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a b s t r a c t

We study the problem of matching applicants to jobs under one-sided preferences; that
is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly
involving ties. A matching M is said to be more popular than T if the applicants that prefer
M to T outnumber those that prefer T to M . A matching is said to be popular if there is
no matching more popular than it. Equivalently, a matching M is popular if φ(M, T ) ≥
φ(T ,M) for all matchings T , where φ(X, Y ) is the number of applicants that prefer X to Y .

Previously studied solution concepts based on the popularity criterion are either not
guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute
(e.g., least unpopular matchings). This paper addresses this issue by considering mixed
matchings. A mixed matching is simply a probability distribution over matchings in the
input graph. The function φ that compares two matchings generalizes in a natural manner
to mixed matchings by taking expectation. A mixed matching P is popular if φ(P,Q ) ≥
φ(Q , P) for all mixed matchings Q .

We show that popular mixed matchings always exist and we design polynomial time
algorithms for finding them. Then we study their efficiency and give tight bounds on the
price of anarchy and price of stability of the popular matching problem.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We study the problem of matching a set of applicants A to a set of jobs J under one-sided preferences. More formally,
the input consists of a bipartite graph G = (A, J, E) and a rank function r : E → Z that captures applicant preferences over
the jobs. Given two jobs i and j in J, an applicant a in A is said to prefer i to j if r(a, i) < r(a, j); similarly, the applicant is
indifferent between i and j if r(a, i) = r(a, j).

For a given applicant a inA, a’s preference over jobs extends in a straightforwardmanner tomatchings: Givenmatchings
M and T , we say that a prefers matchingM to T if a prefersM(a) to T (a), or if a is matched inM but not in T . Let φ(M, T ) be
the total number of applicants that preferM to T :

φ(M, T ) = |{a ∈ A : a prefersM to T }| . (1)

We say that M is more popular than T and write M ≻ T , if φ(M, T ) > φ(T ,M). The matching M is popular if there is no
matching more popular thanM .

Definition 1. A matchingM is popular if φ(M, T ) ≥ φ(T ,M) for every matching T .

When dealing with a set of independent agents, it is always desirable that the solution concept used is stable. Popular
matchings have this property in the sense that an applicant majority vote cannot force a migration to another matching.
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Thus a popular matching seems a stable and desirable answer to the question of how to assign applicants to jobs bearing
their preferences in mind. However, popular matchings do not provide a complete answer since there are instances that do
not admit any popular matching [9]. Consider the instance A = {a1, a2, a3}, J = {j1, j2, j3} where all applicants rank the
jobs in the same way, say j1 is better than j2, which in turn is better than j3.

a1 j1 j2 j3

a2 j1 j2 j3

a3 j1 j2 j3

The following three matchings M1 = {(a1, j1), (a2, j2), (a3, j3)}, M2 = {(a2, j1), (a3, j2), (a1, j3)}, and M3 = {(a3, j1),
(a1, j2), (a2, j3)} demonstrate that the more-popular-than relation need not be acyclic since M1 ≺ M2 ≺ M3 ≺ M1. In
fact, it is easy to see that this instance admits no popular matching. There are, however, efficient algorithms for determining
if a given instance admits a popular matching and computing such a matching provided one exists [3].

In an attempt to deal with the issue that not every instance admits a popular matching, McCutchen [17] proposed two
measures that captures how unpopular a matching is. Let ∆(M, T ) be the difference between the number of applicants who
prefer T and the number of applicants who preferM , that is,

∆(M, T ) = φ(T ,M)− φ(M, T ). (2)

Let δ(M, T ) be the ratio of number of applicants who prefer T to the number of applicants who preferM , that is,

δ(M, T ) = φ(T ,M)

φ(M, T )
. (3)

The unpopularity margin of M is defined as maxT ∆(M, T ) and the unpopularity factor of M is defined as maxT δ(M, T ).
McCutchen showed that computing a matchingM minimizing the unpopularity margin or unpopularity factor is NP-hard.

Hence, we are faced with the unpleasant prospect of choosing between a solution concept that can be computed
efficiently but may not exist, or one that always exists but cannot be computed efficiently. The main contribution of our
paper is to introduce a new solution concept based on the popularity criterion that has the best characteristics of previous
work. Namely, it is guaranteed to exist and can be computed efficiently.

Mixed matchings. Motivated by the notions of pure and mixed strategies from Game Theory we propose to study popular

mixed matchings. A mixed matching P is a set {(M1, p1), . . . , (Mk, pk)}, where
∑k

i=1 pi = 1 and for each i = 1, . . . , k, Mi

is a matching in G and pi ≥ 0. Thus a mixed matching is simply a probability distribution over matchings in G and a pure
matchingM can be thought of as the mixed matching {(M, 1)}.

The function φ(M, T ) that allowed us to compare two pure matchings M and T generalizes to mixed matchings in a
natural way. For mixed matchings P = {(M1, p1), . . . , (Mk, pk)} and Q = {(T1, q1), . . . , (Tl, ql)} we let φ(P,Q ) be the
expected number of applicants that prefer M to T where M and T are drawn from the probability distributions P and Q

respectively; in other words,

φ(P,Q ) =
k−

i=1

l−

j=1
pi qj φ(Mi, Tj). (4)

We are now ready to give the definition of popular mixed matching.

Definition 2. A mixed matching P is popular if φ(P,Q ) ≥ φ(Q , P) for all mixed matchings Q .

For example, consider the instance above on jobs {j1, j2, j3} and applicants {a1, a2, a3}with identical preference lists that
admits no popular (pure) matching. Consider the mixed matching

P = {(M1, 1/3), (M2, 1/3), (M3, 1/3)}.
It is easy to see that we have φ(P, T ) ≥ φ(T , P) for all matchings T in this graph, which in turn implies that φ(P,Q ) ≥
φ(Q , P) for all mixed matchings Q in this graph. Thus the mixed matching P is popular in the instance above.

The rest of the paper is organized as follows. In Section 2 we prove that every instance admits a popular mixed matching
by establishing a connection with a certain exponentially-large zero-sum game. In Section 3 we give efficient algorithms for
solving this large game, which translate into efficient algorithms for computing a popular mixed matching. Our technique
applies to a larger class of games and may be of independent interest. In Section 4, we give tight bounds on the efficiency
of mixed popular matchings using the standard measures of price of anarchy and price of stability. Finally, in Section 5 we
show that our approach can be modified to handle several generalizations of the basic popular matching problem.

1.1. Related work

Popularmatchingswere first studied by Gardenfors [9] in the context of the stablemarriage problemwhere each side has
preferences over members of the other side. When only one side has preferences, Abraham et al. [3] gave polynomial time
algorithms to find a popular matching, or to report none exists. Their algorithm takes O(m + n) time when the preference
lists are strictly ordered and when the preference lists contain ties, they gave an O(m

√
n) time algorithm, wherem is in the

number of edges and n is the number of vertices. Subsequently, Mahdian [13] showed that a popular matching exists with
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high probability, when preference lists are randomly constructed, and the number of jobs is a factor of α ≈ 1.42 larger than

the number of applicants. In fact, he showed that a phase transition occurs at α; namely, if the ratio |J||A| is smaller than α

then with high probability popular matchings do not exist.
Manlove and Sng [16] generalized the algorithms of [3] to the casewhere each job has an associated capacity, the number

of applicants that it can accommodate. Mestre [18] designed an efficient algorithm for the weighted popular matching
problem, where each applicant is assigned a priority or weight and the definition of popularity takes into account these
priorities.

McCutchen [17] proposed two quantities to measure the unpopularity of a matching and showed polynomial time
algorithms to compute these measures for any fixed matching. He also showed that the problem of computing a matching
that minimizes either of these measures is NP-hard. Huang et al. [11] gave algorithms to compute matchings with bounded
values of these unpopularity measures in certain graphs.

The topic of mixed matchings has been studied extensively in the Economics literature; we are aware of [12,5,4,21,
2,1,14,15]. This line of research is concerned with designing mechanisms that have a number of properties, such as envy-
free, Pareto optimal, and strategy-proof. These properties can be defined in slightly different ways—the interested reader
is referred to the article by Katta et al. [12] for an excellent overview of the various definitions commonly used. Roughly
speaking, a mixed matching is envy-free if no applicant prefers to get other applicant’s allocation to his own; it is Pareto
optimal if it is not possible to improve someone’s allocation without hurting someone else; and the mechanism is strategy
proof if the applicants do not have an incentive to lie about their true preferences. Depending on how one defines an
applicant’s preference over mixed matchings it may [12,5] or may not [21] be possible to achieve simultaneously all these
properties. Note that popular matchings take an orthogonal approach to this, placing emphasis not on individual applicants
but on their aggregate or majority.

2. Existence of popular mixed matchings

Recall that our input is a bipartite graph G = (A ∪ J, E) with n = |A| + |J| vertices and m = |E| edges, where each
applicant a ∈ A has a preference list (can include ties) over its neighboring jobs. For ease of exposition we will introduce
a unique last-resort job ℓa for every a ∈ A, which we append at the end of a’s preference list. This modification does not
change the fact of whether the instance has a popular (mixed) matching or not, but it has the benefit that we can restrict
our attention to applicant-complete assignments.

The instance on 3 applicants and 3 jobs described in the previous section had a popular mixed matching P that assigns
each job ji to each of the applicants a1, a2, a3 with a probability of 1/3. This might lead one to conclude that partitioning a
job ‘‘equally’’ among applicants who rank this job as a top job (similarly, as a second job) yields a popular mixed matching.
The following instance shows that this is however not the case. Let A = {a1, a2, b1, b2, x} and J = {j1, j2, i1, i2}, along with
the last resort jobs. The following table describes the preference lists of applicants.

a1 j1 j2 ℓa1

a2 j1 j2 ℓa2

b1 i1 i2 ℓb1

b2 i1 i2 ℓb2

x j1 i2 ℓx

Applicants a1 and a2 have identical preference lists: their first choice is j1 and their second choice is j2. Applicants b1 and
b2 have identical preference lists: their first choice is i1 and their second choice is i2. Applicant x has its first choice as j1 and
second choice as i2. Using the characterization given in [3] for when a given instance admits popular (pure) matchings,2 it
is easy to see that this instance admits no popular pure matching.

An equal partition would divide j1 with a share of 1/3 to each of a1, a2 and x, and divide i1 with a share of 1/2 to each
of b1 and b2. Then, it would proceed to divide j2 with a share of 1/2 to a1 and a2, and divide i2 with a share of 1/3 to each
of b1, b2 and x. Finally, a1, a2, b1, b2 get 1/6th share of their respective last resort jobs while x gets a 1/3rd share of ℓx. As
we will see shortly in Section 2, we can construct an equivalent allocation as a mixed matching {(Mi, pi) : 1 ≤ i ≤ k}. This
allocation, however, is not popular as the matching M0 = {(a1, j1), (a2, j2), (b1, i1), (x, i2), (b2, ℓb2)} is more popular than
it. The justification of this claim involves some tedious calculations, so it appears in Appendix.

On the other hand consider the matching P = {(M0, 1/2), (M1, 1/2)} where M0 is the above matching and M1 =
{(a1, j2), (a2, j1), (x, i2), (b1, ℓb1), (b2, i1)}. As we shall prove in Section 3, P is indeed popular and therefore the instance
admits a popular mixed matching.

Theorem 1. Every instance admits a popular mixed matching.

2 For strict preference lists, there has to be an A-perfect matching in the subgraph where each applicant is adjacent to its top choice job and its most
preferred job that is not top choice for any applicant.
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Proof. Wewillmodel our problemas a two-person zero-sumgame. The rows and columns of the payoffmatrix S are indexed
by all the possible matchings M1, . . . ,MN in G. The (i, j)-th entry of the matrix S is ∆(Mi,Mj). Recall that ∆(Mi,Mj) is the
difference between the number of applicants who preferMj toMi and the number of applicants who preferMi toMj. Amixed
strategy of the row player is a probability distribution π = ⟨p1, . . . , pN⟩ over the rows of S; similarly, a mixed strategy of
the column player is a probability distribution σ = ⟨q1, . . . , qN⟩ over the columns of S.

The row player seeks a strategy π so that maxσ ∆(π, σ ) is minimized, where ∆(π, σ ) = ∑N

i=1
∑N

j pi qj ∆(Mi,Mj).
Notice that π and σ can also be regarded as mixed matchings, in which case we can think of the row player as trying to find
a mixed matching with least expected unpopularity margin.

It follows that the given instance admits a popular mixed matching if and only if

min
π

max
σ

N−

i=1

N−

j=1
pi qj∆(Mi,Mj) ≤ 0.

It is easy to see that

min
π

max
σ

N−

i=1

N−

j=1
pi qj∆(Mi,Mj) ≥ min

π

N−

i,j=1
pi pj ∆(Mi,Mj) = 0 (5)

where the inequality follows from taking σ = π and the equality from the fact that ∆(Mi,Mj) = −∆(Mj,Mi) for all i and j.
Thus minπ maxσ ∆(π, σ ) must be 0 if the instance admits a popular mixed matching.

The column player seeks a strategy σ so that minπ ∆(π, σ ) is maximized. By von Neumann’s Minimax Theorem [19] we
have

min
π

max
σ

N−

i,j=1
pi qj ∆(Mi,Mj) = max

σ
min

π

N−

i,j=1
pi qj ∆(Mi,Mj). (6)

We can bound the right-hand side of (6) analogous to (5) to get

max
σ

min
π

N−

i,j=1
pi qj ∆(Mi,Mj) ≤ max

σ

N−

i,j=1
qi qj ∆(Mi,Mj) = 0. (7)

Combining Eqs. (5), (6) and (7) we get minπ maxσ ∆(π, σ ) = 0. Therefore every instance admits a popular mixed
matching. �

3. Finding a popular mixed matching

The proof of Theorem 1 implicitly provides an algorithm for computing a popular mixedmatching. Namely, given a zero-
sum game, its value and mixed strategies attaining that value can be computed using linear programming. Here we need to

determine p1, . . . , pN adding up to 1, such that
∑N

i=1 pi ∆(Mi, T ) ≤ 0 for all pure matchings T and pi ≥ 0 for all i.
Unfortunately, the linear program (shown below) is too large to be solved efficiently.

minimize τ (LP1)
subject to

∑
i pi ∆(Mi, T ) ≤ τ ∀matchings T∑

i pi = 1

pi ≥ 0 ∀ i = 1, . . . ,N.

Because the number of variables and the number of constraints in (LP1) is typically exponential, the ellipsoid algorithm
cannot be applied directly. In order to do so, we must first reduce the number of variables. This can be achieved by working
with fractional matchings instead of mixed matchings.

Let X be the set of fractional A-complete matchings in G, that is,

X =





x⃗ ∈ R
m
+



−

e∈E(a)

x⃗(e) = 1 for a ∈ A and

−

e∈E(j)

x⃗(e) ≤ 1 for j ∈ J.





(8)

where E(u) is the set of edges incident on vertex u.
Let X be the set of extreme points of X. Note that because X is integral we have X = X ∩ {0, 1}m, which corresponds

to the set of integral A-complete matchings in G.
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Clearly, every mixed matching P = ⟨p1, . . . , pN⟩ induces a fractional matching x⃗ = ∑
Mi

pi IMi
, where IMi

∈ {0, 1}m is

the characteristic vector of the matchingMi. In turn, every x⃗ ∈ X can be expressed as a convex combination of the extreme
points of X. This implies a many-to-one mapping between mixed and fractional matchings. Carathéodory’s Theorem [6]
states that if a vector x⃗ in Rm lies in the convex hull of the set X, then x⃗ can be written as the convex combination of at most
m+ 1 points in X. Therefore, given a fractional matching, we can always get an equivalent mixed matching whose support
is no larger thanm+ 1.

The plan, therefore, is to replace the mixed matching in (LP1) with a fractional matching. In order to do so, we need to
define the function ∆(·) for fractional matchings x⃗1, x⃗2 ∈ X:

∆(x⃗1, x⃗2) =
−

a∈A

−

(a,i)∈E(a)
(a,j)∈E(a)

x⃗1(a, i) x⃗2(a, j) votea(i, j) (9)

where the term votea(i, j) captures a’s willingness to switch from i to j:

votea(i, j) =





−1 if a prefers i over j,

1 if a prefers j over i,

0 if a is indifferent between i and j.

(10)

Lemma 1. Let P and Q be two mixed matchings and let x⃗1 and x⃗2 be their corresponding fractional matchings. Then ∆(P,Q ) =
∆(x⃗1, x⃗2).

Proof. P and Q are probability distributions ⟨p1, . . . , pN⟩ and ⟨q1, . . . , qN⟩ respectively, over matchingsM1, . . . ,MN .

∆(P,Q ) =
N−

g,h=1
pg qh ∆(Mg , Mh)

=
N−

g,h=1
pg qh

−

a∈A
votea(Mg(a),Mh(a))

=
N−

g,h=1
pg qh

−

a∈A

−

(a,i)∈E(a)
(a,j)∈E(a)

IMg (a, i) IMh
(a, j) votea(i, j)

=
−

a∈A

−

(a,i)∈E(a)
(a,j)∈E(a)

N−

g,h=1
pg qh IMg (a, i) IMh

(a, j) votea(i, j).

Regrouping the terms in the innermost sum we get

∆(P,Q ) =
−

a∈A

−

(a,i)∈E(a)
(a,j)∈E(a)

 N−

g=1
pg IMg (a, i)

  N−

h=1
qh IMh

(a, j)


votea(i, j)

=
−

a∈A

−

(a,i)∈E(a)
(a,j)∈E(a)

x⃗1(a, i) x⃗2(a, j) votea(i, j)

= ∆(x⃗1, x⃗2). �

It should be clear now that the following linear program is equivalent to (LP1).

minimize τ (LP2)
subject to

∆(x⃗, T ) ≤ τ ∀matchings T

x⃗ ∈ X

Unlike (LP1), the linear program (LP2) has onlym+1 variables: τ and the coordinates of x⃗. This newprogramcan be solved
in polynomial time using the ellipsoid method. To prove this we only need to design a polynomial-time separation oracle,
which given an infeasible solution (x⃗, τ ) returns a violated constraint of (LP2). It is trivial how to test x⃗ ∈ X efficiently;
so we only need to test whether there is a matching T such that ∆(x⃗, T ) > τ . This is done by computing the unpopularity

margin of x⃗.

Definition 3. The unpopularity margin of x⃗ ∈ X is maxT ∆(x⃗, T ).



2684 T. Kavitha et al. / Theoretical Computer Science 412 (2011) 2679–2690

Fig. 1. Computing the unpopularity margin of the fractional matching x⃗(ak, j1) = x⃗(ak, j2) = 0.5 for k = 1, 2; x⃗(x, i2) = 1; and x⃗(bk, i1) = x⃗(bk, ℓbk ) = 0.5
for k = 1, 2. The bipartite graph G is shown on the left and weights wx⃗ are given on the right.

As mentioned earlier, McCutchen [17] studied the above measure for pure matchings. He gave a polynomial time
algorithm based on min-cost flows to measure the unpopularity margin maxT ∆(M, T ) of a given matchingM . We describe
his algorithm below in the equivalent language of the maximum weight assignment problem and then show that it can be
used to compute the unpopularity margin of a fractional matching also.

McCutchen’s algorithm to determine the unpopularity margin of a matching T . Given a matching M we want to compute its
unpopularity margin. The idea is to define a weight function wM on the edges of G such that for any matching T , the weight
of T under wM equals ∆(M, T ). Computing the unpopularity margin of M then reduces to solving the maximum weight
assignment problem (G, wM), which can be done in O(n (m+n log n)) time [8].

The quantity ∆(M, T ) can be expressed as a sum of individual votes
∑

a∈A votea(T (a),M(a)). Therefore, setting
wM(a, j) = votea(j,M(a)) achieves the desired effect that ∆(M, T ) = wM(T ).

McCutchen’s method readily generalizes to fractional matchings. Let x⃗ be a fractional matching. We define the weight of
an edge (a, j) ∈ E as

wx⃗(a, j) =
−

(a,i)∈E(a)

x⃗(a, i) votea(i, j). (11)

It is straightforward to verify that indeed ∆(x⃗, T ) = wx⃗(T ). Computing the unpopularity margin of a fractional matching
then reduces to computing a maximum weight assignment.

It is instructive to look at a concrete example to see the above reduction in action. Fig. 1 describes the reduction
for the instance described at the beginning of Section 2 and the fractional matching corresponding to the mixed matching
P = {(M0, 1/2), (M1, 1/2)} where M0 = {(a1, j1), (a2, j2), (x, i2), (b1, i1), (b2, ℓb2)} and M1 = {(a1, j2), (a2, j1),
(x, i2), (b1, ℓb1), (b2, i1)}. It is easy to see that a maximum weight applicant-complete matching in this graph has weight
0. This proves that the mixed matching P is indeed popular.

The procedure for computing the unpopularity margin of a fractional matching provides the necessary oracle to apply
the ellipsoid method to solve (LP2). Therefore we can find a popular mixed matching in polynomial time. While this settles
the complexity of our problem, the scheme presented is not truly efficient as the ellipsoid algorithm is notoriously slow in
practice. We will address this issue now by giving an alternative linear programming formulation whose size is only linear
in the size of G.

Theorem 2. There exists a linear programming formulation for finding a popular fractional matching with m+ n variables and

constraints.

Proof. Let us start by rewriting (LP2) as a mathematical program

min
x⃗∈X

max
z⃗∈X

wx⃗(z⃗). (12)

Because X is integral, the mathematical program (12) is in fact equivalent to the following program

min
x⃗∈X

max
y⃗∈X

wx⃗(y⃗). (13)

The main obstacle that we must overcome in order to formulate (13) as a pure linear program is the non-linear
objective wx⃗(y⃗). We can overcome this hurdle with the aid of linear programming duality. Consider the primal program
max {wx⃗(y⃗) : y⃗ ∈ X} and let Dx⃗ denote the feasible region of its dual:

Dx⃗ =

α⃗ ∈ R

|A|, β⃗ ∈ R
|J|
+ : α⃗(a)+ β⃗(j) ≥ wx⃗(a, j) for each (a, j) ∈ E


.

By the Strong Duality Theorem we get

max
y⃗∈X

wx⃗(y⃗) = min
(α⃗,β⃗)∈Dx⃗

−

a∈A
α⃗(a)+

−

j∈J
β⃗(j).
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Therefore, (13) is equivalent to the following succinct linear program

minimize
−

a∈A
α⃗(a)+

−

j∈J
β⃗(j) (LP3)

subject to

α⃗(a)+ β⃗(j) ≥∑
(a,i)∈E(a) x⃗(a, i) votea(i, j) ∀ (a, j) ∈ E

−

(a,j)∈E(a)

x⃗(a, j) = 1 ∀ a ∈ A

−

(a,j)∈E(j)

x⃗(a, j) ≤ 1 ∀ j ∈ J

x⃗ ∈ R
m
+

β⃗ ∈ R
|J|
+

α⃗ ∈ R
|A|

Recall that (13) in turn is equivalent to (LP1). The new linear program has onlym+n variables andm+n constraints. �

4. Efficiency of popular mixed matchings

Now that we have settled the existence and computability of popular mixed matchings, the next logical step is to study
how efficient this solution concept is. Recall that we inserted a last resort job for each applicant. Perhaps the most natural
measure of efficiency one can define is the number of applicants that are assigned a real job.

Let w be a weight function E → {0, 1} defined as

w(a, j) =


0 if j = ℓ(a)

1 otherwise

then the expected size of a fractional matching x⃗ is defined as

w(x⃗) =
−

(a,j)∈E
w(a, j) x⃗(a, j).

Notice that we can optimize this quantity by using a modified version of (LP3): Simply add the constraint
∑

a∈A α⃗(a)+∑
j∈J β⃗(j) = 0 and change the objective to maximize w(x⃗).

Of course, when we restrict our attention to popular matchings we may be ignoring larger matchings. The question we
would like to investigate is how do popular mixedmatchings compare to a maximum size matching that is not restricted by
the popularity requirement. The standard analytical tool to do so is to look at the price of anarchy and the price of stability
of the popular matching problem.

Recall that X is the set of fractional matchings (8). Let R be the subset of fractional matchings that are popular. The price
of anarchy of the popular matching problem is defined as

sup

max
x⃗∈X

w(x⃗)

min
r⃗∈R

w(r⃗)
, (14)

and its price of stability is defined as

sup

max
x⃗∈X

w(x⃗)

max
r⃗∈R

w(r⃗)
, (15)

where the suprema range over all possible instances of the popular matching problem.
The price of anarchy bounds the efficiency of any popular mixedmatching compared to the best possible (not necessarily

popular) matching, while the price of stability captures the efficiency of the best popular mixed matching in the worst
case.

Theorem 3. The price of anarchy and the price of stability of the popular matching problem is 2.

Proof. The proof has two parts. First we show that the price of anarchy is at most 2. Then we show that the price of stability
is at least 2. The theorem follows from these two facts, since the price of stability cannot be larger than the price of anarchy.
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Let T be pure matching in X and let s⃗ be any popular matching in R. Since s⃗ is popular, we have

EM←s⃗[φ(M, T )] ≥ EM←s⃗[φ(T ,M)].
Now bounding on both sides using the fact that φ(M, T ) ≤ w(M) and φ(T ,M) ≥ w(T )− w(M), we obtain

EM←s⃗[w(M)] ≥ EM←s⃗[w(T )− w(M)].
And thus 2w(s) ≥ w(T ) and the price of anarchy is at most 2.

For bounding the price of stability, consider the following instance with 2k applicants {a1, . . . , a2k} and 2k + 1 jobs
{j0, . . . , j2k} (we do not show here the last resort jobs).

a1 j0 j1

a2 j0 j2

...
...

...

ak j0 jk

ak+1 j1 jk+1
ak+2 j2 jk+2

...
...

...

a2k jk j2k

The matching {(at , jt) : 1 ≤ t ≤ 2k} is maximum and has weight 2k. We claim that every popular matching must assign
pt in full to ak+t . This implies that every popular matching has weight at most k+ 1; thus, as k grows, the price of stability
for the instance tends to 2. Given a popular mixed matching s⃗, we construct a new fractional matching as follows

r⃗(at , j) =





1

k
if 1 ≤ t ≤ k and j = j0

k− 1

k
if 1 ≤ t ≤ k and j = ℓat

1 if k < t ≤ 2k and j = jt .

Since s⃗ is popular, we must have ∆(r⃗, s⃗) ≥ 0. Expanding the left-hand side of this inequality we get

∆(r⃗, s⃗) =
k−

t=1


r⃗(at , ℓat )


1− s⃗(at , ℓat )


− r⃗(at , j0)


1− s⃗(at , j0)


+

k−

t=1


0− (1− s⃗(ak+t , jt))


,

=
k−

t=1

[
k− 1

k


s⃗(at , j0)+ s⃗(at , jt)


− 1

k


1− s⃗(at , j0)

]
−

k−

t=1


1− s⃗(ak+t , jt)


.

Without loss of generality, we can assume that
∑

t s⃗(at , j0) = 1 and s⃗(ak+t , jt) = 1− s⃗(at , jt), for otherwise s⃗would not be
popular. Using these two observations, the above equality simplifies to

∆(r⃗, s⃗) =
k−

t=1
− s⃗(at , jt)

k
.

Therefore, since ∆(r⃗, s⃗) ≥ 0, we have that s⃗(at , jt) = 0 and s⃗(ak+t , jt) = 1 for all 1 ≤ t ≤ k. �

5. Generalizations

So far we have focused on the simplest setting where all applicants are treated equally, each job can accept a single
applicant, and preferences are one-sided. In this section, we show how to extend our results to the setting where applicants
have priorities or weights [18], where jobs have capacities [16], or where both jobs and applicants have preferences [9].

In order to obtain these results we first prove a theorem about a certain class of games called polyhedral zero-sum games.
Then for each variant of the popular matching problem we re-define the function φ that compares matchings and the
polytope X of fractional matchings to cast the particular variant at hand as a polyhedral zero-sum game.

5.1. Polyhedral zero-sum games

In this section we show that our results from Section 3 extend to a larger class of zero-sum games that we call polyhedral
zero-sum games. Consider a two player zero-sum game in which the strategies of the players are the extreme points of
some polytope. Specifically, let P be a polytope in Rd defined by f constraints. Let us denote by P the set of extreme points
of P . The payoff function for two x⃗, y⃗ ∈ P is a bilinear function

payoff(x⃗, y⃗) =
d−

i,j=1
wijx⃗(i)y⃗(j),
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where the wij coefficients are part of the game definition. A mixed strategy for the game is convex combination of extreme

points
∑N

i=1 pix⃗i, where x⃗i ∈ P , pi ≥ 0 for all i, and
∑N

i=1 pi = 1; notice that the resulting convex combination is just a point
in P . Our goal is to compute an optimal mixed strategy for such a game. This can easily be done by a linear program with
d variables and |P| constraints. However, this is not very efficient as |P| can be exponentially large compared to d + f . The
following theorem provides a more compact formulation for computing an optimal mixed strategy.

Theorem 4. There exists a linear programming formulation with d + f variables and constraints for finding an optimal mixed

strategy for a general polyhedral zero-sum game.

Proof. Suppose P is defined by the following f constraints:

P =

x⃗ ∈ R

d
+ :

d−

j=1
Aijx⃗(j) ≤ bi ∀i = 1 · · · f


. (16)

Our goal is to compute an optimal mixed strategy

min
x⃗∈P

max
y⃗∈P

d−

i,j=1
wijx⃗(i)y⃗(j). (17)

As before, we have a non-linear objective function. In order to overcome this we again resort to linear programming duality.
For a fixed x⃗ consider the linear program

max
y⃗∈P

d−

i,j=1
wijx⃗(i)y⃗(j).

Its dual is given by

min
β∈Dx⃗

f−

i=1
biβ⃗(i),

where Dx⃗ is the feasible dual region

Dx⃗ =


β⃗ ∈ R
f
+ :

f−

i=1
β⃗(i)Aij ≥

d−

i=1
wijx⃗(i) ∀j = 1 · · · d


.

Using the Strong Duality Theorem, we can now re-write (17) as a pure linear program.

minimize
f−

i=1
biβ⃗(i) (LP4)

subject to

f−

i=1
Aijβ⃗(i) ≥

d−

i=1
wijx⃗(i) ∀j = 1 · · · d

d−

j=1
Aijx⃗(j) ≤ bi ∀i = 1 · · · f

x⃗ ∈ R
d
+

β⃗ ∈ R
f
+

The above linear program has d+ f variables and constraints. Let (x⃗, β⃗) be an optimal solution to (LP4). Then
∑f

i=1 biβ⃗(i) is
the value of the polyhedral game and x ∈ P is an optimal mixed strategy. �

We now show how to apply Theorem 4 to the different variants of the popular matching problem.

5.2. Weighted popular mixed matchings

In this case, every applicant a ∈ A is assigned a positive weight t(a). As mentioned earlier, the weighted case was
first considered by Mestre [18] who gave efficient algorithms to determine if a given instance admits a popular weighted
matching and to compute one if it exists.
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Let G(A ∪ J, E) be an instance of the weighted popular matchings problem where every applicant a ∈ A has a weight
t(a) associated with it. For any two pure matchingsM and T in G the function φ(M, T ) is defined as follows:

φ(M, T ) =
−

a∈A:
a prefers M to T

t(a). (18)

The definition of mixed popular matchings is similar to the unweighted case using (18) instead of (1). The set X of
fractional matchings in the weighted case remains unchanged and is given by (8). Recall that X is integral. We extend the
operator ∆ for comparing mixed matchings to fractional matchings x⃗1, x⃗2 ∈ X.

∆(x⃗1, x⃗2) =
−

a∈A

−

(a,i)∈E(a)
(a,j)∈E(a)

x⃗1(a, i) x⃗2(a, j) votea(i, j), (19)

where

votea(i, j) =





−t(a) if a prefers i over j,

t(a) if a prefers j over i,

0 if a is indifferent between i and j.

Lemma 2. Let P and Q be two mixed matchings in a weighted popular matchings instance G and let x⃗1 and x⃗2 be their

corresponding fractional matchings. Then ∆(P,Q ) = ∆(x⃗1, x⃗2).

We omit the proof of Lemma 2 as it is identical to the proof of Lemma 1.

Theorem 5. A weighted popular mixed matching always exists and can be computed efficiently.

Proof. We define the polyhedral game for the polytope X using the payoff matrix ∆. Because the payoff matrix is skewed
symmetric the value of the game is zero and thus there always exists a weighted popular mixed matching.

To compute such a mixed matching we note that the payoff matrix of the game defined by (19) is bilinear. Thus we can
apply Theorem 4 to obtain a compact linear programming formulation for finding a weighted popular mixed matching. �

5.3. Capacitated popular mixed matchings

In this subsection we consider the generalization where every job j ∈ J has a positive capacity cj associated with it. A
solution to the capacitated matchings problem allows every applicant to be matched to at most one job and every job to be
matched to atmost cj applicants. Given an instance of the capacitated popularmatchings problem,we canmake cj ‘‘clones" of
job j and create a new instance where every job has unit capacity. Our results for the uncapacitated case immediately imply
the existence and computation of popular mixed matching for the capacitated case. Here instead of using this reduction we
work directly with the capacitated instance. As a result we obtain more efficient algorithms.

Let G(A∪J, E) be an instance of the capacitated popularmatchings problemwhere each job j ∈ J has a positive capacity
cj associated with it. For two (capacitated) matchingsM and T in G, the function φ(M, T ) is as defined for the uncapacitated
case. That is,

φ(M, T ) = |{a ∈ A : a prefersM over T }| .
The definition mixed popular matchings remains the same as in the uncapacitated case. The set of fractional matchings

X, however, changes since every job can now be matched to up to cj applicants.

X =



 x⃗ ∈ R

m
+



∑
e∈E(a)

x⃗(e) = 1 for a ∈ A and
∑

e∈E(j)

x⃗(e) ≤ cj for j ∈ J.



 (20)

Note that X is still integral as the LP matrix is totally unimodular. The definition of ∆ to compare fractional matchings
is the same as (9). The following lemma allows us to replace mixed matchings with fractional matchings in the capacitated
case.

Lemma 3. Let P and Q be two mixed matchings in a capacitated popular matchings instance G and let x⃗1 and x⃗2 be their

corresponding fractional matchings. Then ∆(P,Q ) = ∆(x⃗1, x⃗2).

We omit the proof of Lemma 3 as it is identical to the proof of Lemma 1.

Theorem 6. A capacitated popular mixed matching always exists and can be computed efficiently.

Proof. We define the polyhedral game for the polytope X defined by (20) using the payoff matrix ∆. Because the payoff
matrix is skewed symmetric the value of the game is zero and thus there always exists a capacitated popularmixedmatching.
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To compute such a mixed matching we note that the payoff matrix of the game defined by (9) is bilinear. Thus we can
apply Theorem4 to obtain a compact linear programming formulation for finding a capacitated popularmixedmatching. �

5.4. Two-sided preferences

Finally we consider the case where both applicants and jobs have preferences over the other side. The case of two-sided
preference lists has been extensively studied in the literature [10,20]. It is known [9] that when preference lists are strict, a
stable matching is popular but when preference lists contain ties the instance may admit no popular matching.

Let G(A ∪ J, E) be an instance of the popular matchings problem with two-sided preference lists. For two matchingsM
and T in G, we define φ(M, T ) as below.

φ(M, T ) = |{u ∈ A ∪ J : u prefersM over T }| .
Recall that, for the case of one-sided preference lists we introduced a unique last-resort job ℓa at the end of each applicant’s
preference list. Here in addition to that, we introduce a unique last resort applicant ℓj at the end of each job’s preference list.
We also connect every pair of last-resort job and last-resort applicant with an edge. This allows us to restrict our attention
to complete matchings in G. The definition of popular matchings is exactly the same as in the case of one-sided preferences.

The set X of fractional matchings in G is defined as follows:

X =



 x⃗ ∈ R

m
+



∑
e∈E(a)

x⃗(e) = 1 for a ∈ A and
∑

e∈E(j)

x⃗(e) = 1 for j ∈ J.





Note that X is integral. We now define the function ∆ for fractional matchings x⃗1, x⃗2 ∈ X.

∆(x⃗1, x⃗2) =
−

u∈A∪J

−

(u,i)∈E(u)
(u,j)∈E(u)

x⃗1(u, i) x⃗2(u, j) voteu(i, j) (21)

where voteu(i, j) is the natural extension of (10) to any u ∈ A ∪ J.

Lemma 4. Let P and Q be two mixed matchings for an instance G with two-sided preferences and let x⃗1 and x⃗2 be their

corresponding fractional matchings. Then ∆(P,Q ) = ∆(x⃗1, x⃗2).

We omit the proof of Lemma 4 as it is identical to the proof of Lemma 1.

Theorem 7. A two-sided popular mixed matching always exists and can be computed efficiently.

Proof. We define the polyhedral game for the polytope X using the payoff matrix ∆. Because the payoff matrix is skewed
symmetric the value of the game is zero and thus there always exists a two-sided popular mixed matching.

To compute such a mixed matching we note that the payoff matrix of the game defined by (21) is bilinear. Thus we can
apply Theorem 4 to obtain a compact linear programming formulation for finding a popular mixed matching. �

6. Concluding remarks

In this paper we introduced the concept of popular mixed matchings and showed that they enjoy the best qualities of
previously proposed solution concepts based on the popularity criterion; namely, they always exist and can be computed
efficiently. With our approach we are able to tackle more general settings where applicants have priorities or weights [18],
where multiple copies of the jobs are available [16], where we have preferences on both sides [9].

At the heart of our proofs is an interesting connection between popular matchings and the Nash equilibria of a
certain zero-sum game with exponentially-many strategies. In general, finding these equilibria is equivalent to linear
programming3; in our case, however, by exploiting problem-specific properties we could find an equivalent linear program
whose size is polynomial on the size of the input graph. The same technique works for more general zero-sum games.
Namely, those games whose strategies correspond to the extreme points of a polytope P and whose payoff matrix S(x⃗, y⃗)
can be expressed as a bilinear function of x⃗ and y⃗ in P .

We leave as an open problem to design purely combinatorial algorithms for computing popular mixed matchings.
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3 Linear programming can be reduced to the problem of solving a zero-sum game of roughly the same size [7, Chapter 13].
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Appendix. Calculations from Section 2

Recall that our instance has applicants {a1, a2, b1, b2, x} and jobs {i1, i2, j1, j2} plus last resort jobs. The preferences lists
are strict and are shown below

a1 j1 j2 ℓa1

a2 j1 j2 ℓa2

b1 i1 i2 ℓb1

b2 i1 i2 ℓb2

x j1 i2 ℓx

The matching where all top jobs are iteratively shared equally among the applicants is equivalent to the uniform
distribution over the following matchings

T1 =

(a1, ℓa1), (a2, j2), (x, j1), (b1, i1), (b2, i2)


,

T2 =

(a1, j2), (a2, ℓa2) , (x, j1), (b1, i2), (b2, i1)


,

T3 =

(a1, j1), (a2, j2), (x, i2), (b1, i1), (b2, ℓb2)


,

T4 =

(a1, j2), (a2, j1), (x, i2), (b1, ℓb1), (b2, i1)


,

T5 =

(a1, j1), (a2, j2), (x, ℓx), (b1, i1), (b2, i2)


,

T6 =

(a1, j2), (a2, j1), (x, ℓx), (b1, i2), (b2, i1)


.

In other words, we are working the mixed matching Q =

(Tk,

1
6
) : k = 1, . . . , 6


. This is not popular as the matching

M0 =

(a1, j1), (a2, j2), (x, i2), (b1, i1), (b2, ℓb2)



is more popular than Q . To prove this claim we need to compare φ(Q ,M0) to φ(M0,Q ).

φ(Q ,M0) =

6∑
k=1

φ(Tk,M0)

6
= 2+ 2+ 0+ 2+ 1+ 2

6
= 9

6

φ(M0,Q ) =

6∑
k=1

φ(M0, Tk)

6
= 1+ 3+ 0+ 2+ 1+ 3

6
= 10

6
.

Since φ(M0,Q ) > φ(Q ,M0) it follows that M0 is more popular than Q .
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