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ABSTRACT

Event sensors output a stream of asynchronous brightness

changes (called “events”) at a very high temporal rate. Previ-

ous works on recovering the lost intensity information from

the event sensor data have heavily relied on the event stream,

which makes the reconstructed images non-photorealistic

and also susceptible to noise in the event stream. We propose

to reconstruct photorealistic intensity images from a hybrid

sensor consisting of a low frame rate conventional camera,

which has the scene texture information, along with the event

sensor. To accomplish our task, we warp the low frame rate

intensity images to temporally dense locations of the event

data by estimating a spatially dense scene depth and tem-

porally dense sensor ego-motion. The results obtained from

our algorithm are more photorealistic compared to any of the

previous state-of-the-art algorithms. We also demonstrate our

algorithm’s robustness to abrupt camera motion and noise in

the event sensor data.

Index Terms— Event sensors, Image reconstruction,

Temporal Super-resolution

1. INTRODUCTION

Event-based sensors [1] encode the local contrast changes in

the scene as positive or negative events at the instant they oc-

cur. Event-based sensors provide a power efficient way of

converting the megabytes of per-pixel intensity data into a

stream of spatially sparse but temporally dense events. How-

ever, the event stream cannot be directly visualized like a nor-

mal video, with which we as human beings are familiar with.

This calls for an algorithm that can convert this stream of

event data to a more familiar version of image frames. These

reconstructed intensity frames could also be used as an input

for traditional frame-based computer vision algorithms like

multi-view stereo, object detection etc. Previous attempts

[2, 3, 4, 5] at converting the event stream into images have

heavily relied on event data. Although these methods do a

good job of recovering the intensity frames they suffer from

two major disadvantages: a) The intensity frames don’t look

photorealistic and b) some of the objects in the scene can go

missing in the recovered frames because they are not produc-
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Below 2 images show the 
event frames during an 

abrupt motion. The event 
frames are corrupted with 

noisy events.

Fig. 1. We compare our reconstruction from a hybrid sensor

data (such as DAVIS) with that of CF [5] and MR[2]. Note

that, MR only uses events for reconstruction. In column (a)

we show in inset the zoomed-in version of an image region.

We can clearly see that our proposed reconstruction method

is able to recover the image region well compared to other

state-of-the-art methods.

ing any events (edges parallel to the sensor motion do not

trigger any events).

In this paper, we propose a method to reconstruct photo-

realistic intensity images at a high frame rate. As the absolute

intensity and fine texture information is lost during the encod-

ing of events, we use the conventional image sensor to pro-

vide us with this information for reconstructing photorealistic

images. There exists a commercially available hybrid sen-

sor consisting of a co-located low-frame rate intensity sensor

and an event-based sensor called DAVIS(Dynamic and Active

pixel Vision Sensor)[6]. Fig. 2 summarizes our overall ap-

proach to reconstruct the temporally dense photorealistic in-

tensity images using the hybrid sensor. We mainly have four

steps. In the first step, we estimate the dense depth map from

successive intensity frames. For this purpose, we use a tra-

ditional iterative optimization scheme, which we initialize by

depth map obtained from a deep learning based optical flow

estimation algorithm. In the second step, we map the event

data between successive intensity frames to multiple pseudo-
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intensity frames using [2]. Next, we use the pseudo-intensity

frames and the dense depth maps obtained from the first step

to estimate temporally dense camera ego-motion by direct vi-

sual odometry. And finally, in the fourth step, we warp the

successive intensity frames to intermediate temporal locations

of the pseudo-intensity frames to obtain photo-realistic recon-

struction. Recently, [5] have shown that it is possible to fuse

temporally dense events with low frame-rate intensity frames

to reconstruct intensity frames at a higher frame rate. How-

ever, due to lack of any regularization, the intensity frames re-

constructed using [5] tend to be noisy and blurry. With exten-

sive experiments, we show that our proposed method is able

to reconstruct photorealistic intensity images at a high frame

rate and is also robust to noisy events in the event stream. To

summarize, we make the following contributions:

• We propose a pipeline using a hybrid event and low

frame rate intensity sensor which can reconstruct tem-

porally dense photorealistic intensity images. This

would be difficult to obtain with only either the con-

ventional image sensor or the event sensor.

• We use the event sensor for estimating temporally

dense sensor ego-motion and the low-frame rate inten-

sity images for obtaining spatially dense depth map.

• We demonstrate high quality temporally dense photo-

realistic reconstructions using the proposed method on

real data captured from DAVIS.

• We also demonstrate our algorithm’s robustness to

abrupt camera motion and noisy events in the event

sensor data.

2. RELATED WORK

Intensity image reconstruction from events: The proposed

work is very closely related to other previous works which

reconstruct intensity images from events [5, 2, 3, 4]. [2, 3,

4] cannot recover the true intensity information of the scene

as they use only the events to estimate the intensity images.

Some works like [7, 8] reconstruct intensity images as a by-

product of sensor tracking from event data over 3D scenes

but are not able to recover the true intensity information. Re-

cently, [5] demonstrated that event data and the intensity im-

age data can be used in a complementary filter to reconstruct

intensity frames at a higher frame rate. Although [5] makes

use of the intensity images, the reconstructed images tend to

be blurry and are adversely affected by noisy events due to

lack of any regularization in their proposed method. The pre-

print version of this work is also available on arxiv [9].

Visual odometry/SLAM with event sensors: The high tem-

poral data acquisition of event sensors has made it extremely

suitable for applications such as tracking which need low la-

tency operation. Very recently, a dataset was also proposed to
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Fig. 2. Overview of our approach: The main blocks of our al-

gorithms are a) an iterative depth and camera pose estimation

technique for successive intensity frames, b) mapping event

data into pseudo-intensity frames using [2], c) direct visual

odometry based sensor ego-motion estimation for intermedi-

ate event frame locations and d) a warping module for warp-

ing intensity images to intermediate locations.

benchmark event based pose estimation, visual odometry, and

SLAM algorithms [10]. The dataset contains multiple video

sequences captured with DAVIS and sub-millimeter accurate

ground truth camera motion acquired using a motion-capture

system. Previous works such as [11, 12, 13, 14] estimate ego-

motion of the sensor directly from the event stream. Visual

odometry/ SLAM with event sensors [8, 7, 15] has also been

a very popular topic of research. Although we estimate the

scene depth and sensor ego-motion to warp intensity frames,

visual odometry/SLAM is not the focus of this work.

3. PHOTOREALISTIC IMAGE RECONSTRUCTION

We propose to reconstruct photorealistic intensity images us-

ing the event stream obtained from an event sensor. The con-

ventional image sensor will compensate for the fine texture

and the absolute intensity information which is lost in the

event stream. As can be seen from Fig. 2, we have four major

steps to reconstruct the temporally dense photorealistic image

reconstruction: (a) Estimate dense depth maps dk and dk+1

corresponding to the successive intensity frames Ik and Ik+1

and the relative pose ξ between them (§3.1); (b) Reconstruct

pseudo-intensity frames Ej
k at uniformly spaced temporally

dense locations j = 1, 2, . . . N between every successive in-

tensity frame Ik and Ik+1; (c) Estimate temporally dense sen-

sor ego-motion estimates ξjk and ξjk+1
for each intermediate

pseudo-intensity frame with respect to the intensity frames Ik
and Ik+1(§3.2) and (d)Forward warp the intensity frames Ik



and Ik+1 to the intermediate location of each of the pseudo-

intensity frames Ej
k and blend them (§3.3).

3.1. Depth estimation from two successive intensity im-

ages

One of the important steps in our proposed algorithm is

forward warping the intensity images to multiple intermedi-

ate temporal locations between successive intensity frames.

However, warping can introduce undesired holes in the final

reconstructed images at regions of disocclusion. This can be

solved by warping both the successive intensity frames, Ik
and Ik+1, to the intermediate locations. This requires us to

estimate two dense depth maps dk and dk+1 corresponding to

the images Ik and Ik+1, respectively. Fig. 3 shows the overall

scheme of estimating dense depth maps from successive in-

tensity frames. We initialize the depth estimates dk and dk+1

from optical flow, and the 6-dof camera pose ξ with zero

rotation and translation. Here, ξ is the 6-dof relative camera

pose at Ik+1 with respect to Ik. We warp the intensity image

Ik+1 to the location of Ik with the current estimate of dk and

ξ, to obtain Îk. Similarly, we warp Ik to the location of Ik+1

to obtain Îk+1. We define the photometric reconstruction loss

Lph as,

Lph(dk, dk+1, ξ) = ‖(Îk − Ik)‖1 + ‖(Îk+1 − Ik+1)‖1 (1)

By minimizing the above reconstruction loss, Lph, it is possi-

ble to estimate the depth maps dk and dk+1 and 6-dof relative

pose ξ. We also enforce an edge aware laplacian smoothness

prior on the estimated depth maps dk and dk+1, by taking

inspiration from [16]. We define the smoothness loss Lsm as,

Lsm(d) =
∑

‖∇xd‖e
−β‖∇xI‖ + ‖∇yd‖e

−β‖∇yI‖ (2)

where I is the intensity image, d is the corresponding dense

depth map and ∇x and ∇y are the x and y-gradient operators,

respectively. Overall, we estimate the dense depth estimate

dk, dk+1 and the relative pose ξ by,

ξ, dk, dk+1 = argmin
ξ,dk,dk+1

Lph(dk, dk+1, ξ)

+ λsm(Lsm(dk) + Lsm(dk+1)) (3)

Eq. (3) is a non-convex optimization problem and hence

a good initialization of depth and pose is essential to avoid

local minima. Here, we use optical flow between the succes-

sive intensity frames obtained from PWC-Net[17] as an initial

estimate of the depth. For a static scene, it is possible to es-

timate the scene depth and the 6-dof camera pose from the

optical flow. However, in our experiments, we found that a

simple inverse of the optical flow magnitude is good enough

to initialize the depth for the optimization iterations in Eq. (3).

We initialize pose with zero rotation and translation.
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Fig. 3. Estimating dense depth maps and relative pose of

two successive intensity images: We use the optical flow esti-

mated from PWC-Net [17] to obtain an initial depth estimate

and initialize the relative pose to zero rotation and translation.

We iteratively minimize the photometric error over the depth

maps dk and dk+1 and the relative pose ξ.
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Fig. 4. Estimating relative pose of intermediate pseudo-

intensity images: We estimate the 6-dof camera pose of Ej
k

w.r.t. E0
k and E0

k+1
by iteratively minimizing the photometric

error between the warped image Êj
k and the target image Ej

k.

We minimize the photometric error over the relative poses ξjk
and ξjk+1

using the known depth estimates dk and dk+1.

3.2. 6-dof relative pose estimation by direct matching

To achieve the goal of photorealistic reconstruction we warp

the successive intensity frames captured by the image sen-

sor to the intermediate temporal location of an event frame.

For warping, we need to determine the 6-dof camera pose

between the temporal locations of the successive intensity

frames and that of the intermediate event frames. We recon-

struct pseudo-intensity images from events using [2] at the

temporal locations of the intermediate event frames as well as

the successive intensity frames. As shown in Fig. 4, our goal

here is to estimate the relative camera pose between E0
k , E0

k+1



and the pseudo-intensity images Ej
k (j = 1, 2, . . . N ). We use

this relative pose, to warp the successive intensity frames to

the intermediate locations specified by the event frames (Ej
k)

and hence reconstruct photorealistic intensity images.

Let ξjk represent the 6-dof camera pose of the intermediate

pseudo-intensity image Ej
k with respect to E0

k and ξjk+1
be

the 6-dof camera pose of Ej
k with respect to E0

k+1
. We use

the current estimate of relative camera pose ξjk and the known

depth estimate dk to inverse warp the pseudo-intensity frame

Ej
k to the location of E0

k to obtain Ê0
k . We similarly inverse

warp the pseudo-intensity frame Ej
k to the location of E0

k+1
to

obtain Ê0
k+1

using the current estimate of relative pose ξjk+1

and the known depth dk+1. We define the photometric loss

Lp as mean absolute error between the warped intensity frame

and the ground truth frame.

Lp(ξ
j
k) = ‖E0

k − Ê0
k‖1 (4)

Lp(ξ
j
k+1

) = ‖E0
k+1 − Ê0

k+1‖1 (5)

By composing the relative pose estimates, ξjk and (ξjk+1
)−1

we obtain the overall pose between Ik and Ik+1. We use this

knowledge to regularize the relative camera pose estimates ξjk
and ξjk+1

with Lp(ξ
j
k, ξ

j
k+1

) = ‖Ik − Îk‖1 . Overall,

ξjk, ξ
j
k+1

= argmin
ξ
j

k
,ξ

j

k+1

Lp(ξ
j
k)+Lp(ξ

j
k+1

)+λrLp(ξ
j
k, ξ

j
k+1

)

(6)

where λr is the regularization parameter.

3.3. Forward Warping and Blending

At this stage, we have depth maps dk and dk+1 corresponding

to intensity images Ik and Ik+1 respectively. We do a source-

target mapping (forward warping) from two images Ik and

Ik+1 using the estimated relative pose ξjk and ξjk+1
to the latent

image Ijk and alpha-blend them. We splat the intensity values

after forward warping to ensure that no holes are generated in

the final image.

4. EXPERIMENTS

For all our experiments we use DAVIS [6], which is commer-

cially available and has a conventional image sensor and an

event sensor bundled together. Since, we did not have access

to DAVIS, we used the recently proposed dataset by [10] and

[5] which consists of several video sequences captured using

DAVIS. We obtain dense depth maps at the locations of low

frame rate intensity frames and temporally dense sensor ego-

motion using the event sensor data to warp the low frame-rate

intensity frames to intermediate camera locations. For esti-

mating depth, we initially enhance the edges of the depth ob-

tained from optical flow estimate using a fast bilateral solver

[18]. The output of this bilateral solver is then used as an

initialization for the iterative depth refinement scheme. We

set β = 10.0 in Eq. (2) and λsm = 1.0 in Eq. (3). Using

the event stream from each sequence in the dataset we gener-

ate pseudo-intensity estimates using the algorithm proposed

in [2]. We stack non-overlapping blocks of 2000 events into

a frame and generate a corresponding pseudo-intensity frame

using [2]. These pseudo-intensity frames are then used for

estimating the temporally dense sensor ego-motion. For pose

estimation we use λr = 0.01 in Eq. (6). We use the Adam

optimizer [19] to solve Eq. (3) and Eq. (6).

4.1. Depth estimation

In Fig. 5 we demonstrate the effectiveness of our proposed

method for estimating depth. We use an initial estimate of

depth from a deep learning method and iteratively refine it.

We empirically found that using PWC-Net [17] to initialize

the depth estimate for the iterative optimization scheme gave

consistently good results. We also experiment with initial-

izing the depth from [20, 21]. We provide comparisons in

supplementary material.

4.2. Photorealistic intensity image reconstruction

In Fig. 1 and Fig. 6 we compare qualitatively the intensity

images reconstructed using our proposed method to that pro-

posed in [2, 5]. While MR[2] utilizes only event sensor

data, CF[5] uses both event sensor data as well as informa-

tion from intensity images. For fairness in comparison, we

generate intensity images from [2, 5] for every 2000 events

in the sequence. In [5], we found that initializing the cut-

off frequency to 6.28rad/s and updating other parameters

dynamically gave the best results.

Reinbacher et al. [2] use only event information and are hence

unable to recover the true intensity information present in the

scene. Scheerlinck et al. [5] do not use any kind of spatial

regularization and hence the reconstructed images are noisy

and blurry even though they have access to the intensity im-

ages. We acknowledge that [5, 2] run in real time, while our

algorithm takes about two minutes to estimate the dense depth

maps and about 40 seconds to render each intermediate frame.

With recent advances in stereo depth estimation methods, we

expect that in future we can completely eliminate the need

for an iterative depth refinement scheme and directly use the

output of a state-of-the-art stereo depth estimation algorithm.

This will greatly reduce the computation time. It is possible

to further reduce the computation time for estimating pose by

using the Lucas-Kanade inverse compositional method.

4.3. Robustness to abrupt camera motion

In the case of abrupt motion of the sensor, the intensity im-

ages get blurred and the rate at which events are generated

becomes high. We start with deblurring the intensity images



using an existing deblurring technique(in our experiments we

used [22]). These deblurred images are then used as an input

to the reconstruction pipeline. Abrupt motion results in a high

Refined depth estimate
One intensity 

image from the pair Initial depth estimate

Fig. 5. Estimated depth maps from our proposed method

Successive

intensity frames Ours CF[5]

Fig. 6. Qualitative comparisons of reconstructions. (If doc-

ument is opened in Adobe Reader, videos can be viewed by

clicking on the images). We provide further video compar-

isons in the supplementary material.
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Fig. 7. Abrupt camera motion: (a)Top row shows the two suc-

cessive images blended into one where we can see the abrupt

camera motion. The bottom row shows an intermediate event

frame affected by noise. (b),(c): Comparing reconstructions

obtained from our method to that of CF [5] on the sequence

with abrupt camera motion.

event rate and also produces many noisy events. These noisy

events affect the reconstructions in [5] as their trust on events

increases exponentially with the rise in the event rate. As can

be seen in Fig. 7, our method is robust to such abrupt motions

as can be seen from the results shown in columns (b) and (c).

5. CONCLUSION

We combine the strength of texture-rich low frame rate in-

tensity frames with high temporal rate event data to obtain

temporally dense photo-realistic images. We achieve this by

warping the low frame rate intensity frames from the conven-

tional image sensor to intermediate locations. With extensive

experiments, we have demonstrated that the images recon-

structed from our algorithm are photorealistic compared to

any of the previous methods. We also show the robustness

of our algorithm to abrupt camera motion. Currently, our

algorithm assumes a static scene. A future direction for us

would be to build a generalized algorithm which can recon-

struct photorealistic images for dynamic scenes as well.
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