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Abstract

The aeroelastic response of a NACA 0012 airfoil in the flow regimes prior

to flutter is investigated in a wind tunnel. We observe intermittent bursts

of periodic oscillations in the pitch and plunge response, that appear in an

irregular manner from a background of relatively lower amplitude aperiodic

fluctuations. As the flow speed is increased, the intermittent bursts last

longer in time until eventually transitioning to a fully developed periodic

response, indicating the onset of flutter. The repeating patterns in the mea-

sured response are visualized using recurrence plots. We show that statistics

of the recurrence states extracted from these plots can be used to develop

model-free precursors that forewarn an impending transition to flutter, well

before its onset.
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1. Introduction

Aeroelastic flutter is an instability that occurs when the aerodynamic

forces overcome the structural and inertial forces in slender flexible struc-

tures, such as aircraft wings, giving rise to large amplitude periodic oscilla-

tions. Classical flutter — also known as coupled-mode or bending-torsion

flutter — involves a fluid-elastic coupling between the structural modes,

wherein above a critical wind speed, energy is transferred from the flow

to the structure (Fung, 1955). This energy transfer leads to self-sustaining

limit cycle oscillations (LCO) that can cause either an abrupt structural fail-

ure due to overloading, or fatigue failure due to gradual accumulation of

damage. It is therefore obvious that the onset of flutter poses a risk to the

structure integrity, and consequently an important criterion in design and

maintenance is that the operating conditions should not lead to flutter in-

stability. Aeroelastic instabilities are not restricted to aircraft wings alone.

The blades of modern wind turbines are also susceptible to aeroelastic flutter

(Lobitz, 2004; Zhang and Huang, 2011). Understanding, predicting and pre-

venting the onset of flutter has therefore remained a focal point of extensive

research, especially in the past decades.

Stability characteristics and bifurcation behaviour of aeroelastic systems

having both structural and aerodynamic nonlinearities have been extensively

investigated in the literature (Alighanbari and Price, 1996; Lee et al., 1999;

Dowell and Tang, 2002; Sarkar and Bijl, 2008). Significant research effort

has also been invested in identifying and modeling various types of nonlin-

earities (Abdelkefi et al., 2012). These studies were primarily aimed towards

developing an understanding of the expected nonlinear aeroelastic response
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and its underlying physics. However, the high costs associated with struc-

tural failures and the expenditures incurred towards preventive maintenance,

scheduling and retrofitting, there is a need to develop methodologies for iden-

tifying the onset of flutter.

Early studies devoted to the development of methodologies for identi-

fying the flutter boundary focussed on estimating the damping in the fluid-

structure interaction system (Kehoe, 1985; Cox et al., 2006). However, damp-

ing based approaches are unsuitable for structures with complex, nonlinear

damping. The other traditional approach for flutter prediction is based on

the estimation of dynamical stability. Zimmerman andWeissenburger (1964)

proposed a methodology to derive a flutter margin based on the Routh’s sta-

bility criterion (Fung, 1955), which was applied to a two degree of freedom

system under the assumption of quasi-steady aerodynamics. Later, the Zim-

merman - Weissenburger Methodology (ZWM) was also applied in systems

with higher degrees of freedom (Price and Lee, 1993). Recently, an extension

of ZWM was presented by Poirel et al. (2005), using uncertainty quantifica-

tion for a more reliable estimate of the modal parameters. Flutter margin

prediction approach based on Jury’s stability criterion for digitalized systems

has been documented by Matsuzaki (2011). An on-line flutter prediction tool

called flutterometer was developed by Lind and Brenner (2000) using an an-

alytical model. To account for modeling errors and uncertainties, parts of

the model were updated through a nonlinear iterative algorithm that gen-

erates a “worst case flutter boundary”. Although this technique is robust,

the stability margins tend to be quite conservative (Strganac and Platanitis,

2001).
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The literature review reveals that the existing methodologies for predict-

ing the flutter boundaries require the development of a mathematical model.

Moreover, an accurate and early on-line prediction of the onset of flutter

using measurements directly remain elusive. This study aims towards de-

veloping a methodology for identifying the flutter boundary directly from

measurement data of the response of the system. The development of these

precursors follows from time series analysis of the response measurements,

where the onset of LCOs are presaged by a transitional intermittent state.

Studies on identifying precursors to undesirable states in other nonlinear

systems are available in the literature. Precursors to instabilities have been

obtained by forcing the dynamical system with broad band noise (Wiesenfeld,

1985; Surovyatkina, 2005). The noise gets selectively amplified at the insta-

bility frequency and the width of the dominant frequency is considered as an

indicator of instability (Wiesenfeld, 1985). Further, Surovyatkina (2005) has

shown for a nonlinear geophysical system that the width of the hysteresis

zone gets reduced as the noise levels are increased. Both these studies were

developed in the frequency domain. However, a frequency domain analysis

might not always be sufficient to identify precursors as external stochastic

forcing can change the dynamics qualitatively, as was shown for a thermoa-

coustic system by Jegadeesan and Sujith (2013).

The focus of the present study is to identify robust precursors to flut-

ter instability through an intermittent state of response in an essentially

model-free approach. This is done by studying the characteristics of the

aeroelastic response at conditions prior to the onset of flutter. Experimental

measures are obtained from wind tunnel tests. The responses are measured

4



at regimes of both stable (no flutter) and unstable (flutter) operations by

systematically increasing the mean flow velocity. The transition to instabil-

ity happens through an intermittent regime which has a specific dynamical

signature, based on which precursors to impending flutter are developed. As

the precursors are developed based on the measured response, the technique

is essentially model independent, the advantages of which are elaborated later

in the paper.

The organization of the paper is as follows: A brief overview of intermit-

tency and its appearance in other models and engineering systems is pre-

sented in Section 2. Section 3 describes the experimental setup and provides

a primer on the computational techniques presented in the paper. Precursors

to flutter are developed from the measured pitch and plunge response using

recurrence quantification analysis in Section 4. The proposed developments

are subsequently illustrated in Section 5 through a numerical example and

provides a validation of the developed precursors in predicting the onset of

flutter. The salient features of this study are summarized in Section 6.

Nomenclature

b semi-chord of airfoil

c chord length

d embedding dimension

d0 optimum embedding dimension

E1(d), E(d) measures used to compute d0

E2(d) measure used to check for determinism in signals

fs under sampled frequency (Hz)
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fv dominant frequency (Hz)

Iα pitch moment of inertia kgm2

ky stiffness in plunge (N/m)

kα stiffness in pitch (Nm/rad)

m1 mass of the plunging frame (Kg)

m2 mass of the pitching mechanism (Kg)

m3 mass of the airfoil (Kg)

my total mass in plunge (m1 +m2 +m3) (Kg)

mα total mass in rotation (m2 +m3) (Kg)

S static unbalance (Kg-m)

N length of time series

U wind flow speed (m/s)

y plunge response (mm)

α pitch response (deg)

ǫ threshold for constructing recurrence plot

ζy viscous damping ratio in plunge

ζα viscous damping ratio in pitch

ωy natural frequency in plunge (Hz)

ωα natural frequency in pitch (Hz)

̟ ratio of plunge to pitch natural frequencies

r radius of gyration

µ nondimensional mass

V nondimensional wind speed (U/bωα)

xα nondimensional distance between elastic axis and centre of mass
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ah nondimensional distance from the mid-chord to the elastic axis

τ time delay for embedding

τopt optimum time delay for embedding

2. Intermittency

Intermittency refers to the occurrence of a signal that irregularly alter-

nates between regular phases and irregular bursts (Schuster and Just, 2006).

In general, for a dynamical system, intermittency can be thought of as anal-

ogous to a fluctuation between two stable states for certain ranges of control

parameter in the system. For example, the two stable states could be a fixed

point and a stable limit cycle. Pomeau and Manneville (1980) presents three

types of intermittency, termed as type I-III to describe the route to chaos

from a periodic state. Each type of intermittency corresponds to a bifurca-

tion taking place in the system. Intermittency has been observed in several

physical systems and have been widely reported in the literature (Richard-

son, 1993; Ott and Sommerer, 1994; Covas et al., 2001; Grebogi et al., 1987;

Price and Mullin, 1991; Bauer et al., 1992; Kabiraj and Sujith, 2012; Nair

et al., 2014).

From an aeroelastic perspective, one of the earliest observations on inter-

mittent responses in nonlinear aeroelastic systems was reported by Price and

Keleris (1996). Numerical simulations were performed to study the dynamic

stall in a NACA 0012 airfoil and the presence of aerodynamic nonlinearity

through a complex stall model showed chaotic behaviour. Two types of re-
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sponses were discussed, one of them was reported as “intermittent chaos”

in which short intermittent chaotic bursts after long periodic regimes were

observed. The system also returned to different periodic attractors after

the short chaotic spells. The source of this intermittency behaviour was

not known, nor their routes for the stall flutter model were analyzed. In a

later numerical study, Poirel (2001) examined the dynamics of a structurally

nonlinear pitch plunge aeroelastic model in the presence of wind turbulence.

The system dynamics were discussed in terms of the response probability

density functions (pdf) and the qualitative changes in them. The pdf were

observed to transition from stochastic damped to stochastic LCO type re-

sponse. However, the author noticed difficulties in categorizing the response

time histories into these precise groups as the time histories showed bursts

in both and there were no sharp distinctions. At mean wind speeds much

below the stochastic LCO behaviour, bursts of periodic regimes were ob-

served in the time domain. The duration of the bursts were observed to

increase with an increase in the mean wind velocity. The author referred

to this strange time domain behaviour as “on-off” intermittency (Yoon and

Ibrahim, 1995). However, these intermittent time histories did not show up

as a qualitative change in the response pdf and no further investigations were

carried out. Similar observations were made experimentally when blunt ob-

jects were placed ahead of a wing in a wind tunnel experiment (Poirel et al.,

2008). Intermittency was also reported in experiments on few other aeroelas-

tic systems, e.g., in a bridge deck flutter (Andrianne and Dimitriadis, 2011)

and in a delta wing (Korbahti et al., 2011). However, intermittency is still

largely an unexplored area in aeroelasticity and none of these studies have
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attempted to analyze its dynamics in detail.

Further, within the aeroelastic community, none of the previous works

have investigated the ability of intermittency to forewarn an impending in-

stability. Recently, for a turbulent combustor, Nair et al. (2014) has demon-

strated that recurrence plots obtained from a short time signal can be suc-

cessfully used to predict the proximity of the operating conditions to an

impending instability. In the present work, a similar approach is being ap-

plied in a pitch-plunge aeroelastic system to provide a quantitative measure

to predict the onset of instability. Intermittent bursts obtained in the aeroe-

lastic response are used for recurrence quantification to develop continuous

measures capable of forewarning of an impending flutter. Further details

regarding recurrence quantification are provided later in Section 4.

3. Experiments

A pitch plunge aeroelastic model of an airfoil is used for the experimental

studies carried out in a low speed wind tunnel. The following sections provide

details of the experimental set-up, the measurements that were recorded and

discussions on the observations.

3.1. The Setup

Wind tunnel experiments were performed on a NACA 0012 airfoil, having

a span of 500 mm and a semi-chord length of 50 mm. The position of the

elastic axis is located to be at 27% of the chord from its leading edge. It is

mounted horizontally in a pitch and plunge setup inside an Eiffel type wind

tunnel, at the Bio-mimetics and Dynamics Laboratory, Indian Institute of

Technology Madras. The test section is 750 mm in height and 750 mm in
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breadth. The fan of the wind tunnel is operated under blowing condition.

The maximum mean flow velocity achieved in the empty test section is 25

m/s. A schematic and a photograph of the experimental setup inside the

wind tunnel is shown in Fig. 1 and Fig. 2 respectively.

Figure 1: Schematic of the experimental setup

The setup permits two independent degrees-of-freedom for the airfoil mo-

tion, namely pitch and plunge movements. The pitching mechanism is sim-

ilar in design to that provided by O’Neil and Strganac (1998). As shown

in Fig. 1, the support structure has two identical translation carriages that

are mounted on either side of the test section. The translation carriage on

each side comprises of two hardened ground shafts of length 600 mm that

pass through a rectangular aluminium profile via linear ball bushing-guide

ways. Rigid hooks are attached to the top frame and the aluminium profile,

for attaching axial springs. The hooks are threaded with a locknut to re-
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Figure 2: Photograph of the experimental setup

sist loosening of hooks and thereby avoiding free play. To adjust the spring

tension and locking, hooks are fitted to the frame and the aluminium pro-

file. The aluminium profile thus keeps the airfoil in suspended condition.

The shafts are rigid and fixed to the top and bottom steel frames using ad-

justable M4-threaded screws. To the aluminium profile, a circular disc of

diameter 50 mm and thickness 10 mm is connected via a ball bearing. The

disc is made of Nylon to ensure that it is light enough to pitch easily. An

industrial Nylon belt having a width of 7.5 mm is circularly enveloped over

the disc and fixed with a M3 screw to the bottom of the disc. Rigid hooks are

provided here as well to attach the springs that provide restoring forces along

the pitching motion. Care is taken to minimize dry friction in the system. A

slot is provided in the disc to attach a steel gripper, having a length of 100

mm. The gripper consists of an adjustable steel bar with a hollow pocket
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to attach the airfoil into it. Grub screws are used to fix the airfoil firmly

into the pocket. The position of the elastic axis is identified by changing the

location of the pocket over the adjustable steel bar and tightening the grub

screw. The only source of nonlinearity in the structural system arises from

the spring stiffness; cubic nonlinear behaviour in the springs were identified

in the range of displacements that were encountered. The presence of the

set-up with its bars and frame structure inside the tunnel test section intro-

duces turbulence and fluctuations to the free- stream. The tunnel fan is also

operated in the blowing condition which further contributes to the fluctua-

tions. These fluctuations added to the mean flow make the resulting wind

field look more real-life as likely to be encountered by various engineering

aeroelastic systems. However, quantification of these fluctuations could not

be carried out within the scope of the present work.

3.2. Measurements

The airfoil has displacements along both the pitch and plunge directions.

The displacement measurements along both pitch and plunge are acquired

simultaneously using a pair of Wenglor opto NCDT type laser sensors that

have a measuring range of 300 mm. A 4-channel ATALON Data Acquisi-

tion system having an input voltage of ±5V and 24-bit resolution is used

to acquire the signals from the laser sensors. Typical duration of sample

acquisition for the airfoil response is 40 seconds, with a sampling frequency

of 5024 Hz. Use of filter is avoided and the raw data is acquired. The mean

angle of attack of the airfoil is set to zero degrees. Initially, static tests are

performed to identify the structural parameters of different components of

the experimental setup; these are listed in Table 1.
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Wind tunnel tests are conducted by systematically varying the mean flow

velocity from 3.6 to 7.6 m/s in steps of 0.2 m/s. The mean wind speed mea-

surements have an uncertainty of ± 5 %. A Delta HD 4V3 TS3 air velocity

sensor is used to measure the flow velocity. The sensor has a measurement

range of 0-40 m/s and a sensitivity of ± 0.1 m/s. The air velocity sensor is

connected to the same data acquisition system for recording the flow velocity.

Additionally, a pitot tube manometer is also located at the beginning

of the test section to monitor the flow speeds. First, the damping trend is

analyzed in pitch and plunge mode by giving an initial disturbance to the

airfoil under zero wind velocity condition. The decaying pitch and plunge

responses are measured and using the logarithmic decrement technique, the

viscous damping ratio in each mode is estimated. Fast Fourier transform

(FFT) analysis of the free decay test is used for obtaining ωy and ωα and were

found to be 4.312 Hz and 4.316 Hz respectively. The bin size for calculating

the FFT was 0.00145 Hz.

3.3. Observations and discussions

The experiments were initiated with the flow speed well below the flutter

speed and measurements were acquired for the response of the undisturbed

airfoil. The airfoil appeared to be at rest for U less than 4 m/s. In this

m1 m2 m3 my mα Iα ky kα S

1.1 0.9 0.4 2.4 1.3 0.0017 2000 1.25 0.006

Kg Kg Kg Kg Kg Kg-m2 N/m Nm/rad Kg-m

Table 1: Physical parameters of the experimental setup.
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regime, any initial perturbation given to the pitch-plunge system is observed

to eventually die down.

As the wind speed is slowly increased to 4 m/s, the unperturbed airfoil

is observed to undergo very low amplitude oscillations. The time histories

for the plunge and the pitch on the airfoil are shown respectively in Fig. 3a

and Fig. 4a. It can be seen that the oscillations appear “noisy”. How-

Figure 3: Pitch response, α(◦), of airfoil for flow speed a) U = 4 m/s, b) U = 6 m/s, c)

U= 6.6 m/s, and d)U=7.2 m/s.

ever, as the wind speed is increased further, bursts of periodic oscillations

are observed; see Fig. 3b & Fig. 4b for the pitch and plunge responses

when U = 6 m/s. These intermittent burst oscillations are characterized by

periodic segments of an uncertain duration followed by segments of compara-

tively lower amplitude aperiodic fluctuations and then back again to periodic
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Figure 4: Plunge response, y(mm), of airfoil for flow speed a) U = 4 m/s, b) U = 6 m/s,

c) U = 6.6 m/s and d) U = 7.2 m/s

.

oscillations. Monitoring the response for longer durations revealed that the

observed bursts do not correspond to transients in the dynamics, i.e., the

response does not eventually transform itself to periodic oscillations or to a

fixed point. Instead, they were observed to persist as the measurement time

was increased. This rules out the possibility of mixed type LCOs as was

observed by Marsden and Price (2005), which was a transient phenomenon.

On increasing the wind speed further, the duration of intermittent bursts

as well as their amplitude were observed to increase significantly; see Fig.

3c and Fig. 4c. Finally, at U = 7.2 m/s, the intermittency is lost and the

response transitions to a fully developed LCO; see Fig. 3d and Fig. 4d.

15



We observe that such intermittent bursts always precede LCO in our exper-

iments; here only a few of the observed intermittent responses are reported

in Fig. 3 and Fig. 4 for the sake of brevity.

In order to understand the appearance of such intermittent responses in

the aeroelastic experiments, the effect of turbulence needs to be taken into

account. In a turbulence free system, the onset of flutter, is a transition

from a fixed point to a LCO, i.e., a Hopf bifurcation and this scenario leaves

no room for the appearance of intermittent burst oscillations of the type

observed in our experiments The large variation of the response amplitude

requires additional time scales which are much slower than the structural

time scale. Typically, turbulent velocity fluctuations have a higher energy

content at lower frequencies. Hence, it can be conjectured that the wind

fluctuations that operate over a slower time scale can give rise to intermittent

bursts by shifting the dynamics of the airfoil back and forth about its Hopf

bifurcation point. A numerical study is presented in Section 5 in which a

canonical fluctuating wind model on a pitch plunge binary flutter system

is able to show the existence of intermittency, qualitatively similar to the

results presented in this section.

4. Precursors to Impending Instability

The focus of the present work is to develop quantitative measures (pre-

cursors) to forewarn the onset of flutter LCOs from measurement data. From

the experimentally obtained time histories, the appearance of instability was

always observed to be preceded by a regime of intermittency in both the

degrees of freedom. Therefore, a measure that can characterize and quantify

16



these intermittent states can act as a precursor to an impending flutter. A

convenient way to describe such repeating patterns in the dynamics of these

bursts can be extracted using a visualization technique known as a recurrence

plot which is explained next.

4.1. Recurrence quantification

In deterministic dynamical systems, recurrence is a fundamental property

and recurrence plots are useful to visually identify the times at which the

trajectory of the system visits approximately the same area in the phase space

(Marwan et al., 2007). The use of recurrence plots as a tool for characterizing

the temporal features in the dynamics of a measured signal, by tracking the

regularity of the trajectories, was first suggested in Eckmann et al. (1987). A

recurrence plot is defined as an array of dots in a N ×N square, where a dot

is placed at location (i, j), if the proximity between y(j) and y(i) is small.

Here, y(i) is the i-th point in a trajectory describing a dynamical system and

y(j) is some other point in the trajectory. It is to be noted that a recurrence

plot has units of time in both axes. Obtaining recurrence plots requires the

reconstruction of the underlying mathematical phase space of evolution of

the measured aeroelastic-response fluctuations.

The necessity to reconstruct the phase space of the measured aeroelastic

response (in general, any measured time series) arises because usually in a

physical experiment, one can measure only a few of the variables of the state

space vector. In the aeroleastic experiment carried out in this study, we

measure only the displacements along the pitch and plunge; measuring the

velocities along these directions is more difficult and expensive. In these situ-

ations, phase space reconstruction of the measured time signal helps visualize
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the system dynamics at various operating conditions. For instance, a limit

cycle would correspond to a closed loop around a fixed point in the recon-

structed phase space (Takens, 1985). Also known as delay-embedding, the

measured time series is converted into a set of delay vectors that have a one-

to-one correspondence with one of the state variables involved in the system

dynamics. We construct the vectors [y(t), y(t+τ), y(t+2τ), . . . , y(t+d−1)τ ]

from the measured response data y(t) such that these vectors in combination

provide the maximum information on the airfoil dynamics. Here ‘y’ refers

only to the plunge degree of freedom; the same can be carried out for pitch

response ‘α’. The elements of these vectors are the coordinates in the d-

dimensional phase space of evolution of the time signal. For instance, y(d) =

[y(ti), y(ti+ τ), y(ti+2τ), . . . , y(ti+d−1)τ ] is the point in the d-dimensional

phase space at time instant ti.

To accomplish an appropriate reconstruction, we need to obtain the op-

timum time lag, τopt, amongst the delay vectors and the least embedding

dimension, d0, for the phase space composed of these delay vectors such that

the dynamics is completely captured. The first minimum of the average

mutual information between the delay vectors is estimated as the optimum

delay τopt (Abarbanel et al., 1993). The average mutual information, I(τ),

of a signal y(t) is given by the expression

I(τ) =
N
∑

i=1

P (y(t), y(t+ τ)) log2

[

P (y(t), y(t+ τ))

P (y(t)P (y(t+ τ))

]

, (1)

where, P (·) denotes the probability of occurrence of an event, t is the mea-

surement time and τ is the time lag.

Further, so as to compute the average mutual information for various
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time lags τ , we first normalize the time signal y(t) between 0 and 1. Then

the data is sorted in bins, and the probability distributions y(t) and y(t+ τ)

are then obtained by normalizing the histograms on these bins. Additionally,

the joint probability distribution P (y(t), y(t + τ)) can also be obtained by

normalizing a two dimensional histogram obtained in a two dimensional bin

in y(t) and y(t+ τ). The average mutual information, which is a function of

the time delay between the data points of a time series, is an indicator of the

amount of information shared by two sets of data. Therefore, the minimum

would correspond to a set of vectors that can provide more information about

the system than either of the vectors considered in isolation.

In order to get a suitable embedding dimension d0, the technique de-

veloped by Cao (1997) is used. The methodology is an optimized version

of the False Nearest Neighbours (FNNS) method (Abarbanel et al., 1993)

and involves tracking the fraction of false neighbors in the phase space as

d0 is continuously changed. In the phase space, a false neighbor continu-

ously changes its relative position with respect to its neighboring points as

the value of d0 keeps increasing. Mathematically, one constructs a measure

a(i, d) to track the FNNS as,

a(i, d) =
||yi(d+ 1)− yn(i,d)(d+ 1)||

||yi(d)− yn(i,d)(d)||
, (2)

where, i = 1, 2, ..., (N−dτ) and n(i, d) is the index of the nearest neighbouring

point in the phase space to the point y. Here, || · || is the second norm and

represents the Euclidean distance between two points. The dependency on

the index i is removed by taking the average a(i, d) obtained at different
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values of i as

E(d) =
1

N − dτopt

n−dτ
∑

i=1

a(i, d). (3)

Note that E(d) depends only on the dimension d and τopt. The variation of

E(d) on increasing the dimension from d to d + 1 is determined by defining

E1(d) as

E1(d) =
E(d+ 1)

E(d)
. (4)

Once the value of d is greater than d0, the value of E1(d) stops changing

and d0 is selected to be the minimum embedding dimension for the chosen

time series. Quite often, it is difficult to distinguish a stochastic signal from

a deterministic signal by merely observing the variation of E1(d) for vari-

ous values of d. While E1(d) saturates beyond a certain value of d for a

deterministic signal, it always increases with increasing d for a stochastic

signal. Hence, to distinguish a deterministic signal from a stochastic one, an

additional measure E2(d) is defined (Cao, 1997; Nair et al., 2013) as

E2(d) =
E∗(d+ 1)

E∗(d)
, (5)

where,

E∗(d) =
1

N − dτopt

n−dτ
∑

i=1

|y(i+ dτopt)− y(n(i, d)) + dτopt|. (6)

Since for a stochastic signal, the future values are independent of past values,

E2(d) is independent of d and is equal to 1 for all values of d. Whereas, for a

deterministic signal E2(d) depends on d, there must be some values of d for

which E2(d) is not equal to 1.

The average mutual information and the measures to obtain embedding

dimension of the responses at various wind speeds are given in Fig. 5. We
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see the data at U = 4 is stochastic as E2(d) = 1 for all values of d. The

embedding dimension d0 of the phase space shows no significant variation

after d = 10 for all the signals. Thus, the optimum dimension was chosen

to be 10 and the embedding delay was estimated from the first minimum of

I(τ) (τopt = 62.5 ms in this case).
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Figure 5: The values of E1(d) and E2(d) for the measured data are shown at a) U = 4

m/s, c) U = 6 m/s and e) U = 7.2 m/s. All the three cases shows that E1(d) and E2(d)

saturates for d = 10. Similarly, the average mutual information for the three different wind

speeds are shown in b), d) and f). The optimum time delay for embedding was estimated

from the first minimum of average mutual information I.

Once the phase space is reconstructed, recurrence plots are constructed

by estimating the pairwise distances between points in the phase space. This
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creates a binary recurrence matrix Rij, defined as

Rij = Θ(ǫ− ‖ yi − yj ‖), i, j = 1, 2, ..., N − d0τopt, (7)

where, Θ is the Heaviside function and ǫ is the upper limit of the distance

between a pair of points in the phase space to consider them as ‘close’ or ‘re-

current’. The indices represent the various time instances when the distances

are computed. Being a symmetric matrix comprising of zeros and ones, the

recurrence matrix can be represented in a 2D form as a recurrence plot, as

the trajectories evolve with time. The ‘ones’ correspond to black points and

represent those time instants when the pairwise distance are less than the

threshold ǫ, while the ‘zeros’ in the recurrence plot are marked white and

correspond to those instants when the pairwise distances exceed ǫ. An im-

portant parameter in constructing a recurrence plot is ǫ. If ǫ is too small

then there might not be any recurrence points and hence nothing can be said

about the underlying dynamical system. On the contrary, if a large threshold

is chosen, then almost every point is selected to be in the neighbourhood of

each other (Marwan et al., 2007).

In constructing the recurrence plots, a two-pronged approach was fol-

lowed. For the purpose of visualization, the threshold ǫ was selected as a

relative measure that depends on the size of the attractor at that partic-

ular operating condition (in this case, the flow speed). This enables one

to understand the qualitative changes in the underlying dynamics in phase

space. On the other hand, in order to obtain quantifiable precursors across

different values of flow velocities, the threshold was held fixed at some suit-

able value. Fixing the threshold allows one to compare the values of the

various statistical measures obtained using recurrence quantification as the
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control parameter is varied. The fixed threshold value (say ǫ) was chosen

to be slightly higher than the size of the attractor obtained at the lowest

operational velocity. It should be mentioned that the sizes of the thresholds

are indicative of the Euclidean distances between points in the phase space

(
√
d0 | y |), and should not be confused with the amplitude levels of the

airfoil (|y|).
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Figure 6: Recurrence plots and the respective plunge response measurements acquired

during wind tunnel tests carried out for U = 4 m/s (top row), U = 6.6 m/s (middle row)

and U = 7.2 m/s (bottom row). The black patches in the intermittent response seen in (b)

corresponds to regions of low amplitude response fluctuations relative to chosen threshold.

The recurrence plot in (c) develops into clear diagonal lines at instability. Note that the

distance between the diagonal lines in (c) gives the time period of oscillation during LCO.
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The recurrence plots obtained for the measured aeroelastic plunge re-

sponse is shown in Fig. 6. Note that here the recurrence plot for the pitch

response is not shown for the sake of brevity; however the characteristic fea-

tures are observed to be similar. The data was under sampled to a frequency

Fs = 160 Hz. The data was under sampled to reduce the computation

involved in obtaining the recurrence plots. For U = 4 m/s, the response

consists of noisy, low-amplitude fluctuations and hence the recurrence plot

appears grainy; see Fig. 6a and Fig. 6d. Figure 6b shows the recurrence plot

for the intermittent signal that precedes instability, when U = 6.6 m/s. A

mixture of perforated black patches amidst white patches are seen. As men-

tioned earlier, the black patches correspond to the time spent by the system

in low amplitude chaotic fluctuations and the white patches correspond to

bursts of periodic oscillations. Since, the response comprises of high ampli-

tude bursts amidst an aperiodic and low amplitude regime, the recurrence

plot helps in identifying visually the presence of intermittency in the system.

The corresponding intermittent time response, in heave, is shown in Fig. 6e.

As the flow speed is further increased, the airfoil starts undergoing LCO.

The recurrence plot for this situation can be seen in Fig. 6c. Now, the

recurrence plot is observed to have a pattern of diagonal lines, indicating

high repeatability, or rather recurrence, in the response dynamics. Here, the

duration of signal was chosen to be only 5 seconds, so that the diagonal

lines are clearly visible. By measuring the distance between the diagonal

lines, the fundamental period of oscillation during aeroelastic instability can

be obtained. The corresponding time history of the signal is shown in Fig.

6f which is observed to constitute modulated limit cycle oscillations. The
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recurrence plots in Fig. 6 help in visually understanding the transition from

intermittency to instability in the aeroelastic system.

4.2. Statistical measures

Once the recurrence plot has been constructed, a number of statistical

measures can be obtained, by tracking the probability distribution of black

points (or white points) in such plots. These measures can serve as precursors

to an impending aeroelastic-flutter. Similar measures have been developed

in the context of obtaining precursors to combustion instability in Nair et al.

(2014). A decrease in the density of black points corresponds to a dip in

the time spent by the system in aperiodic states which is characterized by a

quantity τ0, defined as,

τ0 =
1

N1

∑N1

v=1 vY (v)
∑N1

v=1 Y (v)
. (8)

Here, N1 = N − d0τopt, Y (v) is the frequency distribution of the vertical

(horizontal) black lines of length v in the recurrence plot for a signal sampled

at a frequency Fs. Also, τ0 quantifies the duration for which a system remains

in a particular dynamical state; in the current problem this is the aperiodic

fluctuations. Therefore, it is expected that the quantity τ0 approaches zero

as the systems transforms itself into a LCO as seen in Figs 7b.

Another measure that can be constructed from the recurrence plots is the

Shannon entropy. The Shannon entropy of the signal can be obtained from

the recurrence plot using the expression

s = −
N1
∑

l=1

P (l) ln(P (l)), (9)
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Figure 7: Statistical measures constructed from recurrence quantification of the aeroelastic

response; a) variation of r.m.s of response as flow speed is changed; b) average passage

time spent by the response in aperiodic fluctuations; c) computed Shannon entropy of the

diagonal length distribution in recurrence plot. Clearly, the r.m.s value of the response

undergoes a significant rise only as we approach aeroelastic instability (past U = 6.5 m/s).

Statistical measures on the contrary start showing a decrease well in advance of flutter,

i.e., from the intermittent regime itself, a drop in the values of trapping time and Shannon

entropy is evident from b) and c).
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where, P (l) is the probability that a diagonal line has length l, and is given

by

P (l) =
Y (l)

∑N1

l=1 Y (l)
. (10)

Here, Y (l) is the frequency distribution of the vertical (horizontal) black

lines of length l in the recurrence plot. A gradual decrease in entropy implies

that the system is approaching a state of regularity or there is an emergence

of order from chaos. This is expected, since we are aware that recurrence

plots for a periodic signal consists of black, parallel and diagonal lines and

that the oscillations correspond to an ordered state. Hence, it is natural to

expect a drop in entropy as the system approaches instability; see Fig. 7c.

In Fig. 7a, the variation of r.m.s. of the measured response with rise in

wind speed is shown. Note that an appreciable change in the r.m.s. of the

response is observed much later at around 6.6 m/s - values at which the other

two measures have already stabilized. This implies that yrms changes much

closer to the LCO region and cannot be used as effectively as a precursor like

the other two measures. On the contrary, the precursors developed based

on recurrence quantification indicates the onset of flutter well ahead of the

instability regime. For instance, the value of τ0 is seen to decrease when

U = 4.5 m/s. Similarly, the Shannon entropy, s, decreases as U goes beyond

4.5 m/s. Clearly, these measures can foretell the change in dynamics of the

system well in advance.

4.3. Model independence

It must be reemphasized here that the precursors developed here are

model independent. A model free method to predict instabilities has distinct
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practical advantages over a model dependent approach. A primary difficulty

with model based approaches to predicting the stability boundary lies in de-

veloping an accurate mathematical model for the system. Any uncertainties

in developing the model propagate through the analysis and leads to predic-

tions of the stability boundaries, which are itself uncertain. Additionally, due

to the effect of ageing, the structural parameters usually degrade with time.

This leads to changing of the stability boundaries with time. Unfortunately,

mathematical models for ageing of structural components are not as well

developed and hence significant epistemic uncertainties are introduced into

the formulation when ageing effects are incorporated into the mathematical

model. In real life applications, it is expected that both these uncertainties

exist. For assessment of the stability boundaries using model dependent tech-

niques, therefore, require accurate identification of the system parameters of

the mathematical model. Hence, solving an inverse problem and carrying

out model updating is an essential step in model based approaches. This is

not only time consuming but is expensive as well, requiring significant in-

vestments in measurements as well as computations. On the other hand, the

precursors developed here requires only continuous measurements of the air-

foil response. In a generic sense, these measures only distinguish the passage

of dynamics from an irregular state to a periodic one through intermittency.

Therefore, such precursors can possibly be used as early warning signals to

an impending instability in a variety of turbulent flow systems encountering

periodic oscillations, without the need for developing mathematical models

for the aeroelastic system.
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5. Numerical Investigations

Though the advantage of the proposed precursors is their effectiveness

in predicting the onset of flutter instability even without the necessity of

mathematically modelling the system, questions persist on the accuracy of

the proposed framework in identifying the flutter boundary. An answer to

these questions can be obtained by carrying out a numerical analysis on an

equivalent mathematical model for the pitch-plunge system. This section

therefore focusses on carrying out investigations on a numerical pitch-plunge

model of an airfoil to demonstrate that the precursors developed in this paper

can indeed be used for predicting the onset of flutter instability.

The numerical investigations are carried out using a well known mathe-

matical model for a pitch-plunge oscillating airfoil, available in Fung (1955);

Lee and Jiang (1999). However, some modifications are in order as the con-

tribution of mass from the experimental set-up along the pitch and plunge

modes are different. The mass of the translation carriage do not take part

along the pitching degree of freedom and this requires a suitable modifica-

tion in the equations of motion. The total mass of the system is divided into

three parts: m1 is the additional mass in plunge corresponding to the frame,

m2 is the mass the pitching mechanism and m3 is the mass of the airfoil

having its centre of mass at a distance bxα behind the elastic axis, where xα

is the nondimensional distance from the elastic axis to the airfoil centre of

mass. These components are shown in the schematic diagram of the airfoil

presented in Fig. 8.

The total moving mass in plunge is my = m1+m2+m3. The moment of

inertia about elastic axis is Iα is computed based on the total moving mass
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Figure 8: Schematic of airfoil section model

in pitch given by mα = m2 + m3. Following the formulation in Marsden

and Price (2007), it can be shown that the equations of motion can now be

expressed as

myÿ +m3bxαα̈ + kyy + L = 0, (11)

m3bxαÿ + Iαα̈ + kαα− L(0.5 + ah)b = 0. (12)

Here, for steady flow conditions,

L = 2πρU2bα, (13)

and for quasi-steady flow conditions,

L = 2πρbU2
(

α +
ẏ

U
+ (0.5− ah)

bα̇

U

)

. (14)

Note that in accordance with the thin airfoil theory, the lift slope is taken

to be 2π. Using the notation for the uncoupled natural frequencies as ωy =

ky/my and ωα = kα/Iα, and a nondimensional frequency parameter p = νb/U

with ν as the flutter frequency, an eigenvalue form can be obtained. The other
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nondimensional parameters are (see the Nomenclature for description): r2 =

Iα/mαb
2, ̟ = ωy/ωα, µ = my/πρb

2 and V = U/bωα, where y = ȳ exp(νt)

and α = ᾱ exp(νt). The eigenvalue problem for the steady flow conditions

can be expressed as




p2 + ̟2

V 2

m3

my

xαp
2 + 2

µ

m3

my

xαp
2 mα

my

r2p2 + mα

my

r2

V 2 − 2
µ
(ah + 0.5)











ȳ

b

ᾱ







=







0

0







. (15)

The corresponding eigenvalue problem for the quasi-steady flow conditions

is expressed as

[A]







ȳ

b

ᾱ







=







0

0







. (16)

where the matrix [A] is a 2× 2 matrix of the form





p2 + 2p
µ
+ ̟2

V 2

m3

my

xαp
2 + 2p

µ
(0.5− ah) +

2
µ

m3

my

xαp
2 − 2p

µ
(ah + 0.5) mα

my

r2p2 − 2p
µ
(ah + 0.5)(0.5− ah) +

mα

my

r2

V 2 − 2
µ
(ah + 0.5)



 .

(17)

The eigenvalues obtained from Eqs.(15-16) typically constitute a complex

conjugate pair of roots of the form

p1 = Γ1 ± iΩ1,

p2 = Γ2 ± iΩ2. (18)

The behaviour of these complex roots with wind speed (U) can be used to

verify the onset of flutter instability (Dowell et al., 1995). Figure 9 shows

the variation of the real and imaginary components of these eigenvalues, for

both the steady and the quasi-steady cases. In steady flow condition, the

onset of flutter is identified by the coalescence of the imaginary components

of the eigenvalues (dashed lines corresponding to the imaginary components
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Figure 9: Variation of real (modal damping) and imaginary parts (modal frequency) of

solution of Eqs. 15 and 16 with airspeed. The dashed lines correspond to steady aerody-

namics and the solid ones correspond to quasi steady aerodynamics.

of the eigenvalues) and is seen to occur at U = 7.9 m/s. When the flow is

quasi-steady, the onset of flutter is characterized as when the modal damping,

denoted by the real part of the eigenvalues, changes from zero to a positive

value indicating divergence and is seen to occur at U = 7.6 m/s; see the full

line corresponding to the real components of the eigenvalues. More details on

the theory behind this is available in Dowell et al. (1995) and is not repeated

here.

In the case of unsteady aerodynamic modelling, the loads are expressed

in terms of the following integro-differential form (Fung, 1955),

L(t) = 2πρbU2[α(0) +
ẏ(0)

U
+

b

U
(0.5− ah)α̇(0)]φ(t)

+2πρbU2

∫ t

0

φ(t− t0)[α̇(t) +
ÿ(t)

U
+

b

U
(0.5− ah)α̈(t)]dt0. (19)

The time function φ(τ) is the Wagner’s function which can be approximated

as (Jones, 1958)

φ(τ) = 1− 0.165 exp(−0.0455τ)− 0.335 exp(−0.3τ). (20)
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The integro-differential equations are numerically integrated following the

procedure adopted in Lee and Jiang (1999). From the bifurcation diagram

obtained numerically and shown in Fig. 10, it can be seen that the onset of

LCO occurs at U = 7.5 m/s via a supercritical Hopf bifurcation. The physical
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Figure 10: Bifurcation diagram of the response as a function of U .

parameters estimated from the experimental set-up were given in Table 1;

the corresponding nondimensional values used here for the numerical analysis

are listed in Table 2. Note that the onset of LCO observed in the experiments

was approximately U = 7.2 m/s. However, as has been mentioned earlier in

Section 3, the flow in the wind tunnel was not uniform but was accompanied

by fluctuations.

So far in the numerical calculations, the flow has been assumed to be

r µ xα ζα ζy ̟

0.707 660 0.29 0.03 0.05 0.999

Table 2: Non-dimensional parameters of the experimental setup
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uniform and without any fluctuations. In such sterile conditions, the in-

termittent behaviour that has been observed in the experiments cannot be

seen. To numerically investigate intermittency in the presence of fluctua-

tions, a simple canonical model for the flow fluctuations is assumed. The

uniform flow is superimposed with a sinusoidal component whose frequency

of oscillation is assumed to have variations with time about a dominant fre-

quency. This is a simple artifice to capture the disturbed flow-field in terms

of a dominant frequency with perturbations in the absence of a precise quan-

tification of the actual fluctuations using sophisticated hardwares like LDV

or PIV. Thus, the non-dimensional flow speed V is now taken as

V =
Um

bωα

(1 + a sin(ωrt)), (21)

where, Um is the dimensional mean wind speed in m/s, a indicates the am-

plitude of the fluctuating component and is taken to be of O(1) and ωr is

the frequency of the sinusoid, adjusted such that, ωr = ω0 + κR. Here, κ

is a constant of O(ω0) and R is a uniformly distributed random variable in

[0, 1] (randomly varies in time). This model is adopted such that random

perturbations are added in time to a dominant frequency component in the

assumed sinusoidal form. It must be stressed here that this simplistic model

cannot represent the secondary structures and is not an actual representation

of the flow-field in the wind tunnel.

The time histories of the plunge response non-dimensionalized by semi-

chord, for various wind speeds are obtained by numerical integration and are

shown in Fig. 11. Here, only a few representative responses are shown for the

sake of brevity. As Um is gradually increased, sporadic bursts are observed;

see Fig. 11(a)-(c). This intermittency behaviour is qualitatively similar to
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the observations from wind tunnel experiments. Finally, well developed LCO

are obtained on further increasing Um; see Fig. 11(d).
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Figure 11: Non-dimensionalized plunge response from numerical model; a) Um = 4 m/s,

b) Um = 5.2 m/s, c) Um = 6 m/s and d)Um = 7.2 m/s.

To check the robustness of the precursors proposed in this paper, these

synthetically generated time histories are next used to forecast an impending

aeroelastic flutter using the proposed recurrence quantification methodology.

The optimum embedding dimension (d0) for the numerical data was com-

puted to be 4 and the embedding delay (τopt) was chosen to be 149 ms.

Figures 12(b) and (c) show the variations of trapping time and Shannon

entropy with mean wind speed Um. The variation of the response r.m.s.

is plotted in Figure 12(a). Note that the precursors start decreasing from

Um = 4.5 m/s much ahead of the onset of LCOs, obtained at 7.5 m/s in

the sterile conditions. Hence they can provide an effective early warning

framework. The numerical investigations presented in this section therefore
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Figure 12: Statistical measures constructed from recurrence quantification of the aeroe-

lastic response obtained numerically; a) variation of r.m.s of response as flow speed is

changed. b) average passage time spent by the response in aperiodic fluctuations; c)

computed Shannon entropy of the diagonal length distribution in recurrence plot.

provides a qualitative validation to the observations obtained from the wind

tunnel experiments. Importantly, the numerical investigations confirm that

the precursors proposed in this study are effective in providing an early warn-
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ing to the onset of aero-elastic flutter in the presence of flows with fluctuating

components. The necessity for the flow to have fluctuations is not unrealistic

as in field conditions, the flow will not be sterile due to the interactions with

the structure and its various components.

However, the numerical gust model is artificial (as gust quantification is

not part of this work) and is only considered to bring out the intermittency

in the numerical pitch-plunge model. The objective of this numerical exercise

is to establish a qualitative similarity to the experimental observations. This

artificial model does not attempt to mimic the actual turbulent condition in

the tunnel. On the other hand, quantifying the turbulent wind condition in

the tunnel and estimating its COV would be very interesting and provide

a realistic measure of the turbulent intensity. This can be taken up in the

future.

6. Concluding Remarks

Based on the studies carried out to investigate the intermittent bursts in

the aeroelastic response, the following conclusions emerge:

1. The transitions in response from an equilibrium state to aeroelastic

flutter in an airfoil under turbulent flow environment is seen to be pre-

saged by an intermittent regime composed of bursts of high amplitude

periodic oscillations amidst regions of aperiodic, low-amplitude fluctu-

ations. This gives an altogether different picture from what one would

expect from a mean-field description of the phenomenon, wherein the

transition happens from a fixed point to a limit cycle via a Hopf bifurca-

tion. To the best of the authors’ knowledge, though such intermittency
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behaviour has been observed in aeroelastic literature, they have not

been studied.

2. The intermittency observed in the response of aeroelastic systems can

be used to develop effective measures that can forewarn of impending

flutter based on the principles of recurrence quantification. These mea-

sures can be useful to the community in developing effective control

measures to prevent the system transgressing to the LCO regime and

experiencing large amplitude sustained oscillations. Though extensive

literature is available on studies on nonlinear aeroelastic responses, at

present there appears to be no reliable measures to pre-determine the

onset of instability in airfoils subjected to turbulent flow.

3. The precursor measures described in this paper are observed to detect

and forewarn the onset of an oscillatory regime based on measurements

taken from the pre-flutter regime. These measures are based on quan-

tifying the intermittency in measured signals, and are effective in a

regime which is still some way off from the flutter point. In comparison,

existing methods that are available in the literature which forewarn of

an impending instability are based on monitoring of structural param-

eters (like damping) or features of the flow parameters (like dynamic

pressure) which change appreciably only in the immediate vicinity of

flutter. Hence, these methods fall under a different class of tools com-

plementary to what is proposed here. The method proposed here warns

the operator that oscillations are about to set in for further variations

in an operating parameter. Having gained this knowledge, the deci-

sion lies with the operator whether to avoid the operating conditions
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cross over to the regimes of limit cycle operation. Hence, based on the

requirement of the user, an appropriate safety margin could be drawn

from the developed precursors in the intermittency regime.

4. The novelty of the developed precursors lies in its complete model in-

dependence and relies only on measurements. Hence, one need not

account for modelling uncertainty and model parameter degradation

due to ageing or wear and tear. Importantly, the accuracy of model

based approaches lie in accurate identification of the system parame-

ters. This implies the need for the solution of an inverse problem at

periodic intervals where the system parameters (which could change

with time) are identified from measurement data. For large ordered

systems, especially those with nonlinearities, this is not a trivial task.

Thus the proposed model free approach eliminates the necessity for

system identification and the effects of ageing by directly using the

measurement data.

In closing, it needs to be reiterated that the present experimental set-up

and the tunnel running conditions contributed to the turbulence needed to

generate the intermittent bursts observed in the presence study. The pres-

ence of turbulence is of significance, since realistic wind flows are turbulent

in nature and a mean flow depiction may be inadequate to carry out a sta-

bility analysis under realistic conditions. More studies to gain insights into

the behaviour of aeroelastic systems in fluctuating flows is currently being

pursued in the group.
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