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Let X = Spec(A) be a smooth, affine variety of dimension n � 2

over the field R of real numbers. Let P be a projective A-module

of rankn such that its nth Chern class Cn(P ) ∈ CH0(X) is zero.

In this set-up, Bhatwadekar–Das–Mandal showed (amongst many

other results) that P ≃ A ⊕ Q in the case that either n is odd

or the topological space X(R) of real points of X does not have

a compact, connected component. In this paper, we prove that

similar results hold for smooth, affine varieties over an arbitrary

real closed field R. The proof is algebraic and does not make use of

Tarski’s principle, nor of the earlier result for R.
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1. Introduction

Let X = Spec(A) be a smooth affine variety of dimension n � 2 over a field k of characteris-

tic 0 and let P be a projective A-module of rankn. It is well known that in general P may not

split off a free summand of rank 1 as Cn(P ) = 0 is a necessary condition, where Cn(P ) denotes

the nth Chern class of P which is an element of the group CH0(X) of zero cycles modulo ratio-

nal equivalence. A result of Murthy [11, Theorem 3.8] says that when k is an algebraically closed

field, Cn(P ) = 0 is also sufficient. However, if k is not algebraically closed, then Cn(P ) = 0 is not

always a sufficient condition as evidenced by the example of the tangent bundle of the even dimen-

sional real sphere. Hence, it is of interest to know when Cn(P ) = 0 is a sufficient condition for P

to split off a free summand of rank 1. In the case k = R, this question was brought to a satisfac-

tory conclusion in [1]. Subsequently, similar conclusions were proved in [4] when the base field is

Archimedean real closed. In this paper we extend these results to the case when the base field k is
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a real closed field. Before giving a precise statement of our result, we would like to mention that

the results in [4] used the existing theorem for R in [1] and also indirectly made use of Tarski’s

principle. Further, the proofs in [1] used topological techniques, which crucially used the fact that

open intervals in R are connected (the only real closed field having this property). In fact, open

intervals in real closed fields other than R are totally disconnected. However, our proofs in this pa-

per are completely algebraic (modulo the fact that the statement has a bit of topology), they work

uniformly for any real closed field and do not invoke Tarski’s principle. Now we state our main re-

sult:

Theorem A. Let R be a real closed field. Let X = Spec(A) be a smooth affine variety of dimension n � 2 over R.

Let X(R) denote the R-rational points of the variety. Let K denote the module
∧n

(ΩA/R). Let P be a projective

A-module of rank n and let
∧n

(P ) = L. Assume that Cn(P ) = 0 in CH0(X). Then P ≃ A ⊕ Q in the following

cases:

1. X(R) has no closed and bounded semialgebraically connected component.

2. For every closed and bounded semialgebraically connected component W of X(R), LW �≃ KW where KW

and LW denote restriction of (induced) line bundles on X(R) to W .

3. n is odd.

Moreover, if n is even and L is a rank 1 projective A-module such that there exists a closed and bounded

semialgebraically connected component W of X(R) with the property that LW ≃ KW , then there exists a

projective A-module P of rank n such that P ⊕ A ≃ L ⊕ An−1 ⊕ A (hence Cn(P ) = 0) but P does not have a

free summand of rank 1.

Let R, X, A, L be as in Theorem A. Let R(A) denote the ring of real regular functions, i.e. the ring

obtained by inverting all elements which do not belong to any real maximal ideal and let R(L) =
L ⊗A R(A).

As in [1], one of the key ingredients in the proof of Theorem A is a structure theorem for the Euler

class group E(R(A),R(L)): a notion due to Nori (see preliminaries for a definition). This structure

theorem is in terms of the semialgebraically connected semialgebraic components of the space of real

points X(R) (see next section for definitions).

Theorem B. Let A, K , L,R(A) be as above. Let C i,1 � i � t be the closed and bounded semialgebraically

connected semialgebraic components of X(R). Let Li and K i be the restriction of the semialgebraic line

bundles corresponding to L and K respectively, to C i . Let Li ≃ K i , for 1 � i � r and Li �≃ K i , for

r + 1 � i � t. Let xi ∈ C i and let Mi be the corresponding maximal ideal of R(A). Let ωi be a local

R(L)-orientation of Mi . Then,
⊕r

i=1 Zei ⊕
⊕t

i=r+1(Z/2)ei
∼→ E(R(A),R(L)) sending ei 
→ (Mi,ωi) is an

isomorphism.

We begin this paper with some preliminaries in Section 2 which we divide into 3 subsections.

The first subsection introduces real closed fields and semialgebraic sets, the second one is about

elementary paths and the final one defines the Euler class group and states lemmas which will

be required later on in the paper. Since the proof of Theorem A (assuming Theorem B) is sim-

ilar to the ones already mentioned in [1] and [4], we sketch the proof in Section 3. The proof

of the structure theorem, Theorem B mainly involves the notion of an elementary path as de-

fined in [7, Definition 3.1]. In Section 4, we derive a result which shows that the ideal of all

functions vanishing at the initial point and endpoint of an elementary path in X(R) is a com-

plete intersection (we can prove something stronger but prove only whatever is necessary for the

proof of the structure theorem, Theorem B). In Section 5, we relate the generators of E(R(A),R(L))

with the total space of a line bundle and prove that points of an elementary path in the bun-

dle are equal in E(R(A),R(L)). Using this we prove the structure theorem, Theorem B in Sec-

tion 6.
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2. Preliminaries

Real closed fields and semialgebraic sets

The first part can be looked upon as a quick reference guide to the theory of real closed fields and

the topological notions related to them. More details can be found in [5].

Definition 2.1. A field R is said to be real if it can be ordered in a way such that addition and multi-

plication are compatible with the ordering. An equivalent definition is that
∑n

i=1 a
2
i

= 0 ⇒ ai = 0 ∀i.
A real closed field is a real field which has no algebraic extensions which are real, equivalently at-

taching a root of −1 makes it algebraically closed.

Such fields come with a natural topology based on intervals like in the case of R. However, under

this topology, the field itself is not connected (except in the case of R). We can extend this topology

to Rl (product topology). We call this topology the Euclidean topology. Note that this topology comes

from a “metric” taking values in R, namely d(x,y) =
√∑l

i=1(xi − yi)2 where x = (x1, x2, . . . , xl) and

y = (y1, y2, . . . , yl).

Hence, a subset V ⊂ Rl inherits the Euclidean topology and the associated “metric”. Thus, one can

talk of open, closed and bounded sets in V .

Definition 2.2.

• A subset V of Rl is called a basic semialgebraic set if V is of the form

{
x ∈ Rl

∣∣ f i(x) = 0, g j(x) > 0, 1 � i � r, 1 � j � s
}
,

where f i(x), g j(x) ∈ R[X1, X2, . . . , Xl]. A subset W of Rl is called a semialgebraic set if W is a

finite union of basic semialgebraic sets.

• A semialgebraic subset W of Rl is semialgebraically connected if for every pair of disjoint, closed,

semialgebraic subsets F1 and F2 of W satisfying F1 ∪ F2 = W , either F1 = W or F2 = W .

• A map between two semialgebraic sets f : A → B is said to be semialgebraic if its graph is a

semialgebraic set.

• A semialgebraic path in a semialgebraic set V is the image of a continuous, semialgebraic map

f : [0,1] → V .

Now we quote a result, the proof of which can be found in [5, Theorem 2.4.4].

Theorem 2.3. Every semialgebraic subset W of Rl is the disjoint union of a finite number of semialgebraically

connected semialgebraic subsets W1,W2, . . . ,W s which are closed in W . The W1,W2, . . . ,W s are called the

semialgebraically connected semialgebraic components of W . By abuse of notation, we shall refer to them

simply as components of W .

Remark 2.4. When the field is R, the semialgebraically connected semialgebraic components are same

as the connected components by [5, Theorem 2.4.5].

Two points P and Q of a semialgebraic set W lie in the same component of W if and only if they

can be joined by a semialgebraic path in W .

We refer to [5, 12.7.1] for the notion of a semialgebraic vector bundle. If E1 and E2 are two semial-

gebraic line bundles, we will denote E1 ≃ E2 to mean that E1 and E2 are semialgebraically isomorphic

(i.e. the isomorphism between them is also semialgebraic).

With this background, we state a result for later use.
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Lemma 2.5. (See [4, Lemma 3.10].) Let W be a semialgebraically connected semialgebraic set and let

π : E → W be a semialgebraic line bundle. Then, E ∗ = E \ {zero section} has 2 components if and only if

E is a semialgebraically trivial line bundle.

We set up some notation for the rest of the paper.

A maximal ideal M of a ring A is called a real maximal ideal if A/M is a real field. Note that if

A is an affine algebra over a real closed field R, then every maximal ideal has residue field either R

or its algebraic closure R. The R-rational points are real maximal ideals while we refer to R-rational

points as non-real maximal ideals (in some places in the literature they are referred to as complex

maximal ideals).

Let A be an affine algebra over a real closed field R and X = Spec(A). Then we denote by R(A),

the ring obtained by inverting all elements which do not belong to any real maximal ideal. This is

same as the localisation S−1A where S = {1 +
∑n

i=1 f 2
i

| f i ∈ A}. Note that maximal ideals of R(A)

are in one-to-one correspondence with real maximal ideals of A. We denote by X(R) the set of all

R-rational points of X . In this paper, very often we do not distinguish between R-rational points of X

and the corresponding maximal ideals of R(A). For a module M over A, we denote the R(A)-module

M ⊗A R(A) by R(M). We remark that in literature the ring R(A) is sometimes referred to as R(X).

Note that if A is an affine algebra over a real closed field R, then elements of R(A) act as functions

on X(R) taking values in R (canonically). There is a natural map sign : R∗ → {±1}; namely sign(λ) = 1

if λ > 0 and sign(λ) = −1 if λ < 0. For a function f taking values in R∗ , we can then talk about

sign( f (P )) for any point P in the domain. In this sense, we use sign( f (P )) where P ∈ X(R) and

f ∈ R(A) does not belong to the maximal ideal of R(A) corresponding to P .

Elementary paths

We start by quoting a few results and setting up notations necessary for defining an elementary

path. The same proof as that of [4, Proposition 3.3] gives us the next result.

Proposition 2.6. Let R be a real closed field and let B be an affine algebra over R. Let E be a projective module

of rank 1 over R(B) generated by {e1, e2, . . . , en}. Then,
∑n

i=1 ei ⊗ ei generates E ⊗R(B) E
∼→ R(B). Thus, the

group of rank one projective R(B)-modules is 2-torsion.

Similarly, if B is the coordinate ring of a curve over R, then for any regular maximal ideal m of R(B), if

m = (a1,a2, . . . ,an), then m2 = (
∑n

i=1 a
2
i
).

Now, we set up some notations. Let Z = Spec(C) be a smooth affine curve over a real closed

field R. Let Z be its smooth projectivisation. Then, we have a natural injection Z →֒ Z . Note that Z is

an open subset of Z . Hence, stalks will be isomorphic, and hence the local rings OZ ,z and OZ ,z will

be same for points z ∈ Z . Hence, real points of Z continue to be real points of Z , i.e. Z(R) →֒ Z(R).

Since R is not algebraically closed, all real points of Z are actually contained in an affine, open sub-

set of Z . Let this be Z ′ = Spec(C ′). Then, consider Z ∩ Z ′ = Z̃ which is affine. Let C̃ be the coordinate

ring of Z̃ . Note that since Z ′(R) = Z(R), we have Z̃(R) = Z(R).

Let K (Z) be the function field of Z . Then, OZ ,z →֒ K (Z) and hence,

R
(
C ′)=

⋂

z∈Z ′(R)

OZ ,z, R(C) =
⋂

z∈Z(R)

OZ ,z =
⋂

z∈ Z̃(R)

OZ ,z = R(̃C).

Thus, R(C ′) →֒ R(C̃) = R(C). Moreover, since R(C ′) is a Dedekind domain, birational to R(C) and

Pic(R(C ′)) is two-torsion, R(C) is a localisation of R(C ′). Note that Z is a smooth, complete curve and

Z ′ is an affine open subset containing all its real points. With this notation in mind, we quote some

theorems from [9].

Theorem 2.7. (See [9, Theorem 5.2].) ΩR(C ′)/R is a free module of rank1 over R(C ′).
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Fix a generator of ΩR(C ′)/R , say χ , which is regarded as a global “orientation”. This continues to be

a generator for ΩR(̃C)/R . With this notation in mind, we obtain the following:

Theorem2.8. (See [9, 4.5a-6.1-6.2].) Given two points P , Q in the same component of Z ′(R), there is a function

f P ,Q ∈ R(C ′) with the following properties:

1. ( f P ,Q ) = mP ∩ mQ in R(C ′).
2. if df P ,Q = gχ , then it has opposite orientations at both points, i.e. sign(g(P )) = −1, sign(g(Q )) = 1.

3. f P ,Q is positive at all points outside the component containing P and Q .

Remark 2.9. Note that if there are two functions f P ,Q and f ′
P ,Q satisfying the above properties, then

f P ,Q = u f ′
P ,Q where u ∈ R(C ′)∗ is such that u(T ) > 0∀T ∈ Z ′(R) (Artin’s Theorem then says that u is

a sum of squares of rational functions).

The function f P ,Q defines an open interval ]P , Q [ = {T ∈ Z ′(R) | f P ,Q (T ) < 0}. Let

[P , Q ] =
{
T ∈ Z ′(R)

∣∣ f P ,Q (T ) � 0
}

= ]P , Q [ ∪ {P } ∪ {Q }

be the corresponding closed interval, which is actually the closure of ]P , Q [ in the Euclidean topology.

By definition, these intervals are semialgebraic subsets of Z ′(R). They lie in a component of Z ′(R) and

are semialgebraically connected.

Let R, S ∈ ]P , Q [ be distinct points. Then, we can define a total order on ]P , Q [ by defining R < S

if [P , R] ⊆ [P , S]. This order naturally extends to [P , Q ] by letting P < R < Q for all R ∈ ]P , Q [. We

refer to [9, Section 6] and [10] for more details.

Note that since Z(R) →֒ Z ′(R) and R(C ′) →֒ R(C) is a localisation, we have the following facts:

• f P ,Q ∈ R(C),

• ΩR(C)/R ≃ Ω,R(C ′)/R ⊗R(C) and hence is free,

• the components of Z(R) are contained in the components of Z ′(R),

• if z ∈ Z(R) ⊆ Z ′(R), then the corresponding maximal ideal mz ⊂ R(C ′) satisfies R(C ′)/mz ≃
R(C)/mzR(C).

If [P , Q ] ⊂ Z(R), then it is called a closed interval of Z(R). In that case, f P ,Q is positive at all

points of Z(R) outside [P , Q ], in particular on all the points outside the component containing P

and Q .

We now define elementary paths.

Definition 2.10. Let X = Spec(A) be an affine variety over R. An elementary path in X(R) is a totally

ordered subset γ of X(R) which either consists only of one point (“degenerate” elementary path) or

has the following two properties:

• The Zariski closure of γ in Spec(A) is an irreducible curve Spec(B) ⊂ Spec(A).

• If Π : Z = Spec(C) ։ Spec(B) denotes the normalisation of Spec(B), then after a choice of a

suitable orientation on Z(R), there exists a bijective and order preserving map from a closed

interval [P , Q ] ⊂ Z(R) onto γ .

Remark 2.11. Elementary paths are essentially bijective images of closed intervals in smooth curves

onto X(R). We call Π(P ) the starting point or initial point of γ and Π(Q ) the endpoint of γ .

Note that every elementary path is a bijective image of [0,1] ⊆ R [8, Theorem 10.1]. In particular it

implies that intervals as defined above for arbitrary smooth curves are also bijective images of [0,1].

We now quote a theorem that will make it clear why the notion of elementary paths is of impor-

tance to us.
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Theorem 2.12. (See [8, Theorem 10.2].) Any semialgebraic path can be broken into finitely many non-

degenerate elementary paths γi,1 � i � r such that γi ∩γi+1 = {S i} and S i is the initial point of γi+1 and the

endpoint of γi .

Some algebraic results

To make the paper self-contained, we define the Euler Class Group. We give a definition only in

the case where the underlying ring is a smooth affine domain since it will be the definition we use

in this paper. More details can be obtained in either [1] or [3].

Definition 2.13 (Definition of E(A, L) and E0(A, L)). Let A be a smooth affine domain of dimension

n � 2 and let L be a projective A-module of rank 1. Let M be a maximal ideal of A of height n.

Then, M/M2 is generated by n elements. An isomorphism ωM : L/ML
∼→
∧n

(M/M2) is called a

local L-orientation of M. Let G be the free abelian group on the set of pairs (M,ωM) where M is a

maximal ideal of height n and ωM is a local L-orientation of M.

Let J =
⋂k

i=1 Mi be an intersection of finitely many maximal ideals of height n. Then, J/ J2 is

generated by n elements. An isomorphism L/ J L
∼→
∧n

( J/ J2) is called a local L-orientation of J . A lo-

cal L-orientation of J gives rise to local Mi-orientations ωMi
, i = 1,2, . . . ,k. Then, we denote the

element
∑k

i=1(Mi,ωMi
) in G as ( J ,ω J ).

A local L-orientation ω : L/ J L ։
∧n

( J/ J2) is called a global L-orientation if there exists a surjec-

tion θ : L ⊕ An−1 ։ J , such that ω is the induced isomorphism

L/ J L

α
∼−→
∧n(

L/ J L ⊕ (A/ J )n−1
) ∧n(θ)

∼−−−→
∧n(

J/ J2
)

where α(e) = e ∧ e2 ∧ · · · ∧ en (and {e2, e3, . . . , en} is a basis of An−1).

Let H be the subgroup of G generated by the set of pairs ( J ,ω J ), where J is a finite intersection

of maximal ideals of height n and ω J is a global L-orientation of J . The Euler class group of A with

respect to L is E(A, L)
def= G/H . We write E(A) for E(A, A).

Further, let G0 be the free abelian group on the set (M) where M is a maximal ideal of A. Let

J =
⋂k

i=1 Mi be a finite intersection of maximal ideals. Let ( J ) denote the element
∑

i(Mi) of G0 . Let

H0 be the subgroup of G0 generated by elements of the type ( J ), where J is a finite intersection of

maximal ideals such that there exists a surjection α : L⊕ An−1 ։ J . Then, E0(A, L)
def= G0/H0 . From the

definitions of E(A, L) and E0(A, L), it is clear that there is a canonical surjection E(A, L) ։ E0(A, L).

Now let P be a projective A-module of rank n such that L ≃
∧n

(P ) and let χ : L ∼→
∧n

P be

an isomorphism. Let ϕ : P ։ J be a surjection where J is a finite intersection of maximal ideals

of height n. Therefore we obtain an induced isomorphism ϕ : P/ J P → J/ J2 . Let ω J be the local L-

orientation of J given by
∧n

(ϕ) ◦χ . Let e(P ,χ) be the image in E(A, L) of the element ( J ,ω J ) of G .

The assignment sending the pair (P ,χ) to the element e(P ,χ) of E(A, L) is well defined. The Euler

class of (P ,χ) is defined to be e(P ,χ).

Remark 2.14. The Euler class group can be defined for any Noetherian, commutative ring A and

finitely generated projective module L of rank 1, as done in [3] and in the case of a smooth, affine

domain the two definitions coincide.

Note that if ω0 and ω1 are two local orientations of a reduced ideal J , then ω0 = λω1 where

λ ∈ (A/ J )∗ .

We state a few theorems for later use. The next couple of lemmas give us some tools to make

computations in the Euler class group.

Lemma 2.15. (See [3, Lemma 5.4].) Let A be a Noetherian ring of dimension n � 2. Let J ⊂ A be an ideal of

height n and ω J be a local L-orientation of J . Let a ∈ A/ J be a unit. Then ( J ,ω J ) = ( J ,a2ω J ) in E(A, L).
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Lemma 2.16. (See [1, Lemma 4.3].) Let A be a smooth affine domain over R. Let L be a projective A-module

of rank 1. Let M be a maximal ideal of R(A) and ωM be a local L-orientation of M. Then (M,ωM) +
(M,−ωM) = 0 in E(R(A),R(L)). As a consequence, E0(R(A),R(L))is a vector space over Z/(2). Moreover,

if ω̃M is another local L-orientation of M then either (M, ω̃M) = (M,ωM) or (M, ω̃M) = (M,−ωM) in

E(R(A),R(L)).

The next theorem is a crucial theorem which illustrates the purpose behind defining the Euler

class group.

Theorem 2.17. (See [3, Corollary 4.4].) Let A be a ring of dimension n � 2 containing the field Q of rationals.

Let L be a projective A-module of rank 1 and P be a projective A-module of rank n with L ≃
∧n

(P ). Let

χ : L ∼→
∧n

P be an isomorphism. Let J ⊂ A be an ideal of height n and ω J be a local L-orientation of J .

Then,

1. Suppose that ( J ,ω J ) is zero in E(A, L). Then there exists a surjection α : L ⊕ An−1 ։ J such that ω J is

induced by α (in other words, ω J is a global L-orientation).

2. P ≃ Q ⊕ A for some projective A-module Q of rank n − 1 if and only if e(P ,χ) = 0 in E(A, L).

We now prove a lemma which allows us to analyse the natural map A/ J ։ A/
√

J when ht( J ) =
dim(A).

Lemma 2.18. Let k be a field with characteristic �= 2 and let B be a k-algebra. Let I be a nilpotent ideal of B. Let

g ∈ B∗ be such that g has a square root modulo I . Then, ∃g1 ∈ B such that g21 = g. In particular, if g ≡ 1mod I ,

then g1 can be so chosen that g1 ≡ 1 mod I .

Proof. Since I is nilpotent, B is complete w.r.t. the I-adic topology (which is actually the discrete

topology). We attach a variable Y to B . Let f (Y ) = Y 2 − g . Let “bar” denote going modulo I . Let

g = h2 , h ∈ B . Since g is a unit, so is h. Then,

f (Y ) = Y 2 − g = Y 2 − h2 = (Y − h)(Y + h)

and since characteristic of k is not equal to 2, Y − h and Y + h are co-maximal in B[Y ] and hence,

applying Hensel’s lemma, Y 2 − g has a solution in B , say g1 such that g1 ≡ h mod I . If g ≡ 1 mod I ,

then clearly g1 ≡ ±1 mod I and hence, we can choose g1 so that g1 ≡ 1 mod I . ✷

The next lemma allows us to analyse conductor diagrams.

Lemma 2.19. Suppose f : B → B ′ is a monomorphism of rings and let cB ′/B be the conductor ideal of B ′

w.r.t. B. Let I be an ideal in B such that I + cB ′/B = B. If ∃ f ∈ B ′ such that f ≡ 1 mod cB ′/B and I B ′ = f B ′ ,
then f ∈ B and I = f B.

Proof. Since f ≡ 1 mod cB ′/B , f − 1 ∈ cB ′/B . Let f − 1 = x ∈ cB ′/B ⊆ B . Then, f = x+ 1 ∈ B . Futher, let

y ∈ I . Then, y = f g , where g ∈ B ′ . Then, y = (1+ x)g = g + xg . Now, x ∈ cB ′/B ⇒ xg ∈ cB ′/B ⊆ B . Since

y ∈ I ⊆ B , we get that g ∈ B . Hence, y = f g implies that y ∈ f B . Hence, I = f B . ✷

Finally, we prove another lemma which will be used later.

Lemma 2.20. Let R be a real closed field. Let Z = Spec(C) be a smooth affine curve over R. If m is a non-real

maximal ideal of C , then it always satisfies an equation of the form m
∏

m2
j
( f ) =

∏
m2

i
(g) where f and g are

sums of squares. In particular, this implies that (m) ∈ 2Pic(C).
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Proof. Let R be the algebraic closure of R. There is a natural norm map (which is only a multiplicative

homomorphism on the units) from R ։ R given by a + bi 
→ a2 + b2 which extends to a natural map

Norm : C ⊗R R → C given by f ⊗ (a+bi) 
→ (a2 +b2) f 2 . Let m be a non-real maximal ideal of C . Then

there exists a maximal ideal n of C ⊗R R such that n ∩ C = m. It is well known that Pic(C ⊗R R) is

divisible. Hence,

(n) = 2

k1∑

i=1

si(ni) + 2

k2∑

i=k1+1

si(ni) − 2

k3∑

i=k2+1

si(ni) − 2

k4∑

i=k3+1

si(ni)

where si > 0 and ni ∩ C = mi where

mi is a

{
real maximal ideal of C , 1 � i � k1, k2 + 1 � i � k3,

non-real maximal ideal of C , k1 + 1 � i � k2 and k3 + 1 � i � k4.

Then, this means that there exist h1,h2 ∈ C ⊗R R so that

(h1)n

k4∏

i=k2+1

n
2si
i

= (h2)

k2∏

i=1

n
2si
i

.

Hence, applying the norm map, we get

Norm(h1)Norm(n)

k4∏

i=k2+1

Norm
(
n
2si
i

)
= Norm(h2)

k2∏

i=1

Norm
(
n
2si
i

)

which gives us

(
Norm(h1)

)
m

k3∏

i=k2+1

m
4si
i

k4∏

i=k3+1

m
2si
i

=
(
Norm(h2)

) k1∏

i=1

m
4si
i

k2∏

i=k1+1

m
2si
i

.

Note that Norm(h1) and Norm(h2) are both sums of squares. Hence, we get the desired result. ✷

3. Vanishing of the top Chern class: Theorem A

In this section, we assume the structure theorem, Theorem B and give a quick sketch of Theorem A.

We recall the setup once again. Let X = Spec(A) be a smooth affine variety of dimension n � 2

over a real closed field R. Assume further that the set X(R) of real points is not empty, hence infinite.

Let L be a projective A-module of rank 1. We denote K A =
∧n

(ΩA/R) by K . Assume that X(R) has

precisely t closed and bounded components.

Let R denote the algebraic closure of R. Let AR = A ⊗R R and X = Spec(AR). Let π : X → X be the

canonical map and π∗ : CH0(X) → CH0(X). Let G = π∗(CH0(X)). Then, G is divisible and torsion-free

(refer to [4, Section 4] and [1, Section 4] for more details). Let ER(L) be the kernel of the surjection
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E(A, L) ։ E(R(A),R(L)). Then, there is a natural surjective map ER(L) ։ G and hence we get the

following commutative diagram:

0 ER(L)

ΨL

E(A, L)
ΓL

ΘL

E(R(A),R(L))

ΦL

0

0 G CH0(X) CH0(X)/G 0

(∗)

We quote two theorems pertaining to (∗). The first theorem is due to Colliot-Thélène and Schei-

derer about CH0(X)/G .

Theorem 3.1. (See [6, Theorem 1.3(d)].) Assume that X(R) has precisely t closed and bounded components.

Then, CH0(X)/G is a vector space of dimension t over the field Z/(2).

Theorem 3.2. (See [4, Theorem 3.1].) ΨL is an isomorphism in diagram (∗)

As a consequence, we obtain:

Corollary 3.3.

E0

(
R(A),R(L)

) ∼→ CH0(X)/G

and hence

E0(A, L) ։ CH0(X)

is an isomorphism.

Proof. We know that E0(R(A),R(L)) is a vector space of rank � t from the structure theorem, The-

orem B and Lemma 2.16. But E0(R(A),R(L)) ։ CH0(X)/G and by 3.1, CH0(X)/G is a vector space of

rank t . Hence, so is E0(R(A),R(L)) and

E0

(
R(A),R(L)

) ∼→ CH0(X)/G.

So using this relation and 3.2 in the diagram (∗), we get an induced diagram

0 ER
0 (L)

≀

E0(A, L) E0(R(A),R(L))

≀

0

0 G CH0(X) CH0(X)/G 0

(∗∗)

Therefore, using the 5-lemma, we get E0(A, L)
∼→ CH0(X). ✷

We now give a proof of Theorem A, which we recall below.
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Theorem 3.4. Let R be a real closed field. Let X = Spec(A) be a smooth affine variety of dimension n � 2

over R. Let X(R) denote the R-rational points of the variety. Let K denote the module
∧n

(ΩA/R). Let P be a

projective A-module of rank n and let
∧n

(P ) = L. Assume that Cn(P ) = 0 in CH0(X). Then P ≃ A ⊕ Q in the

following cases:

1. X(R) has no closed and bounded semialgebraically connected component.

2. For every closed and bounded semialgebraically connected component W of X(R), LW �≃saKW where KW

and LW denote restriction of (induced) line bundles on X(R) to W .

3. n is odd.

Moreover, if n is even and L is a rank 1 projective A-module such that there exists a closed and bounded

semialgebraically connected component W of X(R) with the property that LW ≃ KW , then there exists a

projective A-module P of rank n such that P ⊕ A ≃ L ⊕ An−1 ⊕ A (hence Cn(P ) = 0) but P does not have a

free summand of rank 1.

Proof. We note that due to 3.2, the diagram (∗) can be re-written as:

ker(ΘL)
∼

ker(ΦL)

0 ER(L)

≀ΨL

E(A, L)
ΓL

ΘL

E(R(A),R(L))

ΦL

0

0 G CH0(X) CH0(X)/G 0

Hence, using 3.1 and the structure theorem, Theorem B, we get that ker(ΦL) (≃ ker(ΘL)) is a free

abelian group of rank r where r denotes the number of closed and bounded components C i of X(R)

with the property that LC i
≃ KC i

.

Let P be a projective A-module of rankn with
∧n

(P ) ≃ L and let χ : L →
∧n

(P ) be an L-

orientation of P . Then, ΘL(e(P ,χ)) = Cn(P ). In view of 2.17, to prove the theorem, it is enough

to prove that Cn(P ) = 0 ⇒ e(P ,χ) = 0.

Proof of cases 1 and 2.

Note that in this case, by the structure theorem of E(R(A),R(L)), ΦL is an isomorphism and hence,

ΘL is an isomorphism.

Proof of case 3. When n is odd, there is an automorphism � of P with determinant −1. Let

α : P ։ I where I is a finite intersection of maximal ideals. Let ωI be a local L-orientation of I

induced by α. Using this and �, we get that 2e(P ,χ) = (I,ωI ) + (I,−ωI ). Since the canonical map

E0(A, L) ։ CH0(X) is an isomorphism by 3.3 and (I) 
→ Cn(P ), we have (I) = 0 in E0(A, L). Therefore,

by [1, Proposition 3.7], 2e(P ,χ) = (I,ωI ) + (I,−ωI ) = 0. Since Cn(P ) = 0, e(P ,χ) ∈ ker(ΘL), which is

a free abelian group. Hence, e(P ,χ) = 0.

Finally, let n be even, and LW ≃ KW for some closed and bounded semialgebraically con-

nected component W . Then, using the structure theorem, Theorem B, ker(ΘL) ≃ ker(ΦL) �= 0. Since

E0(A, L) → CH0(X) is an isomorphism, by abuse of notation, we denote the canonical map E(A, L) →
E0(A, L) by ΘL . Then, as in [2, Lemma 3.3], there exists a reduced ideal J of height n such that J

is a surjective image of L ⊕ An−1 and a local L-orientation ω J which is not a global orientation, i.e.

( J ,ω J ) �= 0 in E(A, L). Since n is even, as in [2, Lemma 3.6], we can get a rank n projective mod-

ule P , which is stably isomorphic to L ⊕ An−1 (i.e. P ⊕ A ≃ L ⊕ An−1 ⊕ A) and χ : L ∼→
∧n

(P ) such

that e(P ,χ) = (I,ωI ) �= 0 in E(A, L). Note that since P is stably isomorphic to L ⊕ An−1 , Cn(P ) = 0

but e(P ,χ) �= 0 and hence, by 2.17, P �≃ Q ⊕ A. This completes the proof. ✷
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4. Elementary paths in X(R): technical lemma

Let X = Spec(A) be a smooth affine variety over R of dimension n � 2. Assume that the set X(R)

of real points is not empty, hence infinite. In this section, we analyse elementary paths in X(R).

Let γ be a non-degenerate elementary path in X(R) as defined in 2.10. Then the Zariski closure

γ in X is an irreducible curve. Let p be the prime ideal of A defining this curve and B = A/p. Let

C be the normalisation of B . Then Z = Spec(C) is a smooth curve. Let ΣB = {1 +
∑

f 2i | f i ∈ B}.
Then B ′ = Σ−1

B C is the normalisation of R(B) and B ′ →֒ R(C). B ′ contains all the real maximal ideals

of C and only finitely many non-real maximal ideals (which contract to the singularities of R(B)). In

particular, that means R(C) = R(B ′).
Using this, we get:

Lemma 4.1. Let m be a maximal ideal of B ′ . If m is non-real, then m is principal. If m is real, then m2 is a

principal ideal, generated by a sum of squares.

Proof. Let c = cB ′/R(B) be the conductor of B ′ over R(B). Now consider the Mayer–Vietoris sequence

corresponding to the conductor,

U

(
B ′

c

)
→ Pic

(
R(B)

)
→ Pic

(
B ′)⊕ Pic

(
R(B)

c

)
→ Pic

(
B ′

c

)
.

Since c has height 1, Pic(R(B)/c) = Pic(B ′/c) = 0. Hence, we get Pic(R(B)) ։ Pic(B ′). Since R(B) con-

tains only real maximal ideals, by 2.6 Pic(R(B)) is 2-torsion. Hence, Pic(B ′) is also 2-torsion. Putting

this together with 2.20, we get that every non-real maximal ideal of B ′ is principal.

Let m be a real maximal ideal of B ′ . Since B ′ is a localisation of a smooth, affine curve over R,

2.6 gives us m2R(B ′) = (
∑

c2
i
) where m = (c1, c2, . . . , cn). B

′ has only finitely many non-real maximal

ideals, say d1,d2, . . . ,dk . Since they are all principal, let
∏k

i=1 di = (x). Further, choose an element

y ∈ m2\(
⋃k

i=1 di). Then consider the element z = x2(
∑

c2
i
) + y2 . This element clearly does not belong

to any real maximal ideal m′ other than m since

z ∈ m′ ⇒ xci ∈ m′ ⇒ ci ∈ m′ ⇒ m ⊆ m′.

Also the choice of y means that z /∈ di . Locally, z generates m2 hence we have m2 = (x2(
∑

c2
i
) + y2)

which proves the lemma. ✷

This in turn gives us:

Lemma 4.2. Every non-real maximal ideal d of B ′ is generated by a function which is positive at all real points,

i.e. d = (h) and h = h2/h1 where h1,h2 ∈ B ′ and both are sums of squares in B ′ .

Proof. Since d is principal, let d = (x). Then by 2.20, we know that there exist f and g which are

sums of squares such that (d ∩ C)
∏

m2
j
( f ) =

∏
m2

i
(g). Hence, we get d

∏
(m jB

′)2( f ) =
∏

(miB
′)2(g).

Hence, by 4.1, we get that (x)(h1) = (h2) where h1 and h2 are sums of squares in B ′ . This means there

exists a unit u ∈ B ′ such that uxh1 = h2 . Putting h = ux, we obtain the result. ✷

Remark 4.3. Since non-real points of B ′ are principal, Pic(B ′)
∼→ Pic(R(B ′)).
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From 2.7, there exists a generator χ of ΩR(C)/R which we fix through the rest of the argument.

We summarise the information in the commutative diagrams below:

B
ξ

C

R(B) B ′ = Σ−1
B C R(C)

(∗ ∗ ∗1)

which along with the definition of elementary path gives us:

γ (Spec(B))(R)
∼

Max(R(B))

[P , Q ]

≀

(Spec(B ′))(R)

≀

Max(B ′)

ξ∗

(Spec(C))(R) Max(C)

(∗ ∗ ∗2)

Consider ξ∗(P ) and ξ∗(Q ) which are elements of Max(R(B)) →֒ X(R) and let M0 and M1 be the

corresponding maximal ideals of R(A). Then M0 is the starting point of γ and M1 is the endpoint.

Let m0,m1 be the maximal ideals of R(B) corresponding to M0 and M1 . Let mP and mQ be the

maximal ideals of B ′ corresponding to P and Q respectively. Recall that 2.8 gave us a function f P ,Q ∈
R(C) with special properties.

Lemma 4.4.We can choose gP ,Q in B ′ such that:

1. (gP ,Q ) = mP ∩ mQ in B ′ .
2. if dgP ,Q = tχ , then it has opposite orientations at both points, i.e. sign(t(P )) = −1, sign(t(Q )) = 1.

3. gP ,Q is positive at all points outside the closed interval ]P , Q [.

Proof. Since R(C)
∼→ R(B ′), using 2.8 there exists a function f P ,Q ∈ R(B ′) satisfying ( f P ,Q ) =

mPR(B ′) ∩ mQ R(B ′) and sign(g(P )) = −1, sign(g(Q )) = 1 where df P ,Q = gχ . Further, f P ,Q was posi-

tive outside the closed interval [P , Q ].
Since R(B ′) is a localisation of B ′ , we have f P ,Q = f /u where u = 1 +

∑
a2
i

and f ,u,ai ∈ B ′ .
Note that since u is a sum of squares, sign( f P ,Q (R)) = sign( f (R)) for all points R ∈ (Spec B ′)(R). Let

df = g1χ . Since f P ,Q (P ) = f P ,Q (Q ) = 0, we have g1(P ) = u(P )g(P ) and g1(Q ) = u(Q )g(Q ) and

hence, sign(g1(P )) = −1 and sign(g1(Q )) = 1 so they continue to have opposite orientations.

By 4.3, ∃h ∈ B ′ such that mP ∩mQ = (h). Denote the non-real maximal ideals of B ′ by d1,d2, . . . ,dk .

By 4.2, ∃ f i , 1 � i � k such that di = ( f i) where f i is positive at all real points of B ′ . Then, f =
u1

∏k
i=1 f

ri
i
h where u1 is a unit in B ′ . Let gP ,Q = u1h. Since u1 is a unit, (gP ,Q ) = mP ∩mQ . Moreover

we have f =
∏k

i=1 f
ri
i
gP ,Q . Hence, sign( f (R)) = sign(gP ,Q (R))∀R ∈ (Spec(B ′))(R). gP ,Q is positive at

all points outside the closed interval ]P , Q [. Also, if dgP ,Q = tχ , then sign(t(P )) = sign(g1(P )) = −1

and sign(t(Q )) = sign(g1(Q )) = 1 as argued previously. This completes the proof. ✷

Now we prove a lemma which says that if γ contains only non-singular points of (Spec(B))(R),

then m0 ∩m1 is a complete intersection in R(B). In what follows, for T ∈ (Spec(B))(R), we denote the

corresponding maximal ideal of R(B) by mT .
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Lemma 4.5. Suppose γ contains only non-singular points of (Spec(B))(R). Then given a finite set

{T1, . . . , Tr} ∪ {T ′
1, . . . , T

′
s} of points in (Spec(B))(R) not contained in γ , there exists g ∈ R(B) such that

1. (g) = m0 ∩ m1 ,

2. g − 1 ∈ J where J = (
⋂r

i=1 mT i ) ∩ (
⋂s

j=1 mT ′
j
) ∩ cB ′/R(B) ,

3. sign(dg/χ) = −1 at m0 and sign(dg/χ) = 1 at m1 .

Proof. Note that without loss of generality, we can assume that points T i and T ′
j correspond to

smooth maximal ideals of R(B), and hence T i, T
′
j
can be regarded as points of (Spec(B ′))(R) as well

(since (ξ∗)−1(T i) and (ξ∗)−1(T ′
j
) are singleton). Consider the function gP ,Q ∈ B ′ as in 4.4 and any

point T ∈ (Spec(B ′))(R) such that the corresponding maximal ideal mT contains J B ′ . Then either it is

T i or T ′
j
or it is in the support of the conductor ideal cB ′/R(B) . Since none of these points are contained

in [P , Q ] (since none of the images under ξ∗ are contained in γ ), we have that gP ,Q (T ) > 0. Consider

g P ,Q ∈ (B ′/ J )∗ . Then, applying 2.18 (with I =
√

J/ J ), we get g1 ∈ B ′ such that g1
2 = g P ,Q ∈ (B ′/ J )∗

and (g1) + J = B ′ . Hence, there exists a ∈ B ′, x ∈ J such that ag1 + x = 1 ∈ B ′ . Note that (g1, x) = B ′ .
Consider u = g21 + x2 . Let m be a maximal ideal of B ′ . If J ⊆ m, then x ∈ m. Therefore, g1 /∈ m and

hence u /∈ m. If J � m, then cB ′/R(B) � m and hence if n = m∩R(B), then R(B)n = B ′
m . As R(B) has only

real maximal ideals, we get that m is a real maximal ideal of B ′ . Hence, u ∈ m ⇒ g1, x ∈ m ⇒ 1 ∈ m

which is a contradiction. Therefore, u is a unit in B ′ and since it is a sum of squares, it is positive at

all real points. Consider g = u−1gP ,Q . Therefore, with bar denoting elements in B ′/ J ,

g = u−1g P ,Q = u−1g P ,Q = g21
−1g P ,Q = g1

−2g1
2 = 1 ∈ B ′/ J .

Hence, g = 1+ y for some element y ∈ J ⊆ cB ′/R(B) . Hence, using 2.19, we get m0 ∩ m1 = (g). Further,

we see that at the points T i, T
′
j
, g(T i) = g(T ′

j
) = 1 and g(T ) = 1 for each point T ∈ (Spec(B))(R)

which is a singular point.

Note that

ΩR(B)/R

m0ΩR(B)/R

∼→
ΩB ′/R

mPΩB ′/R

and

ΩR(B)/R

m1ΩR(B)/R

∼→
ΩB ′/R

mQ ΩB ′/R
.

Since g = u−1gP ,Q in B ′ , we have dg = u−1dgP ,Q + gP ,Q d(u−1) in ΩB ′/R . Hence,

(dg/χ)(P ) = u−1(P )(dgP ,Q /χ)(P ), (dg/χ)(Q ) = u−1(Q )(dgP ,Q /χ)(Q ).

Therefore, sign((dg/χ)(P )) = −1 and sign((dg/χ)(Q )) = 1. ✷

Let L be a projective A-module of rank 1. We prove the final lemma of this section which shows

that if γ contains only non-singular points of R(B), then there exists β : R(L)⊕R(A)n−1 ։ M0 ∩ M1 .

We recall the set-up once again. Recall that B = A/p = γ Zar where γ is an elementary path in X(R)

with starting point M0 and endpoint M1 . Let C be the normalisation of B , B ′ be the normalisation

of R(B) and hence R(B ′) = R(C). χ is a generator of ΩR(C)/R = ΩR(B ′)/R . Let cB ′/R(B) be the conductor

ideal of B ′ over R(B). Let C ⊇ pR(A) be the ideal of R(A) such that C/pR(A) = cB ′/R(B) .

Since A is smooth, pR(A)p = (a1,a2, . . . ,an−1) with ai ∈ R(A). Let B1 = R(A)/(a1,a2, . . . ,an−1).

Note that (a1,a2, . . . ,an−1) = pR(A) ∩ I for some ideal I of R(A) not contained in pR(A).
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Hence onward we use the following convention. For a maximal ideal M of R(A) containing pR(A),

M denotes the corresponding maximal ideal of B1 and m will denote the corresponding maximal

ideal of R(B), i.e. M = MB1 and m = MR(B). Since pR(A) + I is of height n in R(A), there are

finitely many maximal ideals containing pR(A) + I . Let those be denoted by T1, . . . , Tr in X(R).

Lemma 4.6. Suppose, with the assumptions and notations as above, there exists f ∈ R(A) such that:

1. f ∈ C ∩ (pR(A) + I).

2. Spec(R(A)/ f ) ∩ γ = ∅.

Then, there exists an ∈ R(A) such that (a1,a2, . . . ,an) = M0 ∩ M1 , an − 1 ∈ (a1,a2, . . . ,an−1, f ) and

sign((d(an)/χ)(P )) = −1 and sign((d(an)/χ)(Q )) = 1 where an denotes the image of an under the map

R(A) → R(C). Moreover, if there exists τ ∈ L such that R(L) f = τR(L) f , then there exists a surjection

β : R(L) ⊕ R(A)n−1 ։ M0 ∩ M1 such that β(τ ) = a1 + han and β(ei) = ai ; 2 � i � n where (e2, . . . , en)

denotes a basis of R(A)n−1 .

Proof. Since Spec(R(A)/ f ) ∩ γ = ∅, we have f /∈ p.

Let

Υ =
{
T ∈ X(R)

∣∣ p + f ∈ MT

}
= V

(
(p + f )R(A)

)
,

{
T ′
1, . . . , T

′
s

}
= Υ \ V

(
C ∩

(
pR(A) + I

))
,

{T1, . . . , Tr} = V
(
pR(A) + I

)
\ V (C) and

J =
(
pR(A) + I

)
∩ C ∩

(
s⋂

j=1

MT ′
j

)
⊂ R(A).

Then

√
J =
(

r⋂

i=1

MT i

)
∩

√
C ∩

(
s⋂

j=1

MT ′
j

)
=
⋂

T∈Υ

MT =
√

pR(A) + ( f ).

Note that since pB1 ∩ I B1 = 0, the above equality implies

√
I B1 ∩

√
CB1 ∩

(
s⋂

j=1

MT ′
j

)
⊆
√

( f )B1.

Moreover, as γ ⊂ V (pR(A)) and Spec(R(A)/( f ))∩γ = ∅, γ ∩Υ = ∅. By 4.5, there exists g ∈ R(B) such

that

• (g) = m0 ∩ m1 ,

• g − 1 ∈
√

JR(B) =
√

J/pR(A),

• as an element of R(C)(⊇ R(B)), sign(dg/χ) = −1 at mP (= m0R(C)) and sign(dg/χ) = 1 at mQ

(= m1R(C)).

Consider the ring B ′
1 = R(B) ⊕ R(A)/I . There is a natural surjection B ′

1 ։ R(B) and through this,

we have (m0 ∩ m1) ⊕ R(A)/I = ((g,1)) in B ′
1 . The natural map B1 ։ R(B) factors through as B1 →֒

B ′
1 ։ R(B). Note that the conductor cB ′

1/B1
= pR(A) + I in B1 maps bijectively to (pR(A)+ I)/pR(A)⊕

(pR(A) + I)/I in B ′
1 .
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Since g − 1 ∈
√

JR(B) =
√

J/pR(A), the equation Y 2 − g has a solution in R(B)/
√

JR(B). Hence,

by 2.18, there exists g1 ∈ R(B) such that g21 − g ∈ JR(B). As (g)+ JR(B) = R(B), (g1)+ JR(B) = R(B).

Let y ∈ J such that (g1) + (y) = R(B). Then, v = g21 + y2 is a unit in R(B). Consider the element

g2 = v−1g . Then, (g2) = m0 ∩ m1 and g2 − 1 ∈ JR(B). Further, since v is a sum of squares and a unit,

we get that

sign

(
dg2

χ
(P )

)
= sign

(
dg

χ
(P )

)
= −1 and

sign

(
dg2

χ
(Q )

)
= sign

(
dg

χ
(Q )

)
= 1.

Note that since pR(A) � J ⊆ pR(A) + I and g2 − 1 ∈ JR(B) = J/pR(A), the element (g2,1) − (1,1)

of R(B) ⊕ R(A)/I(= B ′
1) belongs to the conductor ideal cB ′

1/B1
= (pR(A) + I)/pR(A) ⊕ (pR(A) + I)/

I ⊆ B ′
1 . Hence, there exists b ∈ B1 such that b 
→ (g2,1). We note that the hypothesis implies,

M0 ∩ M1 � I . Hence, (M0 ∩ M1)B
′
1 = (m0 ∩ m1) ⊕ R(A)/I = (g2,1)B

′
1 and therefore, by 2.19,

(b) = M0 ∩ M1 . As above, we have

sign

(
d(b̃)

χ
(P )

)
= sign

(
dg2

χ
(P )

)
= −1 and

sign

(
d(b̃)

χ
(Q )

)
= sign

(
dg2

χ
(Q )

)
= 1

where b̃ is the image of b in R(C).

Since f /∈ M0 ∩ M1 , ( f )B1 + (b)B1 = B1 . Further,

b − 1 
→ (g2 − 1,0) ∈
√

JR(B) ⊕ R(A)/I ⇒ b − 1 ∈
√
I B1 ∩ CB1 ∩

(
s⋂

j=1

MT ′
j

)
⊆
√

f B1.

Hence, the equation Y 2 − b has a solution in B1/
√

f B1 and therefore, by 2.18, we have a ∈ B1 such

that a2 − b ∈ f B1 . As b ≡ 1 mod
√

f B1 , (a, f ) = B1 where f is the image of f in B1 . Therefore,

u = a2 + f 2 is a unit in B1 . Consider c ∈ R(A) such that c = u−1b. Then, c − 1 ∈ ( f ). Hence, c − 1 =
α f +

∑n−1
j=1 α ja j . Let an = c −

∑n−1
j=1 α ja j . Therefore,

an − 1 = α f ⇒ (an, f ) = R(A).

Further, (an) = (c) = M0∩ M1 where “bar” denotes the image in B1 and hence (a1,a2, . . . ,an−1,an) =
M0 ∩ M1 in R(A). Also,

sign

(
d(ãn)

χ

)
(P ) = sign

(
d(c̃)

χ

)
(P ) = sign

(
d(b̃)

χ
(P )

)
= −1 and

sign

(
d(ãn)

χ

)
(Q ) = sign

(
d(c̃)

χ

)
(Q ) = sign

(
d(b̃)

χ
(Q )

)
= 1

where “tilde” are the images in R(C).
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Now assume that there exists τ ∈ L such that R(L) f = τR(A) f . Since R(A) f + R(A)an = R(A), we

have R(L)/anR(L) = R(L) f /anR(L) f . Therefore as R(L) f = τR(A) f , R(L)/anR(L) is a free R(A)/(an)-

module of rank 1 with τ as a generator. Therefore, it is easy to see that there exists an R(A)-linear

map α : R(L) → M0 ∩ M1 such that α(τ ) = a1 + anh with h ∈ R(A).

Let

β : R(L) ⊕ R(A)n−1 → M0 ∩ M1

be an R(A)-linear map defined as β(l) = α(l) for l ∈ R(L) and β(ei) = ai ; 2 � i � n where (e2, . . . , en)

is a basis of R(A)n−1 . Then, β(τ − hen) = a1 + han − han = a1 . Hence, as M0 ∩ M1 = (a1,a2, . . . ,an),

β is a surjection. Thus, we obtain the result. ✷

5. Elementary Paths in Z(R)

Let X = Spec(A) be a smooth affine variety over R of dimension n � 2. Assume further that the set

X(R) of real points is not empty, hence infinite. Let L be a projective A-module of rank 1. We denote

K A =
∧n

(ΩA/R) by K .

Let E = L ⊗A K . Let D =
⊕

−∞<i<∞ E i . Let Z = Spec(D). Then there is a natural map A →֒ D

which gives rise to a natural surjection Z ։ X which induces a natural map Z(R) ։ X(R) which we

denote by Π . Looked at in the Euclidean topology, this gives an R∗-bundle over X(R).

In what follows, we identify points of Z(R) (respectively X(R)) with the corresponding real max-

imal ideals of D (respectively A). Recall that R(A) denotes the ring obtained from A by inverting all

elements of the type 1+
∑l

i=1 f 2
i
; f i ∈ A and R(L) = L ⊗A R(A). Let

Y =
{
(M,ωM)

∣∣∣ M ∈ X(R), ωM :
L

ML

∼→
∧n

(
M

M2

)}
.

Recall that the Euler class group E(R(A),R(L)) is a quotient of the free abelian group with generating

set Y . We associate with Y the topological space Z(R) as follows:

Let M be a real maximal ideal. Let

YM =
{
(M,ωM)

∣∣∣ωM :
L

ML

∼→
∧n

(
M

M2

)}
.

The differential map d : A → ΩA/R induces
∧n

(dM) :
∧n

(M/M2)
∼→ K/MK . Composing ωM with∧n

(dM), we get an isomorphism φωM
: L/ML

∼→ K/MK . Note that

R(E )

MR(E )
=

R(L)

MR(L)
⊗

R(K )

MR(K )

and hence there is a natural map R(L)2/MR(L)2 → R(E )/MR(E ) given by

ΓωM

(
l ⊗ l′

)
= l ⊗ φωM

(
l′
)
; l, l′ ∈

L

ML
.

Thus, we get:

Hom

(
R(L)

MR(L)
,
∧n

(
M

M2

)) ∧n(dM )◦
∼−−−−→ Hom

(
R(L)

MR(L)
,

R(K )

MR(K )

) Γ
∼−→ Hom

(
R(L)2

MR(L)2
,

R(E )

MR(E )

)
,

ωM 
→
∧n

(dM) ◦ ωM 
→ idR(L) ⊗
∧n

(dM) ◦ ωM .
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By 2.6, R(L)2 is free. Let κ ∈ L2 be a generator of R(L)2 . Let κ denote the image of κ
in R(L)2/MR(L)2 . Then ΓωM

(κ) is a non-zero element of R(E )/MR(E )(= E /ME ) and hence

ΓωM
(κ) = e, where e ∈ E \ ME . Then, this gives a map ΘM : YM → Π−1(M), sending (M,ωM) 
→

(M, e − 1) where e is defined as above. Now, every element of Π−1(M) is of the form (M, e − 1)

where e ∈ E \ ME . Hence, given e, we get an isomorphism sending κ to e and working backwards in

the above diagram, we get a local orientation of M. Hence, ΘM is a bijection.

Note that there is a natural action of R∗ on YM and Π−1(M) and the above diagram shows

that the map ΘM is compatible with the action. Putting together ΘM for all M ∈ X(R), we have

Θ : Y ∼→ Z(R). Therefore, we get a set-theoretic map Z(R) → E(R(A),R(L)).

In this section, using elementary paths in Z(R) we show that: image of a component of Z(R) under

the map Z(R) → E(R(A),R(L)) is singleton.

To show this we need to prove some auxiliary results. We first set up notations required for these

results.

Suppose f ∈ A is such that L f ≃ A f ≃ K f . Let us fix generators τ and ρ of L f and K f respectively.

Let Z f = Spec(D f ) and X f = Spec(A f ). Then E f is generated by τ ⊗ ρ and therefore

D f = D ⊗A A f = A f

[
T , T−1

]
; T = (τ ⊗ ρ).

With respect to the pair (τ ,ρ), we assign to every P ∈ Z f (R), an element of the group {1,−1} as

follows:

Definition 5.1. Let Θ(M,ωM) = P correspond to (M, e − 1) where e ∈ E , e �= 0 ∈ E /ME . Then if

f /∈ M , we have

e = λτ ⊗ ρ : λ ∈ R∗.

Define

sgn(τ ,ρ)(P) = sgn(τ ,ρ)(M,ωM) = sign(λ).

Remark 5.2. Since D f = A f [T , T−1], T = (τ ⊗ ρ), we can consider T as a function on Z f (R). Let

(M,ωM) ∈ Y such that P = Θ((M,ωM)) ∈ Z f (R). Then the value of T at P is given by λ−1 ∈ R∗

where T = λ−1e = λ−1ΓωM
(κ) ∈ E /(ME ). This implies that

sgn(τ ,ρ)(M,ωM) = sign
(
T (P)

)
.

This further implies that if ωM , ω̃M are two local L-orientations of M, then

sgn(τ ,ρ)(M, ω̃M) = sign(α)sgn(τ ,ρ)(M,ωM) where ω̃M = αωM .

Since E f is free, Z f (R) ≃ X f (R) × R+ ⊔ X f (R) × R− where the maximal ideal (M, T − 1) corre-

sponds to (M,1) ∈ X f (R) × R+ . Note that P ∈ X f (R) × R+ if and only if sgn(τ ,ρ)(P ) = 1.

Recall that we have a (set-theoretic) map Z(R) → E(R(A),R(L)). For P ∈ Z(R), we denote its image

in E(R(A),R(L)) by (P ). Let Ψ be an elementary path in Z(R) and let P be the starting point and Q

be the endpoint of Ψ . Our first step is to show that under the map Z(R) → E(R(A),R(L)), (P ) = (Q)

in E(R(A),R(L)).

Lemma 5.3. Let Ψ be an elementary path in Z(R) such that under the canonical map Π : Z(R) ։ X(R),

Π(Ψ ) is a singleton. Let P = Θ((M0,ωM0 )) be the starting point and Q = Θ((M1,ωM1 )) be the end point

of Ψ . Then, (M0,ωM0 ) = (M1,ωM1 ) in E(R(A),R(L)).
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Proof. Since Π(Ψ ) is singleton, M0 = M1 and Ψ ⊂ Π−1(M0). Choose f /∈ M0 such that L f ≃
A f ≃ K f . Then, M0 = M1 and hence, ωM0 = λωM1 . Then, choosing generators τ and ρ for L f and

K f respectively, we can express Π−1(M0) as a union of its components Π−1(M0) = M0 × R+ ⊔
M0 ×R− . Since Ψ is semialgebraically connected, Ψ lies in one of them. Hence, sgn(τ ,ρ)(M0,ωM0 ) =
sgn(τ ,ρ)(M1,ωM1 ) and hence, sign(λ) > 0. But then by 2.15, this implies (M0,ωM0 ) = (M1,ωM1 ) in

E(R(A),R(L)), i.e. (P ) = (Q). ✷

Now we assume that γ = Π(Ψ ) is not singleton and moreover that Π |Ψ : Ψ → γ is bijective.

Therefore, by [7, Theorem 3.1], γ is a non-degenerate elementary path in X(R). We set up some

notations and prove some results to deal with this case.

Let Ψ Zar = Spec(D/q) and γ Zar = Spec(A/p). Then, as γ is non-degenerate, p = q ∩ A.

In this context, we recall the notations used in the previous section: B = A/pA. Let C be the

normalisation of B and ξ : B →֒ C . Let B ′ be the normalisation of R(B) and hence R(B ′) = R(C).

χ is a generator of ΩR(C)/R = ΩR(B ′)/R . Since γ is an elementary path, we have an order preserving

bijection ξ∗ : [P , Q ] ∼→ γ where [P , Q ] ⊂ (Spec(C))(R). Then, ξ∗(P ) and ξ∗(Q ) are the start and end

points of γ respectively. Let M0 and M1 be the maximal ideals of R(A) corresponding to ξ∗(P ) and

ξ∗(Q ) respectively.

Let cB ′/R(B) be the conductor ideal of B ′ over R(B). Let C be the ideal of R(A) containing

pR(A) such that C/pR(A) = cB ′/R(B) . Since R(A) is regular, pR(A)p = (a1,a2, . . . ,an−1),ai ∈ pR(A).

Then, (a1,a2, . . . ,an−1) = pR(A) ∩ I for some ideal I ⊂ R(A) not contained in pR(A). Let B1 =
R(A)/(a1,a2, . . . ,an−1).

In what follows, we shall use the following convention. For a maximal ideal M of R(A) containing

pR(A), M will denote the corresponding maximal ideal of B1 and m will denote the corresponding

maximal ideal of R(B), i.e. M = MB1 and m = MR(B).

Since I �⊂ pR(A), pR(A)+ I is of height n in R(A), and hence (pR(A)+ I)∩C is an ideal of height n.

We now prove the following lemma:

Lemma 5.4. Let Ψ ⊆ Z(R) be a non-degenerate elementary path and γ = Π(Ψ ). Suppose Π : Ψ → γ is a

bijection. Let (M0,ωM0 ) and (M1,ωM1 ) be such that Θ((M0,ωM0 )) = P and Θ((M1,ωM1 )) = Q are

initial and end points of Ψ respectively. Further, assume that, with notation as above, there exists f ∈ R(A)

such that:

1. f ∈ C ∩ (pR(A) + I).

2. L f ≃ A f ≃ K f .

3. Spec(R(A)/ f ) ∩ γ = ∅.

Then, (M0,ωM0 ) = (M1,ωM1 ) in E(R(A),R(L)), i.e. (P ) = (Q).

Proof. Let

Υ =
{
T ∈ X(R)

∣∣ p + f ∈ MT

}
= V

(
(p + f )R(A)

)
,

{
T ′
1, . . . , T

′
s

}
= Υ \ V

(
C ∩

(
pR(A) + I

))
.

Note that

√
I B1 ∩ C ∩

(
s⋂

j=1

MT ′
j

)
⊆
√

( f )B1.
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Also, γ ⊆ X f (R). Further, R(B) f
∼→ B ′

f
since the conductor (cB ′/R(B)) f equals the full ring B ′

f
. So,

R(B) f is regular and hence, we have the short exact sequence,

0 →
(a1,a2, . . . ,an−1)R(A) f

p(a1,a2, . . . ,an−1)R(A) f

→
ΩR(A) f /R

pΩR(A) f /R

→ ΩR(B) f /R → 0.

Now, since R(B) f
∼→ B ′

f
, B ′

f
has only real maximal ideals. Hence, B ′

f

∼→ R(C) f . Hence,

ΩR(B) f /R
∼→ ΩB ′

f
/R

∼→ ΩR(C) f /R.

Hence ΩR(B) f /R is generated by χ , and so the sequence is split exact. Let s be a splitting. Then

(ΩR(A)/R/pΩR(A)/R) f is a free R(B) f -module with a basis {d(a1),d(a2), . . . ,d(an−1), s(χ)} where for

a ∈ R(A), we denote by d(a), the image of d(a) in ΩR(A)/R/pΩR(A)/R . As a consequence,
∧n−1

i=1 dai ∧
s(χ) = ρ ′ is a generator for (R(K )/pR(K )) f .

Let ρ ∈ K and τ ∈ L be generators of K f and L f respectively. Then, T = τ ⊗ρ is a generator for E f .

As above, we can write D f ≃ A f [T , T−1] and we can consider the action of T on P = Θ(M0,ωM0 )

and Q = Θ(M1,ωM1 ). By 5.2,

sign
(
T (P)

)
= sgn(τ ,ρ)(M0,ωM0), sign

(
T (Q)

)
= sgn(τ ,ρ)(M1,ωM1).

Since Π : Ψ → γ is bijective and γ ⊆ X f (R) we have Ψ ⊆ Z f (R). As T defines a continuous and

semialgebraic function on Z f (R), and P , Q ∈ Ψ (which is semialgebraically connected); sign(T (P )) =
sign(T (Q)). Hence, changing ρ to −ρ if necessary, we may assume without loss of generality that,

sgn(τ ,ρ)(M0,ωM0) = 1 = sgn(τ ,ρ)(M1,ωM1).

Now, as τ ∈ L is a generator of L f by 4.6, there exists an ∈ R(A) and a surjection

β : R(L) ⊕ R(A)n−1
։ M0 ∩ M1

such that

• (a1,a2, . . . ,an) = M0 ∩ M1 ,

• β(τ ) = a1 + han for some h ∈ R(A),

• β(ei) = ai ; 2 � i � n where (e2, . . . , en) is a basis of R(A)n−1 .

Moreover if an denotes the image of an in R(B)(= R(A)/pR(A)) →֒ R(C), then

• sign(d(an)/χ) = −1 at m0 and sign(d(an)/χ) = 1 at m1 .

Note that if d(an)/χ = w ∈ R(C) ⊂ R(C) f = R(B) f , then
∧n

j=1 da j = wρ ′ .

The surjection β : R(L) ⊕ R(A)n−1 ։ M0 ∩ M1 (= (a1,a2, . . . ,an)) gives rise to local orientations

ω0 and ω1 of M0 and M1 respectively as follows:

ωi :
R(L)

MiR(L)

∼→
∧n

(
Mi

M2
i

)
, ωi

(
τ ′
i

)
= ai1 ∧ ai2 ∧ · · · ∧ ain, i = 0,1

where τ ′
i
denotes the image of τ in R(L)/MiR(L) and ai j denotes the image of a j in Mi/M2

i
.
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Recall that κ and τ are generators for R(L)2 and R(L) f respectively. Therefore κ = u(τ ⊗ τ ) for

some u ∈ R(A)∗
f
. Since ρ is a generator of R(K ) and ρ ′ is a generator of (R(K )/pR(K )) f , ρ = vρ ′ for

some v ∈ R(B)∗
f
where ρ is the image of ρ in (R(K )/pR(K )) f .

Let ui, v i, w i denote images of u, v, w in R(A)/Mi respectively. Note that as γ is a semialge-

braically connected subset of Spec(B f )(R) ⊆ X f (R) and the points of X(R) corresponding to M0 and

M1 belong to γ ,

sign(u0)sign(u1) = sign(v0)sign(v1) = 1.

On the other hand, by choice of w , sign(w0) = −1 and sign(w1) = 1. Now using the equalities κ =
u(τ ⊗ τ ),ρ = vρ ′ and

∧n
j=1 da j = wρ ′ , we see that

sgn(τ ,ρ)(M0,ω0)sgn(τ ,ρ)(M1,ω1) = −1

But

sgn(τ ,ρ)(M0,ωM0) = 1 = sgn(τ ,ρ)(M1,ωM1).

Without loss of generality we assume that

sgn(τ ,ρ)(M0,ωM0) = sgn(τ ,ρ)(M0,ω0) = 1,

sgn(τ ,ρ)(M1,ωM1) = −sgn(τ ,ρ)(M1,ω1) = 1.

Hence,

(M0,ωM0) = (M0,ω0), (M1,ωM1) = −(M1,ω1)

in E(R(A),R(L)).

Since orientations ω0 and ω1 on M0 and M1 are induced by the surjection β : R(L)⊕R(A)n−1 ։

M0 ∩ M1 , we know that in E(R(A),R(L)),

(M0,ω0) + (M1,ω1) = 0.

Hence, in E(R(A),R(L)),

(M0,ω0) = −(M1,ω1) = (M1,−ω1)

and so

(M0,ωM0) = (M1,ωM1),

i.e. (P ) = (Q). Thus, the lemma is proved. ✷

We make a few comments about the choice of f in the previous Lemma 5.4.

Lemma 5.5. Let R be a regular domain of dimension n and let p be a prime ideal of height n − 1 such that the

normalisation S of R/p is a finite module over R/p. Let C be an ideal of R containing p such that C/p is the

conductor ideal of S over R/p. Let a1,a2, . . . ,an−1 ∈ R such that (a1,a2, . . . ,an−1) = p ∩ I with I �⊂ p. Let L

be a projective R-module of rank 1. Then there exists f ∈ R \ p such that
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1. f ∈ C ∩ (p + I)

2. L f ≃ R f .

Proof. Since Lp ≃ Rp , there exists g ∈ R \ p such that Lg ≃ R g . Since p � C ∩ (p + I), there exists

h ∈ C ∩ (p + I) \ p. Now taking f = gh, we are through. ✷

Remark 5.6. Let Ψ,γ be as in Lemma 5.4 and γ Zar = Spec(A/p) where p is a prime ideal of A of

height n − 1. Since R(A)pR(A) is regular of dimension n − 1, we can always find a1,a2, . . . ,an−1 such

that (a1,a2, . . . ,an−1) = pR(A) ∩ I with I �⊂ pR(A). Then, 5.5 shows that there exists f ∈ R(A) \ pR(A)

satisfying conditions (1) and (2) in the hypothesis of 5.4. Note that if moreover γ ⊂ X f (R) =
(Spec(A f ))(R) then for every maximal M of R(A) corresponding to a point of γ , (B1)M = R(B)m

is a discrete valuation ring where B1 = R(A)/(a1,a2, . . . ,an−1),R(B) = R(A)/pR(A), M = MB1 and

m = MR(B). In particular every point of γ is a smooth point of Spec(A/p) (recall A/p = B). Since an

elementary path might contain non-smooth points of the curve Spec(B), it is not always possible to

have f ∈ R(A) satisfying condition (3) in the hypothesis of 5.4. However, Spec(R(A)/ f ) ∩ γ is a finite

set, say, {Q 1, Q 2, . . . , Q t}. Since γ is totally ordered we can assume that Q i < Q i+1; 1 � i � t − 1.

Let P and Q be the initial and end point of γ respectively. Then we have P � Q 1 < Q 2 < · · · <

Q t � Q and open intervals ]P , Q 1[, ]Q i, Q i+1[, 1 � i � t − 1 and ]Q t, Q [ are contained in X f (R).

Since Π |Ψ : Ψ ։ γ is bijective and ordered preserving we have Π−1
Ψ (P ) = P � Π_P si−1(Q 1) <

Π_Ψ −1(Q 2) < · · · < Π_Ψ −1(Q t) � Q = Π_Ψ −1(Q ). Now let P ′, P ′′ ∈ Ψ be such that Π |−1
Ψ (Q i) <

P ′ < P ′′ < Π−1
Ψ (Q i+1), then the previous lemma says that (P ′) = (P ′′) in E(R(A),R(L)).

The next lemma essentially says that (Π |−1
Ψ (Q i)) = (P ′) = (P ′′) = (Π |−1

Ψ (Q i+1)) in E(R(A),R(L)).

Lemma 5.7. For every point P of Z(R), there exists a semialgebraic neighbourhood UP such that if P1, P2 ∈
UP , then (P1) = (P2).

Before proving this lemma, we state a standard lemma which we will require.

Lemma 5.8. Let A be a smooth affine domain of dimension n over R and let M be a real maximal ideal of A. Let

L be a rank 1 projective A-module. Assume that A is a surjective image of R[l] where R[l] denotes a polynomial

algebra in l variables. Then there exists a set of variables {X1, . . . , Xl} (i.e. R[l] = R[X1, . . . , Xl]) and f /∈ M

such that A is a finite module over R[X1, . . . , Xn], ΩA f /R[X1,...,Xn] = 0 and L f ≃ A f .

We now proceed to prove Lemma 5.7.

Proof. Let Θ(M,ωM) = P . Let P ∈ X(R) be the point corresponding to M, i.e. Π(P ) = P . Since

A is affine, we can assume that Spec(A) is a closed n-dimensional subvariety of the affine space

Al
R . Hence, X(R) is a closed algebraic subset of Rl . Then, by 5.8, there exists a suitable choice of

a coordinate system of Rl , such that the projection map π : Rl → Rn when restricted to X(R) has

finite fibers. Moreover, there exists f ∈ A such that f /∈ M, L f ≃ A f and ΩA f /R is generated by

dX1, . . . ,dXn . Therefore, by the semialgebraic Inverse Function Theorem, there exists a semialgebraic

Euclidean neighbourhood U of P contained in the Zariski neighbourhood Spec(A f ) such that the

restriction of the projection map π to U is a Nash isomorphism onto an open ball B in Rn with

center π(P ).

We fix an element τ ∈ L such that it generates L f . Note that K f is generated by ρ =
∧n

i=1 dXi .

Note further that since f /∈ M, P ∈ Z f (R). Let D f = A f [T , T−1], T = τ ⊗ ρ . Then,

Z f (R) = X f (R) × R+ ⊔ X f (R) × R−.

Without loss of generality we may assume that sgn(τ ,ρ)(P ) is positive, i.e.

P ∈ U × R+ ⊆ X f (R) × R+.
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Let UP = U × R+ . By 2.15, (Θ−1(M, T − 1)) = (Θ−1(M,uT − 1)) in E(R(A),R(L)) for u > 0. So we

may assume that P corresponds to (M, T − 1). Again by 2.15, to prove the proposition it is enough

to prove that, (Θ−1(M, T − 1)) = (Θ−1(M′, T − 1)) in E(R(A),R(L)) for every M′ ∈ U . Let P ′ be

the element of Z(R) corresponding to (M′, T − 1).

Case 1. Suppose Π(P ′) = Π(P ) = P . Then P ′ = P and so (P ) = (P ′) in E(R(A),R(L)).

Case 2. Suppose Π(P ′) = P ′ �= P . Let W be a semialgebraic open subset of Rl such that W ∩ X(R) = U .

Since P �= P ′,π(P ) �= π(P ′). Without loss of generality we assume that π(P ) = (0, . . . ,0) and π(P ′) =
(δ1, . . . , δn). Moreover, without loss of generality, we assume that δn > 0. The line L joining the two

points π(P ) = (0, . . . ,0) and π(P ′) = (δ1, . . . , δn) is given by n − 1 equations:

H i : Xi − ζi Xn, ζi = δi/δn, 1 � i � n − 1.

Let L1 be the segment of L contained in π(U ) = B. Then there exists an open interval (a,b) ⊃
[0, δn] and a Nash isomorphism from (a,b) to L1 given by:

t 
→ (ζ1t, ζ2t, . . . , ζn−1t, t).

Composing the above function with (π |U )−1 we obtain a Nash embedding F (t) = ( f1(t), . . . , fn(t),

. . . , fl(t)) from (a,b) to (π |U )−1(L1) ⊂ U ⊂ Rl . It is easy to see that f i(t) = ζit for i = 1, . . . ,n − 1,

fn(t) = t and f j(t) = g j(ζ1t, . . . , ζn−1t, t) for j = n + 1, . . . , l. Note that F (0) = P and F (δn) = P ′ .
Let γ = F ([0, δn]). Then, γ ⊆ U ⊆ Spec(A f ). Moreover, since H i vanishes at every point of γ

for 1 � i � n − 1, γ ⊂ (Spec((A/(H1, H2, . . . , Hn−1)A) f ))(R). Note that ΩA f /R[X1,X2,...,Xn] = 0;

R[X1, X2, . . . , Xn]/(H1, H2, . . . , Hn−1) ≃ R[T ]. Therefore, (A/(H1, H2, . . . , Hn−1)A) f is a regular ring.

Hence onward we simply write (H1, H2, . . . , Hn−1) for (H1, H2, . . . , Hn−1)A.

Consider

(H1, H2, . . . , Hn−1) =
(

r1⋂

i=1

pi

)
∩
(

r2⋂

j=r1+1

p j

)
∩
(

r3⋂

k=1

qk

)
,

the primary decomposition of (H1, H2, . . . , Hn−1) in A where

f /∈
r1⋃

i=1

pi, f ∈
r2⋂

j=r1+1

p j

and qk are primary but not prime ideals, which, as (A/(H1, H2, Hn−1)) f is regular implies that

f m ∈
r3⋂

k=1

qk, m ∈ N.

Hence, (H1, H2, . . . , Hn−1) f =
⋂r1

i=1(pi) f . Then,

Spec
((
A/(H1, H2, . . . , Hn−1)

)
f

)
=

r1⊔

i=1

Spec
((
A/(pi)

)
f

)
.
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Since γ ⊂ Spec((A/(H1, H2, . . . , Hn−1)) f ) =
⊔r1

i=1 Spec((A/pi) f ), we have

γ =
r1⊔

i=1

γ ∩
(
Spec

(
(A/pi) f

))
(R).

Since γ ∩ Spec((A/pi) f ) is a closed semialgebraic subset of γ and γ is semialgebraically con-

nected, there exists i such that γ = γ ∩ Spec(A/pi) while the other intersections are empty.

Without loss of generality let i = 1 and let us denote p1 = p. Hence, γ ⊂ Spec(A/p) and hence,

γ Zar = Spec(A/p). γ inherits a natural order from [0, δn] and every point of γ is a smooth point

of Spec(A/(H1, H2, . . . , Hn−1)) as well as of Spec(A/p). Hence, γ is an elementary path with Π(P ) =
P = F (0) as the initial point and Π(P ′) = P ′ = F (δn) as the endpoint.

Consider the map D f → A f given by T 
→ 1. This induces a section

s : Spec(A f ) → Spec(D f ), M 
→ (M, T − 1); M ∈ Max(A f ).

Then let Ψ = s(γ ). Then clearly Ψ is an elementary path in Z(R) with starting point P and end-

point P ′ . Note that since it is a section, Π(Ψ ) = γ and the map Π |Ψ : Ψ → γ is a bijection. Let

I =
((

r1⋂

i=2

pi

)
∩
(

r2⋂

j=r1+1

p j

)
∩
(

r3⋂

k=1

qk

))
R(A).

Then

(H1, H2, . . . , Hn−1) = pR(A) ∩ I.

Let B = A/p and B1 = A/(H1, H2, . . . , Hn−1). Then since B f and (B1) f are regular,

f ∈
√

C ∩ (pR(A) + I)

where C is the conductor ideal of R(A) with respect to its normalisation. By choice of f and

γ , L f ≃ A f ≃ K f and Spec(R(A)/ f ) ∩ γ = ∅. Therefore, we can apply 5.4 and hence we get that

(P ) = (P ′). ✷

Proposition 5.9. Let Ψ ⊂ Z(R) be an elementary path and let Π(Ψ ) = γ . Suppose ΠΨ : Ψ → γ is bijective.

Let P and Q be the initial and end points of Ψ . Then (P ) = (Q) in E(R(A),R(L)).

Proof. If Ψ is singleton then there is nothing to prove. So we assume that Ψ is non-degenerate. Then,

γ is also a non-degenerate elementary path in X(R).

Let Ψ Zar = Spec(D/q) and γ Zar = Spec(A/p). Then p = A ∩ q and p is a prime ideal of height n− 1

of A. Since R(A) is regular; there exist a1,a2, . . . ,an−1 ∈ R(A) such that (a1,a2, . . . ,an−1) = pR(A) ∩ I

with I �⊂ pR(A). Let B ′ be the normalisation of R(B) (= R(A)/pR(A)) and let C be an ideal of R(A)

containing pR(A) such that C/pR(A) = cB ′/R(B) , the conductor ideal of B ′ over R(B). Then, by 5.5,

there exists f ∈ R(A) \ p such that f ∈ C ∩ (pR(A) + I) and R(L) f ≃ R(A) f . Let Υ = {T ∈ X(R) |
pR(A) + ( f ) ⊆ MT } where MT denotes the maximal ideal of R(A) corresponding to T and Υ ′ =
Υ ∩ γ . Since f /∈ pR(A) (an ideal of height n − 1), Υ and hence Υ ′ are finite sets.

If Υ ′ = ∅ then by 5.4, (P ) = (Q) in E(R(A),R(L)).

So we assume Υ ′ �= ∅. Let Υ1 = Π−1(Υ ′) ∩ Ψ . Then as Π |Ψ : Ψ ։ γ is bijective, Υ1 is a finite

subset of Ψ , say Υ1 = {Q1, Q2, . . . , Qt}. Since Ψ is totally ordered, without loss of generality we

assume that Qi < Qi+1; 1 � i � t − 1. Let P = Q0 and Q = Qt+1 . Then we have Q0 � Q1 < Q2 <

· · · < Qt � Qt+1 .
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Consider an interval [Qi, Qi+1], 1 � i � t − 1. Then, by 5.7, there exists UQi
⊂ Z(R) such that for

any two points S, S ′ in UQi
, we have (S) = (S ′). Note that by [10, Proposition 7.5] Qi is contained

in the closure of ]Qi, Qi+1[. Therefore, UQi
∩ ]Qi, Qi+1[ �= ∅ (and hence is infinite). Choose Si,1 ∈

UQi
∩ ]Qi, Qi+1[. Similarly, we can choose Si+1,0 ∈ UQi+1

∩ ]Si,1, Qi+1[. Then, [Si,1, Si+1,0] is a sub-

interval of [Qi, Qi+1]. Consider Ψi = [Si,1, Si+1,0]. Then note that Ψi
Zar is an infinite closed subset of

the irreducible curve Spec(D/q) and hence has to equal it. Hence, Ψi
Zar = Spec(D/q) and Ψi is actually

an elementary path. Further, π(Ψi) ∩ Υ = ∅. Then, by 5.4, (Si,1) = (Si+1,0). Since Si,0, Si,1 ∈ UQi
, we

also have (Si,0) = (Si,1). Hence, we get that (S1,1) = (St,0). If Q0 = Q1 , let S0,1 = S1,1 , else consider

[S0,1, S1,0]. Similarly, if Qt = Qt+1 , let St,1 = St+1,1 , else consider [St,1, St+1,0]. In all four cases, we

get (S0,1) = (St+1,0). But since S0,1, Q0 ∈ UP and St+1,0, Qt+1 ∈ UQ , we have (S0,1) = (Q0) and

(Qt+1) = (St+1,0). Hence, we get (Q0) = (Qt+1), i.e. (M0,ωM0 ) = (M1,ωM1 ) in E(R(A),R(L)). ✷

Finally, we prove the main result of this section.

Theorem 5.10. Let A, L, K , E , D, X(R), Z(R), Y ,Θ : Y → Z(R) be as in the beginning of this section. Let P =
Θ((M0,ωM0 )) and Q = Θ((M1,ωM1 )) be two distinct points of Z(R) lying in the same semialgebraically

connected component of Z(R). Then (M0,ωM0 ) = (M1,ωM1 ) in E(R(A),R(L)).

Proof. Since P and Q lie in the same component of Z(R), we can join P and Q by a semialgebraic

path Ψ . Then by 2.12, this path breaks into finitely many non-degenerate elementary paths Ψi , 1 �

i � r such that Ψi ∩Ψi+1 = {Si} and Si is the starting point of Ψi+1 and the endpoint of Ψi . Moreover,

P = S0 is the starting point of Ψ1 and Q = Sr is the end point of Ψr . Therefore it is enough to show

that (Si) = (Si+1), 0 � i � r − 1 in E(R(A),R(L)).

Hence we can assume without loss of generality that Ψ is a non-degenerate elementary path in

Z(R), with initial point P and end point Q. If Π(Ψ ) (where Π : Z(R) → X(R))) is singleton, then

by 5.3 we are through. So we assume that Π(Ψ ) is not singleton (and hence infinite).

In this case, by [7, Theorem 3.1], there exists a sub-division P = P0 < P1 < · · · < Pt = Q such that

if Ψ j = [P j, P j+1], then Π |Ψ j
: [P j, P j+1] → Π(Ψ j) is order-preserving and bijective. Therefore, by 5.4

(Pi) = (Pi+1) in E(R(A),R(L)) for 0 � j � t − 1. Therefore (P ) = (Q) in E(R(A),R(L)). ✷

6. Structure theorem for E(R(A),R(L))

In this section, we prove the structure theorem, Theorem B.

We recall the setup once again. Let X = Spec(A) be a smooth affine variety over R of dimen-

sion n � 2. Assume further that the set X(R) of real points is not empty, hence infinite. Let L be a

projective A-module of rank 1. We denote K A =
∧n

(ΩA/R) by K .

Let E = L ⊗A K . Let D =
⊕

−∞<i<∞ E i . Let Z = Spec(D). Then there is a natural map A →֒ D

which gives rise to a natural surjection Z ։ X which induces a natural map Z(R) ։ X(R) which we

denote by Π . Looked at in the Euclidean topology, this gives an R∗-bundle over X(R).

Let

Y =
{
(M,ωM)

∣∣∣ M ∈ X(R), ωM :
L

ML

∼→
∧n

(
M

M2

)}
.

Then there is a natural bijection Θ : Y ∼→ Z(R). Recall that E(R(A),R(L)) is a quotient of the free

abelian group on the set Y .

Let C1,C2, . . . ,Cr,Cr+1, . . . ,Ct be the closed and bounded components of X(R).

Note that L, K , E = L ⊗A K correspond to semialgebraic line bundles on X(R). Let Li, K i, Ei be the

restrictions of these line bundles to C i . Then Π−1(C i) is the complement of the zero section of Ei .

Note that Li is isomorphic to K i as a semialgebraic line bundle (denoted by Li ≃ K i) if and only if Ei

is a semialgebraically trivial line bundle over C i .

Now suppose that Li ≃ K i for 1 � i � r and Li �≃ K i for r + 1 � i � t .



S.M. Bhatwadekar, S. Sane / Journal of Algebra 323 (2010) 1553–1580 1577

Lemma 6.1. 2(M,ωM) = 0 in E(R(A),R(L)) where the point corresponding to M lies in C i, r + 1 � i � t.

Proof. Since Π : Z(R) → X(R) is a continuous semialgebraic map, every component of Z(R) is con-

tained in Π−1(C) for some component C of X(R). In particular, if Π−1(C) is semialgebraically

connected then Π−1(C) is a semialgebraically connected component of Z(R). Note that by 2.5, if

C is a closed and bounded component of X(R) then Π−1(C) has two components if and only if E |C
is trivial, otherwise Π−1(C) is semialgebraically connected.

Note that since Ei is not trivial for r + 1 � i � t , by 2.5, Π−1(C i) is semialgebraically connected

and hence is a component of Z(R). Now if M is a maximal ideal of R(A) such that the point

corresponding to it lies in C i then Θ((M,ωM)) and Θ((M,−ωM)) ∈ Π−1(C i). Since Π−1(C i) is

semialgebraically connected for r + 1 � i � t , by 5.10, (M,ωM) = (M,−ωM) in E(R(A),R(L)). There-

fore, by 2.16, 2(M,ωM) = 0 in E(R(A),R(L)). ✷

Lemma 6.2. Let M be a maximal ideal of R(A) corresponding to a point T ′ in C , where C is an unbounded

component of X(R). Let ωM be a local L-orientation of M. Then (M,ωM) = 0 in E(R(A),R(L)).

Proof. Let X be the smooth projective completion of X = Spec(A). Then there exists an affine open

subset X1 = Spec(A1) of X̃ such that X1(R) = X(R). Then if X ′ = X ∩ X1 , we have X ′(R) = X(R).

Let A′ be the coordinate ring of X ′ . Since X ∩ X1 is an affine open subset of X1 and Pic(R(A1)) is

a 2-torsion group, R(A′) is a localisation of R(A1). Now since X ∩ X1 is an open subset of X and

X ′(R) = X(R), we have R(A′) = R(A). Let L1 be a rank 1 projective over A1 such that L1 and L define

the same projective module over R(A). Note that since X̃ is projective, X1(R) = X̃(R) is closed and

bounded.

Since X ′(R) = X(R), we can regard C as a semialgebraically connected subset of X1(R). Therefore

there exists a component C̃ of X1(R) such that C ⊂ C̃ . Since C̃ is closed and bounded and C is not

closed and bounded, there exists T ∈ C̃ such that T /∈ C . Note that C̃ �⊂ X(R) (otherwise C̃ being

semialgebraically connected, C̃ ⊂ C ). Therefore we can assume that T /∈ X(R).

Let MT denote the corresponding maximal ideal of R(A1). Since T /∈ X(R), we have MTR(A) =
R(A). Let ωMT

be a local L1-orientation of MT . Since T , T ′ ∈ C̃ , by 5.10, either (MT ,ωMT
) =

(M,ωM) or (MT ,ωMT
) = (M,−ωM) in E(R(A1),R(L1)). Since R(A) = R(A′) is a localisation

of R(A1), there exists a (surjective) group homomorphism from E(R(A1),R(L1)) to E(R(A),R(L)).

Since under this group homomorphism, (MT ,ωMT
) 
→ 0 in E(R(A),R(L)), (M,ωM) = 0 in

E(R(A),R(L)). ✷

Let T i ∈ C i , 1 � i � t and let Mi be the maximal ideal of R(A) corresponding to T i . Let ωi be a

local L-orientation of Mi for 1 � i � t . Let F be a free abelian group with a basis (e1, . . . , et). Let

� : F → E(R(A),R(L)) be a group homomorphism defined by �(ei) = (Mi,ωi); 1 � i � t .

Proposition 6.3. � is surjective. As a consequence E0(R(A),R(L)) is a vector space of rank � t over Z/(2).

Proof. Since E(R(A),R(L)) is generated by Y , it is enough to show that all elements of Y are in

the image of �. Let (M,ωM) ∈ Y . Suppose the point corresponding to M does not lie in C i for

any i,1 � i � t . Then, by 6.2, (M,ωM) = 0 and hence, it trivially lies in the image of �. If the

point corresponding to M lies in C i for some i,1 � i � t , then, using 5.10, (M,ωM) = (Mi,ωi) or

(M,ωM) = (Mi,−ωi) = −(Mi,ωi). Hence, (M,ωM) = �(ei) or (M,ωM) = −�(ei). Therefore, � is

surjective.

By 2.16, E0(R(A),R(L)) is a vector space over Z/(2) and E(R(A),R(L)) maps surjectively onto it.

Hence, it is a vector space of rank � t over Z/(2). ✷

Remark 6.4. By 6.1, the map � induces the surjection:

r⊕

i=1

Zei ⊕
t⊕

i=r+1

(Z/2)ei
�
։ E

(
R(A),R(L)

)
.
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We will prove that � is an isomorphism.

Recall that there is a bijection Θ : Y ∼→ Z(R). Note that for 1 � i � r, there is a section C i →
Π−1(C i) which induces the following commutative diagram:

R∗ C i × R∗

p1

p2
Z(R)|C i

Π

∼
si

C i

Then, we have a map Z(R) → {−1,0,1} sending

P 
→

⎧
⎨
⎩

0 if Π(P) /∈ C i,

−1 if Π(P) ∈ C i and p2(si(P)) < 0,

1 if Π(P) ∈ C i and p2(si(P)) > 0.

Consider the composite map signi : Y → {−1,0,1} and consider the induced map on the free abelian

group on Y to Z. Note that if (M,ω0) and (M,ω1) are two local orientations of M (where M

corresponds to a point in C i ), then there exists λ ∈ R∗ such that ω0 = λω1 . Then, p2(si(Θ(M,ω0))) =
λp2(si(Θ(M,ω1))) and hence, signi((M,ω0)) = sign(λ)signi((M,ω1)).

Recall that E(R(A),R(L)) is a quotient of the free abelian group on Y . The next lemma shows that

signi in fact factors through E(R(A),R(L)).

Lemma 6.5. Let I be a finite intersection of maximal ideals of R(A) and let β : R(L) ⊕ R(A)n−1 ։ I be a

surjection. Let 1 � i � r and let M′
1, . . . , M′

l
be all the maximal ideals of R(A) such that:

1. I ⊆ M′
j
, 1 � j � l.

2. the point corresponding to M′
j
is contained in C i , 1 � j � l.

Let ω j be the local R(L)-orientation of M′
j
induced by β . Then

l∑

j=1

signi
((

M
′
j,ω j

))
= 0.

Proof. Let { f2, f3, . . . , fn} be a basis of R(A)n−1 and let β( fk) = ak , 2 � k � n. We can assume that

if J = (β(R(L)),a2, . . . ,an−1) then J is a prime ideal of height n − 1 and Spec(A/ J ) is a smooth

irreducible curve [12, Theorems 1.3 and 1.4]. Let “tilde” denote reduction modulo the ideal J . Then

we have the following exact sequence

0 →
J

J2
ã 
→d̃(a)−−−−→

ΩR(A)/R

JΩR(A)/R

→ ΩR( Ã)/R → 0.

Since R( Ã) is smooth, we can apply 2.7 and hence, ΩR( Ã)/R is a free R( Ã)-module of rank one. Let θ be

a generator of ΩR( Ã)/R and let v be its preimage in ΩR(A)/R/ J (ΩR(A)/R). Let F = R(L)⊕R(A)n−2 . Then,

since β(F ) = J we get an isomorphism β̃ : F/ J F ≃ J/ J2 . Hence ΩR(A)/R/ JΩR(A)/R ≃ F/ J F ⊕ ΩR( Ã)/R .

Since
∧n−1

(F ) ≃ R(L) and
∧n

(ΩR(A)/R) = R(K ), we get that
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R(L)

JR(L)

∼→
∧n

(
F

J F
⊕ ΩR( Ã)/R

)
∼→
∧n

(
J

J2
⊕ ΩR( Ã)/R

)
∼→
∧n

(
ΩR(A)/R

JΩR(A)/R

)
=

R(K )

JR(K )
,

l̃ 
→
(
l̃ ∧
(∧n−1

i=2
f̃ i

))
⊗ θ 
→

(
β̃(l) ∧

(∧n−1

i=2
ãi

))
⊗ θ 
→ d̃

(
β(l)

)
∧
(∧n−1

i=2
d̃ai

)
∧ v.

This induces a natural map

R(A)

JR(A)

∼→
R(L)

JR(L)
⊗

R(L)

JR(L)

∼→
R(E )

JR(E )
.

Let χ ∈ R(E ) be such that 1 
→ κ̃ 
→ χ̃ under the above map. This induces a map R(D)/ JR(D) ։

R(A)/ JR(A) mapping χ̃ 
→ 1. This gives another section of the line bundle restricted to (V ( J ))(R) ⊂
X(R). Let “bar” denote reduction modulo M′

j
. Let ω j be the orientation sending l 
→ β(l)∧(

∧n−1
i=2 ai)∧

d−1
M′

j

(v) for each j. Then, Θ(M′
j
,ω j) = (M′

j
,χ − 1) for each j.

Note that Ĩ = (ãn). Since θ is a generator of ΩR( Ã)/R , we have d(ãn) = uθ for some u ∈ R̃(A). Note

that d(ãn) is non-zero in ΩR( Ã)/R/M′
j
ΩR( Ã)/R and hence is a generator. Hence, u is a unit modulo M′

j
,

i.e. u j = u(M′
j
) ∈ R∗ . Therefore,

d
(
β(l)

)
∧
(∧n−1

i=2
dai

)
∧ v = u−1

j
d
(
β(l)

)
∧
(∧n

i=2
dai

)
.

Hence,

β(l) ∧
(∧n−1

i=2
ai

)
∧ d−1

M ′
j

(v) = u−1
j

β(l) ∧
(∧n

i=2
ai

)
.

Hence, ω j = u−1
j

ω j for every j. Hence, signi(M′
j
,ω j) = sign(u j)signi(M′

j
,ω j) and so,

sign(u j)signi
(

M
′
j,ω j

)
= signi

(
M

′
j,ω j

)
.

Since (V ( J ))(R) ⊂ X(R), any component of (V ( J ))(R) is disjoint from C i or completely contained

in it. Hence, C i ∩ (V ( J ))(R) =
⊔

k W ik where W ik are components of (V ( J ))(R). Then, we have

l∑

j=1

signi
((

M
′
j,ω j

))
=
∑

k

∑

j: M ′
j
∈W ik

signi
((

M
′
j,ω j

))
.

Hence, it is enough to show that for each W ik ,
∑

j: M′
j
∈W ik

signi((M′
j
,ω j)) = 0. We note that W ik

are closed subsets of C i and hence are closed and bounded components of (V ( J ))(R) and hence

components of its “completion”.

Fix W ik = W . Since W is a closed and bounded component of (V ( J ))(R) and hence a component

of its “completion”, by [9, Theorem 3.3], we get that

∑

j: M ′
j
∈W

sign

(
d(ãn)

θ

(
M

′
j

))
=

∑

j: M ′
j
∈W

sign(u j) = 0.
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Now,

∑

j: M ′
j
∈W

signi
((

M
′
j,ω j

))
=

∑

j: M ′
j
∈W

sign(u j)signi
((

M
′
j,ω j

))
.

By definition, signi((M′
j
,ω j)) = sign(p2(si(Θ((M′

j
,ω j))))). Since Θ((M′

j
,ω j)) = (M,χ − 1), the

section induced by χ on (V ( J ))(R) is given by the map M 
→ Θ((M′
j
,ω)) = (M,χ − 1). Hence,

p2(si(Θ((M′
j
,ω)))) is a continuous, semialgebraic map on W which is semialgebraically connected.

Hence, p2(si(M,χ − 1)) has the same sign for all M ∈ W and so,

∑

j: M ′
j
∈W

sign(u j)signi
((

M
′
j,ω
))

= ±
∑

j: M ′
j
∈W

sign(u j) = 0.

Hence, the lemma is proved. ✷

Thus, the map signi factors through E(R(A),R(L)). Without loss of generality we can assume that

for the chosen generators (Mi,ωi) of E(R(A),R(L)), signi((Mi,ωi)) = 1 for 1 � i � r. Using this, we

obtain the structure theorem for E(R(A),R(L)).

Theorem 6.6.

r⊕

i=1

Zei ⊕
t⊕

i=r+1

(Z/2)ei
�
։ E

(
R(A),R(L)

)

is an isomorphism.

Proof. We recall that there is a natural map from E(R(A),R(L)) ։ CH0(X)/G where G = π∗(CH0(X))

and from 3.1, CH0(X)/G ≃ (Z/(2))t where every point of any component is a generator. Hence,

for each i : r + 1 � i � t , there is a natural surjection E(R(A),R(L)) ։ Z/(2) obtained by first

taking the surjection E(R(A),R(L)) ։ CH0(X)/G(≃ (Z/(2))t) followed by the projection to the ith

factor of (Z/(2))t . We denote it by signi (slightly abusing notation). Then, putting together these

maps signi , 1 � i � t , we get a map �′ : E(R(A),R(L)) →
⊕r

i=1 Zei ⊕
⊕t

i=r+1(Z/2)ei . Sending

(M,ωM) 
→
∑t

i=1 signi((M,ωM))ei . Since �′ ◦ � = id, we get that � is an isomorphism. This fin-

ishes the proof. ✷
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