to 0 as n → ∞ in the
unit disk under the condition that maxz∈Cn

|fn(z)| converges to 0, where {Cn} is a
sequence of closed Jordan arcs with positive measure. Now, we state our next result
which is a generalization of [15, Theorem 9.2] for normal functions.

Theorem 7. Suppose that fn are harmonic in D for n ∈ N, and

(1.8) sup
z∈D

(1− |z|2)fn#(z) ≤ α < ∞, n ∈ N.

If there exist Jordan arcs Cn ⊂ D such that

(1.9) diam (Cn) = sup
z,w∈Cn

|z − w| ≥ γ > 0, n ∈ N,

and

(1.10) max
z∈Cn

|fn(z)| → 0 as n → ∞,

then fn(z) → 0 as n → ∞, locally uniformly in D.

Definition 2. We say that a harmonic mapping f in D has the asymptotic value
a ∈ C at the point ξ ∈ T := {z : |z| = 1} if there exists a Jordan arc Γ that ends at
ξ and lies otherwise in D such that f(z) → a for z ∈ Γ, z → ξ.
We call such an arc an asymptotic path. If Γ = {ξr : 0 ≤ r ≤ 1}, we call a a radial

limit (cf. [15]).
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Definition 3. A (symmetric) Stolz angle is a set of the form

A = {z ∈ D : | arg(1− ξz)| < (π/2)− δ} (0 < δ < π/2).

That is, it is a sector with vertex ξ and angle less than π symmetric to [0, ξ]. We
say that f has the angular limit a at ξ ∈ T if f(z) → a as z → ξ, z ∈ A and for
every Stolz angle A at ξ (cf. [15]).

By Definition 2, an angular limit is a radial limit and therefore is an asymptotic
value. In the following theorem, we show that the converse is true for normal har-
monic mappings. Therefore a normal harmonic mapping has at most one asymptotic
value at any given point ξ ∈ D.

Theorem 8. If the normal harmonic mapping f has the asymptotic value a at ξ,
then f also has the angular limit a at ξ.

In Section 2, we recall and also prove several lemmas which are useful to prove
our main results. In Section 3, we present the proofs of the main theorems.

2. Several Lemmas

We begin this section with the following lemma which is a generalization of the
corresponding one for analytic functions due to Marty (cf. [1, p. 169]).

Lemma 1. A class F of harmonic mappings f = h + g in D is normal if {f#(z) :
f ∈ F} (where f# is defined in Definition 1) is uniformly locally bounded.

Proof. Consider χ(f(z1), f(z2)) defined as in (1.2) for f(z1) 6= ∞ 6= f(z2). It is then
easy to see that, followed by the stereographic projection, f maps an arc γ on an
image with length

L(γ) =

∫

γ

|df(z)|
1 + |f(z)|2 ≤

∫

γ

(|h′(z)|+ |g′(z)|) |dz|
1 + |h(z) + g(z)|2

=

∫

γ

f#(z) |dz|.

If f#(z) ≤ M on the segment between z1 and z2, where M > 0 is independent of f ,
then we have

χ(f(z1), f(z2)) ≤
∫

γ

ρ(f) |dz| ≤ M

∫

γ

|dz| = M |z1 − z2|,

which implies that harmonic mappings in F are equicontinuous when f#(z)’s are
locally bounded. By Arzelà-Ascoli Theorem, the class F is normal. �

For a harmonic mapping f = h+ g in D such that f(z0) = 0 for some z0 ∈ D, we
have the power series expansions of h and g in |z − z0| < 1− |z0| of the form

h(z) = a0 +
∞
∑

k=n

ak(z − z0)
k, and g(z) = b0 +

∞
∑

k=m

bk(z − z0)
k,

where f(z0) = a0 + b0 = 0, an 6= 0 and bm 6= 0. If m 6= n or m = n and |an| 6= |bm|,
we say that f has a zero of order min{m,n} at z0.
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It is known that the zeros of a sense-preserving harmonic mapping are isolated (cf.
[5, p. 8]). We now recall the following lemma which is indeed the Hurwitz theorem
for harmonic mappings.

Lemma 2. ([5, p. 10]) If f and fn (n ≥ 1) are sense-preserving harmonic mappings
in D, and {fn}n≥1 converges locally uniformly to f , then z0 ∈ D is a zero of f if and
only if it is a cluster point of the zeros of the functions fn (n ≥ 1).

From Lemma 2, we observe that if f has a zero of order n at z0 if and only if each
small neighborhood of z0 (small enough to contain no other zeros of f) contains
precisely n zeros, counted according to multiplicity, of fn for every n sufficiently
large. We say that z = z0 is a multiple solution of f(z) = λ if z0 is a zero of order

n ≥ 2 of f(z)− λ, that is f(z0) = h(z0) + g(z0) = λ, |h′(z0)| 6= 0 and |g′(z0)| 6= 0.
Using Lemma 2 and [6, Corollary 3], we prove the following lemma.

Lemma 3. Let f = h + g be a sense-preserving harmonic mapping in C with
g(0) = 0. There are at most four values of λ for which all solutions of f(z) = λ are
multiple solutions.

Proof. Let f = h+g be a sense-preserving harmonic mapping in C and ω(z) = g′(z)
h′(z)

.

Then |ω(z)| < 1 in C and thus, by Liouville’s theorem, ω(z) ≡ α with the constant
|α| < 1. This gives

f(z) = h(z) + αh(z)− αh(0).

Now, for any number λ, f(z) = λ is equivalent to

h(z) =
λ− αλ+ αh(0)− |α|2h(0)

1− |α|2 .

Thus if all solutions of f(z) = λ are multiple solutions, then so do the last equation.
The converse is also true. By using [6, Corollary 3], there are at most four values
λ∗ for which all solutions of h(z) = λ∗ are multiple solutions, which implies that
there are at most four values λ for which all solutions of f(z) = λ are multiple
solutions. �

Lemma 4. ([2, Remark 1]) Let ϕ be analytic in D and |ϕ(z)| < 1. If f = h + g
is a normal harmonic mapping in D and supz∈D(1 − |z|2)f#(z) = α < ∞, then
F = f ◦ ϕ = H + G is also normal in D, and supz∈D(1 − |z|2)F#(z) ≤ α with
equality if ϕ ∈ Aut(D).

Finally, we recall the identity theorem for harmonic mappings ([2, 17]).

Lemma 5. Let f be harmonic in a connected open set D. If f(z) ≡ 0 in some open
subset G ⊂ D, then f(z) ≡ 0 in D.

3. Proofs of theorems

By using the method of proof of [12, Theorem 1], one can easily prove Theorem
1 but for the sake of completeness, we include the details.
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3.1. The proof of Theorem 1. Suppose that f is not normal. Then there exists
a sequence {z∗n} such that

(3.1) (1− |z∗n|2)f#(z∗n) → ∞ as n → ∞,

which also implies that |z∗n| → 1 as n → ∞.
Let {rn} be a sequence such that |z∗n| < rn < 1 and

(

1− |z∗n|2
r2n

)

f#(z∗n) → ∞ as n → ∞.

Furthermore, we choose {zn} such that

Mn = max
|z|<rn

(

1− |z|2
r2n

)

f#(z) =

(

1− |zn|2
r2n

)

f#(zn).

Since |z∗n| < rn, it follows from (3.1) that Mn → ∞ as n → ∞. If we set

(3.2) ρn =
1

Mn

(

1− |zn|2
r2n

)

=
1

f#(zn)
,

then we have

ρn
1− |zn|

≤ ρn
rn − |zn|

=
rn + |zn|
r2nMn

≤ 2

rnMn

→ 0 as n → ∞.(3.3)

Let Fn(ζ) = f(zn + ρnζ), where |ζ| < Rn = 1−|zn|
ρn

. From (3.3) we also note that

Rn → ∞ as n → ∞. It follows from (3.2) that

(3.4) F#
n (0) = ρnf

#(zn) = 1.

We apply Lemma 1 to show that the sequence {Fn(ζ)} is normal. If |ζ| ≤ R ≤ Rn,
then, by (3.2),

F#
n (ζ) = ρnf

#(zn + ρnζ) ≤
ρnMn

1− r−2
n |zn + ρnζ|2

≤ rn + |zn|
rn + |zn| − ρnR

(

rn − |zn|
rn − |zn| − ρnR

)

which, by (3.3), tends to 1 as n → ∞, for each fixed R. Hence {Fn(ζ)} is a normal
sequence. We may assume that {Fn(ζ)} converges locally uniformly in C. Then,
the limit function F (ζ) is harmonic in C, and is non-constant because, by (3.4),
F#(0) = 1 6= 0.

Next, we prove the necessary part of the theorem. Let f be normal in D. Again,
we recall that the functions Fn(ζ) given by

Fn(ζ) = f(zn + ρnζ)

are defined for |ζ| < 1−|zn|
ρn

, and by (1.3), we also have ρn
1−|zn|

→ 0 as n → ∞, which

implies that ρn
1−|zn|−ρn|ζ|

→ 0 as n → ∞, for |ζ| < 1−|zn|
ρn

. Since

F#
n (ζ) = ρnf

#(zn + ρnζ) ≤
ρn

1− |zn| − ρn|ζ|
(1− |zn + ρnζ|2)f#(zn + ρnζ)
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and f is normal, we have

(1− |zn + ρnζ|2)f#(zn + ρnζ) < ∞.

Therefore, F#
n (ζ) → 0 as n → ∞ and thus, F#(ζ) = 0 for all ζ ∈ C, so that F (ζ) is

a constant. This completes the proof of Theorem 1. �

3.2. The proof of Theorem 2. Suppose that f is a sense-preserving harmonic
mapping in D which is not normal. By Theorem 1, there exist sequences {z∗n} and
{ρn} with z∗n ∈ D, |z∗n| → 1, ρn > 0, ρn

1−|z∗
n
|
→ 0 and a non-constant sense-preserving

harmonic mapping F in C such that the sequence {Fn}, Fn(z) = f(z∗n + ρnz),
converges locally uniformly to F as n → ∞.
Let λ be any complex number, finite or infinite, for which the equation F (t) = λ

has a solution z0 which is not a multiple solution, that is F#(z0) 6= 0. By Lemma 2,
in each neighborhood of z0 all but a finite number of the functions Fn assume the
value λ. Thus there exists a sequence of points zn such that zn → z0 as n → ∞, and
Fn(zn) = λ for sufficiently large values of n. Also, since the convergence of {Fn} to
F is locally uniform, we have that F#

n (zn) → F#(z0). Letting sn = z∗n + ρnzn, we
get that F#

n (zn) = ρnf
#(sn) so that

f#(sn)(1− |sn|) = F#
n (zn)

1− |z∗n|
ρn

(

1− |sn|
1− |z∗n|

)

.

Letting n → ∞, we have that F#
n (zn) → F#

n (z0),
1−|z∗

n
|

ρn
→ ∞, and 1−|sn|

1−|z∗
n
|
→ 1 which

imply that f#(sn)(1− |sn|) → ∞ and hence, (1− |sn|2)f#(sn) → ∞.
Now we have shown that if the equation F (z) = λ has a solution which is not a

multiple solution, then
sup

z∈f−1(λ)

(1− |z|2)f#(z) = ∞.

However, by Lemma 3, there can be at most four values of λ for which all solutions
to the equation F (z) = λ are multiple solutions. Thus, we have that if f is a sense-
preserving harmonic mapping in D such that f is not normal, then for each complex
number λ, with at most four exceptions, we have

sup
z∈f−1(λ)

(1− |z|2)f#(z) = ∞.

The proof is complete. �

3.3. The proof of Theorem 3. Because f is normal, by assumption, we have that

f#(z) ≤ c1(f)

1− |z|2 ≤ c1(f)

1− |z| .

Let σ = χ(K, 2K), and let

A = min

{

1

2
,

σ

2c1(f)

}

.

Thus, if z0 ∈ D such that |f(z0)| ≤ K, then we have |z − z0| ≤ A(1− |z0|) implies

χ(f(z), f(z0)) ≤
∫

L

f#(z) |dz| ≤ σ,
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where L is the line segment between z and z0. Also, |z − z0| < A(1 − |z0|) implies
that |f(z)| ≤ 2K which in turn gives that F is normal, where

F (z) = (f ◦ ϕ)(z) = (h ◦ ϕ)(z) + (g ◦ ϕ)(z) = H(z) +G(z), ϕ(z) =
z0 − z

1− z0z
.

As |z − z0| < A(1 − |z0|) implies that |f(z)| ≤ 2K, we have |z| < A implies that
|F (z)| ≤ 2K.

Let R = A/2. Then we have, for z = reiθ with r < R,

F (z) =
1

2π

∫ 2π

0

R2 − r2

|Reit − z|2F (Reit) dt.

As

R2 − r2

|Reit − z|2 =
Reit

Reit − z
+

z

Re−it − z
and

dm

dzm

(

a

a− z

)

=
m!a

(a− z)m+1
,

we have

H(z) =
1

2π

∫ 2π

0

Reit

Reit − z
F (Reit) dt

and thus,

|H(m)(0)| =
1

2π

∣

∣

∣

∣

∫ 2π

0

m!Reit

Rm+1eit(m+1)
F (Reit) dt

∣

∣

∣

∣

≤ 2Km!

Rm
.

Claim 1. |h(m)(z0)|(1 − |z0|2)m < E ′
m(f,K), where E ′

m(f,K) is a constant which
depends only on m, f and K.

Let us prove Claim 1 by the method of induction. As H(z) = h(ϕ(z)), we first
consider

(3.5) ϕ(z)− z0 = −(1− |z0|2)
z

1− z0z
= −(1− |z0|2)

∞
∑

k=1

(z0)
k−1zk

so that ϕ(n)(0) = n!(|z0|2 − 1)(z0)
n−1, and compute that

H ′(0) = h′(ϕ(0))ϕ′(0) = h′(z0)(|z0|2 − 1)

and

H ′′(0) = h′′(ϕ(0))(ϕ′(0))2 + h′(ϕ(0))ϕ′′(0)

= h′′(z0)(|z0|2 − 1)2 + 2h′(z0)(|z0|2 − 1)z0.

In particular, by (3.5), we have

|h′(z0)|(1− |z0|2) <
2K

R
= E ′

1(f,K)

and

|h′′(z0)|(1− |z0|2)2 < 2E ′
1(f,K) +

4K

R2
= E ′

2(f,K).

Thus, the desired claim follows for m = 1, 2.
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In order to apply the method of induction, we need to get an expression for
H(m)(0) for m ≥ 3 and for this, we consider again (3.5) and

h(z) =
∞
∑

n=0

h(n)(z0)

n!
(z − z0)

n for |z − z0| < A(1− |z0|)

so that

H(z) =
∞
∑

n=1

H(n)(0)

n!
zn for |z| < 1 + z0

1− |z0|
A.

For integers k and n with 1 ≤ k ≤ n, let B1(n) = 1 and

Bk(n) = Bk−1(k − 1) + Bk−1(k) + · · ·+Bk−1(n− 1).

It is easy to verify that

|Bk(n)| < (n− k + 2)k−1 for 3 ≤ k ≤ n.

For m = 3, we see that

H ′′′(0) = h′′′(ϕ(0))(ϕ′(0))3 + 3h′′(ϕ(0))ϕ′(0)ϕ′′(0) + h′(ϕ(0))ϕ′′′(0)

= h′′′(z0)(|z0|2 − 1)3 + 6h′′(z0)(|z0|2 − 1)2z0 + 6h′(z0)(|z0|2 − 1)(z0)
2

and the claim for m = 3 is easily seen to be true. Next, for m ≥ 4, we have

H(m)(0)

m!
= h′(z0)(|z0|2 − 1)(z0)

m−1 +
h

′′

(z0)

2!
(|z0|2 − 1)2(z0)

m−2(m− 1)

+
m−1
∑

k=3

h(k)(z0)

k!
(|z0|2 − 1)k(z0)

m−kBk(m) +
h(m)(z0)

m!
(|z0|2 − 1)m.

Now, we assume that the claim is true for m = 1, 2, . . . , n − 1, and show that it
is also true for m = n. Indeed, using the last expression for m = n, we obtain that

∣

∣

∣

∣

h(n)(z0)

n!
(|z0|2 − 1)n

∣

∣

∣

∣

<
2K

Rn
+ E ′

1(f,K) + (n− 1)E ′
2(f,K)

+
n−1
∑

k=3

Bk(n)E
′
k(f,K) = E ′

n(f,K).

By using the similar argument as that of Claim 1, we have
∣

∣

∣

∣

g(m)(z0)

m!
(|z0|2 − 1)n

∣

∣

∣

∣

< E ′′
m(f,K),

where E ′′
m(f,K) is a constant which depends only on m, f and K. Now, if we let

Em(f,K) = E ′
m(f,K) + E ′′

m(f,K), then

(1− |z|2)m(|h(m)(z)|+ |g(m)(z)|) ≤ Em(f,K) for each z ∈ D

and such that |f(z)| ≤ K. �
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3.4. The proof of Theorem 4. We first assume that f is normal in D. Assume
the contrary of the assertion that there is a pair of sequences {zn} and {wn} of D
such that ρ(zn, wn) → 0 as n → ∞, but α = limn→∞ f(zn) 6= limn→∞ f(wn) = β.
Put

fn = f ◦ φzn with φzn(z) = zn + (1− |zn|)z and un =
wn − zn
1− |zn|

.

As f(zn) = fn(0) and f(wn) = fn(un), we have fn(0) → α and fn(un) → β as
n → ∞. Since ρ(zn, wn) → 0 as n → ∞, we see that ρ(zn, wn) < 1/2 for all
sufficiently large n. It follows that |1 − wnzn| ≤ 4(1 − |zn|) for all such n. Hence
|un| ≤ 4ρ(zn, wn) → 0 as n → ∞. Furthermore,

χ(fn(0), fn(un)) ≤ |un|
∫ 1

0

f#
n (tun) dt = |un|

∫ 1

0

f#(φzn(tun))|φ′
zn
(tun)| dt

= |wn − zn|
∫ 1

0

f#(φzn(tun)) dt

≤ 2

(

sup
z∈D

f#(z)(1− |z2|)
) |wn − zn|

1− |zn|
→ 0 as n → ∞

which contradicts the fact that χ(α, β) = 0.
Conversely, suppose that limn→∞ f(zn) = limn→∞ f(wn) for all sequences {zn}

and {wn} in D such that ρ(zn, wn) → 0.
Let ϕn ∈ Aut(D), n = 1, 2, . . ., and z0 ∈ D. Also, we assume that {wn} is

a sequence of points in D such that wn → z0 and f(ϕn(wn)) converges to α for
some α. For the sequence {zn} in D, obviously, if ρ(zn, wn) → 0 as n → ∞, then
ρ(f(ϕn(zn)), f(ϕn(wn))) → 0 as n → ∞. It follows that f(ϕn(zn)) → α as n → ∞,
and then f ◦ϕn is continuously convergent at z0. Since z0 is an arbitrary point in D,
we conclude that f ◦ϕn is continuously convergent at each point of D. Hence {f ◦ϕn}
is a normal family, and thus, {h ◦ϕn} and {g ◦ϕn} are normal families. Therefore h
and g are normal (cf. [13]). By the assumption, either h or g is bounded and thus,
without loss of generality, we may assume that g is bounded, i. e., |g(z)| ≤ M in D

for some M > 0. For z ∈ D such that |g(z)| < |h(z)|
3

, we have

(1− |z|2)f#(z) = (1− |z|2) |h′(z)|+ |g′(z)|
1 +

∣

∣h(z) + g(z)
∣

∣

2

≤ (1− |z|2) |h′(z)|
1 + 1

3
|h(z)|2 + (1− |z|2)|g′(z)|

≤ 3(1− |z|2)h#(z) + (1 +M)(1− |z|2)g#(z)
< ∞.
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Figure 1. Lens-shaped domain of angle β (0 < β < π) cut off from
D by the circular arc B

For z ∈ D such that |g(z)| ≥ |h(z)|
3

,

(1− |z|2)f#(z) = (1− |z|2) |h′(z)|+ |g′(z)|
1 +

∣

∣h(z) + g(z)
∣

∣

2

≤ (1− |z|2)|h′(z)|+ (1− |z|2)|g′(z)|
≤ (1 + 9M2)(1− |z|2)h#(z) + (1 +M)(1− |z|2)g#(z)
< ∞.

The preceding argument shows that f is normal in D. �

3.5. The proof of Theorem 6. By choosing a suitable ϕ ∈ Aut(D) and replacing
f by F = f ◦ ϕ, we assume that B is a circular arc passing through −1 and 1, and
G lies below the arc B. By Lemma 4, F = f ◦ ϕ = H +G is also normal in D, and

sup
z∈D

(1− |z|2)F#(z) ≤ α.

For 0 < β′ < β, let G′ be the intersection of G with the domain of angle β′ cut off
by the circular arc B′ through ±1. See Figure 1.
Suppose that (1.6) does not hold. Since |f(z)| ≤ δ < η for z ∈ ∂G\B by (1.5)

and (1.7), and since G ⊂ D, there exists β′ such that |f(z)| ≤ η for z ∈ G′. Let
β′ (0 < β′ < β) be the largest such number. Then

η = sup
z∈G′

|f(z)| = |f(z0)|
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for some z0 ∈ B′\∂G. By a further linear fractional transformation we may assume
that z0 = iy0, y0 ∈ (−1, 1), where

(3.6) y0 = tan

(

β′

2
− π

4

)

.

Let

a(z) = |f(z)| exp
[

b

i
log
(1 + z

1− z

)

+
πb

2
− 2bβ′

]

, z ∈ G′,

where b = 1
β′
log η

δ
> 0. It is known that every point in D lies on one of the circular

arcs that passes through −1, iy and 1 for some y ∈ (−1, 1), and on this circular arc

arg

(

1 + z

1− z

)

= arg

(

1 + iy

1− iy

)

= arctan

(

2y

1− y2

)

= 2arctan y,

from which it follows that exp[ b
i
log 1+z

1−z
+ πb

2
− 2bβ′] and a(z) with z ∈ G′ attains its

maximum modulus on the boundary point z0 = iy0. Since

max
z∈B′

⋂
∂G′

|a(z)| ≤ η exp(−bβ′) = δ

and ∂G′\B′ ⊂ ∂G\B, we obtain from (1.5) that

sup
z∈∂G′\B′

|a(z)| ≤ sup
z∈∂G′\B′

|f(z)| ≤ sup
z∈∂G\B

|f(z)| ≤ δ.

Since a(z) (z ∈ G′) attains its maximum modulus on the boundary point z0 = iy0,
it follows that |a(z)| ≤ δ for z ∈ G′, so that

log |f(iy)| ≤ log δ + 2bβ′ − πb

2
− 2b arctan y, iy ∈ G′.

We have from (3.6) that β′ = π
2
+ 2 arctan y0. Since |f(iy0)| = η, we have

log |f(iy0)| = log η = log δ + bβ′ = log δ + 2bβ′ − πb

2
− 2b arctan y0.

Therefore

log |f(iy)| − log |f(iy0)| ≤ −2b(arctan y − arctan y0), iy ∈ G′.

Letting y → y+0 yields that

(3.7) Re

(

i
h′(iy0)− g′(iy0)

f(iy0)

)

≤ −2b

1 + y20
= −2 log(η/δ)

β′(1 + y20)
.

On the other hand, since |f(iy0)| = η, it follows from (1.4) that

(3.8)

∣

∣

∣

∣

∣

h′(iy0)− g′(iy0)

f(iy0)

∣

∣

∣

∣

∣

≤ |h′(iy0)|+ |g′(iy0)|
|f(iy0)|

≤ α(1 + η2)

η(1− y20)
=

α(η + η−1)

(1 + y20) sin β
′
.

Hence (3.7) and (3.8) imply that

δ ≥ η exp

[

−k′

2

(

η +
1

η

)]

and k′ =
αβ′

sin β′
,

which contradicts the fact that k′ < k. The proof is complete. �
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3.6. The proof of Theorem 7. Suppose that the assertion is false. By (1.8) and
Lemma 1, the sequence {fn} is normal in D. Taking a subsequence we may therefore
assume that

(3.9) fn(z) → f(z) as n → ∞,

locally uniformly in D, where f is a harmonic mapping such that f(z0) 6= 0 for some
z0 ∈ D.

Now, we consider the first case that

(3.10) γn = inf{|z| : z ∈ Cn} → 1 as n → ∞.

By (1.9), there exist points an, bn ∈ Cn with |an − bn| = γ. If Bn denotes the circle
through an and bn that is orthogonal to ∂D, then for sufficiently large values of n,
an and bn lie on different arcs of B∗

n = Bn

⋂

{zn : γn ≤ |zn| ≤ 1}. Hence we can find
a subarc C ′

n of Cn that intersects each arc of B∗
n exactly once. By (3.10) the subarc

B′
n of Bn between the end points of C ′

n does not intersect C ′
n at any other point.

If Gn is the inner domain of the Jordan curve B′
n

⋃

C ′
n, then ∂Gn = B′

n

⋃

C ′
n ⊂ D,

which shows that Gn ⊂ D. Hence we obtain from (1.8), (1.10) and Theorem 6 (with
β = π/2) that

max
z∈B′

n

|fn(z)| ≤ max
z∈Gn

|fn(z)| → 0 as n → ∞.

Since B′
n intersects the disk {z : |z| < r} for some r < 1 and for large values of n,

it therefore follows from (3.9) and Lemma 5 that f(z) ≡ 0, which is false.
In the case that (3.10) does not hold, Cn intersects the closed disk {z : |z| ≤ r} for

some r < 1 and for infinitely many values of n. Hence it follows from (1.9), (1.10),
(3.9) and Lemma 5 that f(z) ≡ 0, which is again false. The proof is complete. �

3.7. The proof of Theorem 8. Without loss of generality, we assume that ξ = 1
and a = 0. Suppose that zn → 1 as n → ∞ for zn ∈ A, where A is a Stolz angle at
ξ. First, we choose two real sequences {ξn} and {yn}, and r < 1 such that

(3.11) zn = ϕn(iyn), ϕn(s) =
s+ ξn
1 + ξns

, |yn| ≤ r, ξn → 1− as n → ∞.

Obviously, |zn| < 1. The pre-image ϕ−1
n (Γ) of the asymptotic path Γ intersects the

imaginary axis for sufficiently large values of n. Hence we can find a subarc Cn of
D
⋂

ϕ−1
n (Γ) such that diamCn ≥ 1

2
, Re z > 0 for z ∈ Cn, and there exists a sequence

{wn} in the arc ϕn(Cn) ⊂ Γ such that wn → 1 as n → ∞. Then

(3.12) max
s∈Cn

|f(ϕn(s))| = max
z∈ϕn(Cn)

|f(z)| → 0 as n → ∞.

Since f ◦ ϕn is normal harmonic in D by Lemma 1, from (3.12), we obtain that
f(ϕn(s)) → 0 as n → ∞, uniformly in |s| ≤ r. Hence (3.11) shows that f(zn) → 0
as n → ∞. The proof is complete. �
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